Minireviews
Copyright ©2013 Baishideng Publishing Group Co., Limited. All rights reserved.
World J Gastroenterol. Aug 28, 2013; 19(32): 5238-5249
Published online Aug 28, 2013. doi: 10.3748/wjg.v19.i32.5238
DNA methylation in inflammatory bowel disease and beyond
Daren Low, Atsushi Mizoguchi, Emiko Mizoguchi
Daren Low, Emiko Mizoguchi, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
Atsushi Mizoguchi, Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
Atsushi Mizoguchi, Emiko Mizoguchi, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
Author contributions: All the authors designed and wrote the manuscript.
Supported by National Institute of Health (DK80070, DK74454, and DK64289); the Eli and Edythe L. Broad Medical Foundation and American Gastroenterological Association Foundation to Mizoguchi E; and the Singapore A*STAR Graduate Academy (BM/AIF/13/001) to Low D
Correspondence to: Emiko Mizoguchi, MD, PhD, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, GRJ 825D, 55 Fruit Street, Boston, MA 02114, United States. emizoguchi@partners.org
Fax: +1-617-7263673
Received: April 5, 2013
Revised: June 13, 2013
Accepted: July 18, 2013
Published online: August 28, 2013
Abstract

Inflammatory bowel disease (IBD) is a consequence of the complex, dysregulated interplay between genetic predisposition, environmental factors, and microbial composition in the intestine. Despite a great advancement in identifying host-susceptibility genes using genome-wide association studies (GWAS), the majority of IBD cases are still underrepresented. The immediate challenge in post-GWAS era is to identify other causative genetic factors of IBD. DNA methylation has received increasing attention for its mechanistical role in IBD pathogenesis. This stable, yet dynamic DNA modification, can directly affect gene expression that have important implications in IBD development. The alterations in DNA methylation associated with IBD are likely to outset as early as embryogenesis all the way until old-age. In this review, we will discuss the recent advancement in understanding how DNA methylation alterations can contribute to the development of IBD.

Keywords: Intestinal inflammation, Crohn’s disease, Colitis, DNA methyltransferase, Epi-therapy

Core tip: This review discuss the recent research advancement in the area of DNA methylation during the pathogenesis of inflammatory bowel disease (IBD) and IBD-associated cancer, with a focus on highlighting major players mediating DNA methylation alterations during IBD development. Temporal and spatial differential DNA methylation status that contributes to the disease, as well as epi-therapy treatment options for IBD patients, are also discussed. This emerging information will have important clinical significance, especially so in this post-genome-wide association studies era of IBD research.