Guidelines For Basic Science
Copyright ©2012 Baishideng Publishing Group Co., Limited. All rights reserved.
World J Gastroenterol. Jul 28, 2012; 18(28): 3635-3661
Published online Jul 28, 2012. doi: 10.3748/wjg.v18.i28.3635
Cellular and molecular mechanisms of intestinal fibrosis
Silvia Speca, Ilaria Giusti, Florian Rieder, Giovanni Latella
Silvia Speca, Ilaria Giusti, Giovanni Latella, Gastroenterology Unit, Department of Internal Medicine and Public Health, University of L’Aquila, 67100 L’Aquila, Italy
Florian Rieder, Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 73051, United States
Author contributions: Speca S and Giusti I contributed equally to this work by drafting the article; Rieder F revised the manuscript critically and gave important intellectual contributions; Latella G conceived, designed, drafted and revised the manuscript; all authors read and approved the final manuscript.
Correspondence to: Giovanni Latella, MD, Gastroenterology Unit, Department of Internal Medicine and Public Health, University of L’Aquila, Piazza S Tommasi, 1-Coppito, 67100 L’Aquila, Italy. giolatel@tin.it
Telephone: +39-862-434735 Fax: +39-862-433425
Received: December 17, 2011
Revised: March 26, 2012
Accepted: April 9, 2012
Published online: July 28, 2012
Abstract

Fibrosis is a chronic and progressive process characterized by an excessive accumulation of extracellular matrix (ECM) leading to stiffening and/or scarring of the involved tissue. Intestinal fibrosis may develop in several different enteropathies, including inflammatory bowel disease. It develops through complex cell, extracellular matrix, cytokine and growth factor interactions. Distinct cell types are involved in intestinal fibrosis, such as resident mesenchymal cells (fibroblasts, myofibroblasts and smooth muscle cells) but also ECM-producing cells derived from epithelial and endothelial cells (through a process termed epithelial- and endothelial-mesenchymal transition), stellate cells, pericytes, local or bone marrow-derived stem cells. The most important soluble factors that regulate the activation of these cells include cytokines, chemokines, growth factors, components of the renin-angiotensin system, angiogenic factors, peroxisome proliferator-activated receptors, mammalian target of rapamycin, and products of oxidative stress. It soon becomes clear that although inflammation is responsible for triggering the onset of the fibrotic process, it only plays a minor role in the progression of this condition, as fibrosis may advance in a self-perpetuating fashion. Definition of the cellular and molecular mechanisms involved in intestinal fibrosis may provide the key to developing new therapeutic approaches.

Keywords: Inflammatory bowel disease, Intestinal fibrosis, Extracellular matrix, Molecular mediators, Myofibroblasts, Inflammatory cells, Epithelial cells, Mesenchymal cells, Endothelial cells