Topic Highlight
Copyright ©2007 Baishideng Publishing Group Co., Limited. All rights reserved.
World J Gastroenterol. Oct 7, 2007; 13(37): 4931-4937
Published online Oct 7, 2007. doi: 10.3748/wjg.v13.i37.4931
Implication of altered proteasome function in alcoholic liver injury
Natalia A Osna, Terrence M Donohue Jr
Natalia A Osna, Terrence M Donohue Jr, Liver Study Unit, The Omaha Veterans Affairs Medical Center, the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
Author contributions: All authors contributed equally to the work.
Supported by the National Institute on Alcohol Abuse and Alcoholism, grant number 5R21 AA015379-02
Correspondence to: Natalia A Osna, MD, PhD, Liver Study Unit, Research Service (151), VA Medical Center, 4101 Woolworth Ave, Omaha, NE 68105, United States. nosna@unmc.edu
Telephone: +1-402-3468800-3735 Fax: +1-402-4490604
Received: June 30, 2007
Revised: July 17, 2007
Accepted: July 26, 2007
Published online: October 7, 2007
Abstract

The proteasome is a major protein-degrading enzyme, which catalyzes degradation of oxidized and aged proteins, signal transduction factors and cleaves peptides for antigen presentation. Proteasome exists in the equilibrium of 26S and 20S particles. Proteasome function is altered by ethanol metabolism, depending on oxidative stress levels: low oxidative stress induces proteasome activity, while high oxidative stress reduces it. The proposed mechanisms for modulation of proteasome activity are related to oxidative modification of proteasomal proteins with primary and secondary products derived from ethanol oxidation. Decreased proteolysis by the proteasome results in the accumulation of insoluble protein aggregates, which cannot be degraded by proteasome and which further inhibit proteasome function. Mallory bodies, a common signature of alcoholic liver diseases, are formed by liver cells, when proteasome is unable to remove cytokeratins. Proteasome inhibition by ethanol also promotes the accumulation of pro-apoptotic factors in mitochondria of ethanol-metabolizing liver cells that are normally degraded by proteasome. In addition, decreased proteasome function also induces accumulation of the negative regulators of cytokine signaling (I-κB and SOCS), thereby blocking cytokine signal transduction. Finally, ethanol-elicited blockade of interferon type 1 and 2 signaling and decreased proteasome function impairs generation of peptides for MHC class I-restricted antigen presentation.

Keywords: 20S proteasome, 26S proteasome, PA28, CYP2E1, Apoptosis, Liver