Basic Research
Copyright ©2005 Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Apr 14, 2005; 11(14): 2101-2108
Published online Apr 14, 2005. doi: 10.3748/wjg.v11.i14.2101
Chromic-P32 phosphate treatment of implanted pancreatic carcinoma: Mechanism involved
Lu Liu, Guo-Sheng Feng, Hong Gao, Guan-Sheng Tong, Yu Wang, Wen Gao, Ying Huang, Cheng Li
Lu Liu, Yu Wang, Wen Gao, Ying Huang, Cheng Li, Institute of Nuclear Medicine Technology of Southeast University, Nanjing 210009, Jiangsu Province, China
Guo-Sheng Feng, Hong Gao, Guan-Sheng Tong, Beijing Railway General Hospital, Beijing 100038, China
Author contributions: All authors contributed equally to the work.
Correspondence to: Dr. Lu Liu, Institute of Nuclear Medicine Technology of Southeast University, 87 Dingjiaqiaolu, Nanjing 210009, Jiangsu Province, China.
Telephone: +86-25-83272557 Fax: +86-25-83426368
Received: March 18, 2004
Revised: March 20, 2004
Accepted: April 13, 2004
Published online: April 14, 2005

AIM: To study the effects of chromic-P32 phosphate (32P colloids) interstitial administration in Pc-3 implanted pancreatic carcinoma, and investigate its anticancer mechanism.

METHODS: Ninety-eight tumor bearing nude mice were killed at different time points after the injection of 32P colloids to the tumor core with observed radioactivity. The light microscopy, transmission electron microscopy (TEM) and immuno-histochemistry and flow cytometry were used to study the rates of tumor cell necrosis, proliferating cell nuclear antigen index, the micro vessel density (MVD). The changes of the biological response to the lymphatic transported 32P colloids in the inguinal lymph node (ILN) were dynamically observed, and the percentage of tumor cell apoptosis, and Apo2.7, caspase-3, Bcl-2, Bax-related gene expression were observed too.

RESULTS: The half-life of effective medication is 13 d after injection of 32P colloids to the tumor stroma, in 1-6 groups, the tumor cell necrosis rates were 20%, 45%, 65%, 70%, 95% and 4%, respectively (F = 4.14-105.36, P<0.01). MVD were 38.5±4.0, 28.0±2.9, 17.0±2.9, 8.8±1.5, 5.7±2.3 and 65.0±5.2 (t = 11.9-26.1, P<0.01), respectively. Under TEM fairly differentiated Pc-3 cells were found. Thirty days after medication, tumors were shrunk and dried with scabs detached, and those in control group increased in size prominently with plenty of hypodermic blood vessels. In all animals the ILN were enlarged but in medicated animals they appeared later and smaller than those in control group. The extent of irradiative injury in ILN was positively correlated to the dosage of medication. Typical tumor cell apoptosis could be found under TEM in animals with intra-tumoral injection of low dosed 32P colloids. The peak of apoptosis occurred in 2.96 MBq group and 24 h after irradiation. In the course of irradiation-induced apoptosis, the value of Bcl-2/Bax was down regulated; Apo2.7 and caspase-3 protein expression were prominently increased dose dependently.

CONCLUSION: 32P colloids intra-tumor injection having prominent anticancer effectiveness may reveal the ability of promoting cell differentiation. The low dose 32P colloids may induce human pancreatic carcinoma Pc-3 implanted tumor cell apoptosis; Apo2.7, caspase-3, Bcl-2 and Bax protein participated in regulating the process of irradiation induced cell apoptosis.

Keywords: Chromic-P32 phosphate, Pancreatic carcinoma