1
|
Zhou Y, Deng X, Ruan H, Xue X, Hu Z, Gong J, Wu S, Liu L. Single-Cell RNA Sequencing Reveals the Immune Landscape of Granulomatous Mastitis. Inflammation 2025:10.1007/s10753-025-02310-8. [PMID: 40338490 DOI: 10.1007/s10753-025-02310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/09/2025]
Abstract
Granulomatous mastitis (GM) is a form of non-lactational breast inflammation that is closely associated with autoimmune processes, however its underlying pathogenesis remains elusive. In this study, we employed single-cell RNA sequencing (scRNA-seq) to conduct a comparative analysis of GM lesion tissues versus normal breast tissues, thereby unveiling the immune profile of GM tissues. Our investigation centered on T and NK cells, macrophages, epithelial cells, and endothelial cells. Notably, we observed a substantial infiltration of immune cells in GM tissues, accompanied by immune disorders, an elevation in Th1 cell counts, enrichment of the toll-like receptor (TLR) pathway, and upregulation of various factors including interferon-γ (IFN-γ), C-C motif chemokine ligand 3 (CCL3), CCL4, chemokine (C-X-C motif) ligand (CXCL) 13, CD69, signal transducer and activator of transcription 1 (STAT1), and heat shock protein family A member 1A (HSPA1A). Furthermore, the macrophage subpopulations in GM tissues exhibited a transition to a pro-inflammatory phenotype, enriched for pathways such as interferon-γ (IFN-γ), IFN-α, interleukin-6/janus kinase/signal transducer and activator of transcription 3 (IL-6/JAK/STAT3), and tumor necrosis factor-α/nuclear factor-κB (TNF-α/NF-κB). Mammary luminal cells demonstrated an impaired estrogenic profile yet displayed upregulation of prolactin downstream signaling pathways, namely the JAK/STAT and mitogen-activated protein kinase (MAPK) pathways. Additionally, vascular endothelial cells were found to recruit immune cells and exhibited a prominent angiogenic profile in GM tissues. Cellular interaction analysis unveiled an intricate network of interactions between mesenchymal and immune cells. This study provides a comprehensive immune landscape of granulomatous mastitis and offers some potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
- Hunan University of Chinese Medicine, Xueshi Road, Changsha, 410208, Hunan, China
| | - Xianguang Deng
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
- Hunan University of Chinese Medicine, Xueshi Road, Changsha, 410208, Hunan, China
| | - Hui Ruan
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
- Hunan University of Chinese Medicine, Xueshi Road, Changsha, 410208, Hunan, China
| | - Xing Xue
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
- Hunan University of Chinese Medicine, Xueshi Road, Changsha, 410208, Hunan, China
| | - Zixuan Hu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
- Hunan University of Chinese Medicine, Xueshi Road, Changsha, 410208, Hunan, China
| | - Jie Gong
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
- Hunan University of Chinese Medicine, Xueshi Road, Changsha, 410208, Hunan, China
| | - Shiting Wu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, 410007, Hunan, China.
| |
Collapse
|
2
|
Hong Z, Fang S, Nie H, Zhou J, Hong Y, Liu L, Zhao Q. Identification of the immune infiltration and biomarkers in ulcerative colitis based on liquid-liquid phase separation-related genes. Sci Rep 2025; 15:4484. [PMID: 39915583 PMCID: PMC11802798 DOI: 10.1038/s41598-025-89252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/04/2025] [Indexed: 02/09/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) associates with immune infiltration in multiple diseases. Nonetheless, the role of LLPS-related genes (LLPS-RGs) in immune infiltration of ulcerative colitis (UC) is still elusive. We identified the hub LLPS-RGs (DE-LLPS-RGs) (HSPB3, SLC16A1, TRIM22, SRI, PLEKHG6, GBP1, PADI2) by machine learning algorithms. Hub genes were screened that displayed high prediction accuracy of UC patients. Both the microarray and scRNA-seq datasets showed a strong correlation with immune cell infiltration and cytokines, especially GBP1, TRIM22, SRI. And qRT-PCR analysis showed that GBP1 play a pro-inflammatory role in UC. Two distinct clusters were identified, in which cluster A displayed higher immune infiltration level compared with the cluster B. The top targeted biological pathways of two clusters were distinct, glutamate receptor antagonist ranked top for cluster A while HDAC inhibitor ranked top in cluster B. External cohort and UC cell model validation indicated the similar immune infiltration levels, gene expression and cytokine expression patterns. We determined the seven high accuracy diagnostic genes of UC patients and provide a new perspective on immunoregulation in UC pathogenesis. And suggest patient stratification and candidate targets for precision treatment based on hub genes screened.
Collapse
Affiliation(s)
- Zhixing Hong
- Department of Emergency Medicine, The First People's Hospital of Linping District, Hangzhou, China
| | - Shilin Fang
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haihang Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jingkai Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yuntian Hong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, China.
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, China.
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, China.
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
3
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
4
|
Sivaprasadan S, Anila KN, Nair K, Mallick S, Biswas L, Valsan A, Praseedom RK, Nair BKG, Sudhindran S. Microbiota and Gut-Liver Axis: An Unbreakable Bond? Curr Microbiol 2024; 81:193. [PMID: 38805045 DOI: 10.1007/s00284-024-03694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
The gut microbiota, amounting to approximately 100 trillion (1014) microbes represents a genetic repertoire that is bigger than the human genome itself. Evidence on bidirectional interplay between human and microbial genes is mounting. Microbiota probably play vital roles in diverse aspects of normal human metabolism, such as digestion, immune modulation, and gut endocrine function, as well as in the genesis and progression of many human diseases. Indeed, the gut microbiota has been most closely linked to various chronic ailments affecting the liver, although concrete scientific data are sparse. In this narrative review, we initially discuss the basic epidemiology of gut microbiota and the factors influencing their initial formation in the gut. Subsequently, we delve into the gut-liver axis and the evidence regarding the link between gut microbiota and the genesis or progression of various liver diseases. Finally, we summarise the recent research on plausible ways to modulate the gut microbiota to alter the natural history of liver disease.
Collapse
Affiliation(s)
- Saraswathy Sivaprasadan
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - K N Anila
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Krishnanunni Nair
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shweta Mallick
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Kochi, India
| | - Arun Valsan
- Department of Hepatology & Gastroenterology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | | | - Surendran Sudhindran
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India.
| |
Collapse
|
5
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Natural Bioactive Compounds Targeting NADPH Oxidase Pathway in Cardiovascular Diseases. Molecules 2023; 28:molecules28031047. [PMID: 36770715 PMCID: PMC9921542 DOI: 10.3390/molecules28031047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, in both developed and developing countries. According to the WHO report, the morbidity and mortality caused by CVD will continue to rise with the estimation of death going up to 22.2 million in 2030. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) production induces endothelial nitric oxide synthase (eNOS) uncoupling and mitochondrial dysfunction, resulting in sustained oxidative stress and the development of cardiovascular diseases. Seven distinct members of the family have been identified of which four (namely, NOX1, 2, 4 and 5) may have cardiovascular functions. Currently, the treatment and management plan for patients with CVDs mainly depends on the drugs. However, prolonged use of prescribed drugs may cause adverse drug reactions. Therefore, it is crucial to find alternative treatment options with lesser adverse effects. Natural products have been gaining interest as complementary therapy for CVDs over the past decade due to their wide range of medicinal properties, including antioxidants. These might be due to their potent active ingredients, such as flavonoid and phenolic compounds. Numerous natural compounds have been demonstrated to have advantageous effects on cardiovascular disease via NADPH cascade. This review highlights the potential of natural products targeting NOX-derived ROS generation in treating CVDs. Emphasis is put on the activation of the oxidases, including upstream or downstream signalling events.
Collapse
|
7
|
Topol IA, Polyakova IS, Elykova AV. Role of intestinal microbiota in regulation of immune reactions of gut-associated lymphoid tissue under stress and following the modulation of its composition by antibiotics and probiotics administration. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2023. [DOI: 10.36233/0372-9311-270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the past two decades, active study of the microbial ecosystem of the host organism gastrointestinal tract has led to the recognition of gut microbiome as a "key player" that carries a significant immune pressure and is responsible both for the course of physiological processes and for the development of pathological conditions in humans and animals. A vast number of bacteria living in the human gastrointestinal tract are considered as an organ functioning in dialogue in formation of immunological tolerance, the regulation of normal functional activity of the immune system and maintaining the intestinal mucosa homeostasis. However, disturbances in interaction between these physiological systems is closely related to the pathogenesis of different immune-mediated diseases. In turn, in a large number of works chronic social stress, along with the use of antibiotics, pre- and probiotics, is recognized as one of the leading factors modulating in the microbiota of the gastrointestinal tract. This review focuses on the role of the gut microbiome in the regulation of immune responses of GALT under stress and modulation of its composition by antibiotics and probiotics administration.
Collapse
|
8
|
The Local Activation of Toll-like Receptor 7 (TLR7) Modulates Colonic Epithelial Barrier Function in Rats. Int J Mol Sci 2023; 24:ijms24021254. [PMID: 36674770 PMCID: PMC9865626 DOI: 10.3390/ijms24021254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Toll-like receptors (TLRs)-mediated host-bacterial interactions participate in the microbial regulation of gastrointestinal functions, including the epithelial barrier function (EBF). We evaluated the effects of TLR7 stimulation on the colonic EBF in rats. TLR7 was stimulated with the selective agonist imiquimod (100/300 µg/rat, intracolonic), with or without the intracolonic administration of dimethyl sulfoxide (DMSO). Colonic EBF was assessed in vitro (electrophysiology and permeability to macromolecules, Ussing chamber) and in vivo (passage of macromolecules to blood and urine). Changes in the expression (RT-qPCR) and distribution (immunohistochemistry) of tight junction-related proteins were determined. Expression of proglucagon, precursor of the barrier-enhancer factor glucagon-like peptide 2 (GLP-2) was also assessed (RT-qPCR). Intracolonic imiquimod enhanced the EBF in vitro, reducing the epithelial conductance and the passage of macromolecules, thus indicating a pro-barrier effect of TLR7. However, the combination of TLR7 stimulation and DMSO had a detrimental effect on the EBF, which manifested as an increased passage of macromolecules. DMSO alone had no effect. The modulation of the EBF (imiquimod alone or with DMSO) was not associated with changes in gene expression or the epithelial distribution of the main tight junction-related proteins (occludin, tricellulin, claudin-2, claudin-3, junctional adhesion molecule 1 and Zonula occludens-1). No changes in the proglucagon expression were observed. These results show that TLR7 stimulation leads to the modulation of the colonic EBF, having beneficial or detrimental effects depending upon the state of the epithelium. The underlying mechanisms remain elusive, but seem independent of the modulation of the main tight junction-related proteins or the barrier-enhancer factor GLP-2.
Collapse
|
9
|
Ortiz-López N, Fuenzalida C, Dufeu MS, Pinto-León A, Escobar A, Poniachik J, Roblero JP, Valenzuela-Pérez L, Beltrán CJ. The immune response as a therapeutic target in non-alcoholic fatty liver disease. Front Immunol 2022; 13:954869. [PMID: 36300120 PMCID: PMC9589255 DOI: 10.3389/fimmu.2022.954869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/21/2022] [Indexed: 08/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex and heterogeneous disorder considered a liver-damaging manifestation of metabolic syndrome. Its prevalence has increased in the last decades due to modern-day lifestyle factors associated with overweight and obesity, making it a relevant public health problem worldwide. The clinical progression of NAFLD is associated with advanced forms of liver injury such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). As such, diverse pharmacological strategies have been implemented over the last few years, principally focused on metabolic pathways involved in NAFLD progression. However, a variable response rate has been observed in NAFLD patients, which is explained by the interindividual heterogeneity of susceptibility to liver damage. In this scenario, it is necessary to search for different therapeutic approaches. It is worth noting that chronic low-grade inflammation constitutes a central mechanism in the pathogenesis and progression of NAFLD, associated with abnormal composition of the intestinal microbiota, increased lymphocyte activation in the intestine and immune effector mechanisms in liver. This review aims to discuss the current knowledge about the role of the immune response in NAFLD development. We have focused mainly on the impact of altered gut-liver-microbiota axis communication on immune cell activation in the intestinal mucosa and the role of subsequent lymphocyte homing to the liver in NAFLD development. We further discuss novel clinical trials that addressed the control of the liver and intestinal immune response to complement current NAFLD therapies.
Collapse
Affiliation(s)
- Nicolás Ortiz-López
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Fuenzalida
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Soledad Dufeu
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Araceli Pinto-León
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Jaime Poniachik
- Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Juan Pablo Roblero
- Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Lucía Valenzuela-Pérez
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Caroll J. Beltrán
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Li Y, Palmer A, Lupu L, Huber-Lang M. Inflammatory response to the ischaemia-reperfusion insult in the liver after major tissue trauma. Eur J Trauma Emerg Surg 2022; 48:4431-4444. [PMID: 35831749 DOI: 10.1007/s00068-022-02026-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Polytrauma is often accompanied by ischaemia-reperfusion injury to tissues and organs, and the resulting series of immune inflammatory reactions are a major cause of death in patients. The liver is one of the largest organs in the body, a characteristic that makes it the most vulnerable organ after multiple injuries. In addition, the liver is an important digestive organ that secretes a variety of inflammatory mediators involved in local as well as systemic immune inflammatory responses. Therefore, this review considers the main features of post-traumatic liver injury, focusing on the immuno-pathophysiological changes, the interactions between liver organs, and the principles of treatment deduced. METHODS We focus on the local as well as systemic immune response involving the liver after multiple injuries, with emphasis on the pathophysiological mechanisms. RESULTS An overview of the mechanisms underlying the pathophysiology of local as well as systemic immune responses involving the liver after multiple injuries, the latest research findings, and the current mainstream therapeutic approaches. CONCLUSION Cross-reactivity between various organs and cascade amplification effects are among the main causes of systemic immune inflammatory responses after multiple injuries. For the time being, the pathophysiological mechanisms underlying this interaction remain unclear. Future work will continue to focus on identifying potential signalling pathways as well as target genes and intervening at the right time points to prevent more severe immune inflammatory responses and promote better and faster recovery of the patient.
Collapse
Affiliation(s)
- Yang Li
- Institute for Clinical and Experimental Trauma Immunology (ITI), University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Annette Palmer
- Institute for Clinical and Experimental Trauma Immunology (ITI), University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Ludmila Lupu
- Institute for Clinical and Experimental Trauma Immunology (ITI), University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology (ITI), University Hospital Ulm, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| |
Collapse
|
11
|
Zheng SY, Dong JZ. Role of Toll-Like Receptors and Th Responses in Viral Myocarditis. Front Immunol 2022; 13:843891. [PMID: 35514979 PMCID: PMC9062100 DOI: 10.3389/fimmu.2022.843891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Myocarditis is the common cause of sudden cardiac death, dilated cardiomyopathy (DCM) and heart failure (HF) in young adults. The most common type of myocarditis is viral myocarditis (VMC). Toll-like receptors (TLRs) are vital to identify pathogens in vivo. TLRs promote the differentiation of naive CD4+T cells to T helper (Th) cells, activate the immune response, and participate in the pathogenesis of autoimmune and allergic diseases. Although the pathogenesis of VMC is unclear, autoimmune responses have been confirmed to play a significant role; hence, it could be inferred that VMC is closely related to TLRs and Th responses. Some drugs have been found to improve the prognosis of VMC by regulating the immune response through activated TLRs. In this review, we discuss the role of TLRs and Th responses in VMC.
Collapse
Affiliation(s)
- Shi-Yue Zheng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jian-Zeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Wang Q, Wang J, Qi R, Qiu X, Sun Q, Huang J, Wang R. Effect of oral administration of Limosilactobacillus reuteri on intestinal barrier function and mucosal immunity of suckling piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2048977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Qian Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Ruisheng Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| |
Collapse
|
13
|
Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota-A Mutual Relationship. Animals (Basel) 2022; 12:ani12020145. [PMID: 35049768 PMCID: PMC8772550 DOI: 10.3390/ani12020145] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The gastrointestinal tract is a complex organization of various types of epithelial cells forming a single layer of the mucosal barrier, the host mucosal immune system, and microorganisms termed as gut microbiota inhabiting this area. The mucosal barrier, including physical and chemical factors, spatially segregates gut microbiota and the host immune system preventing the development of immune response directed towards non-pathogenic commensals and dietary antigens. However, for the maintenance of the integrity of the mucosal surfaces, cross-talk between epithelial cells and microbiota is required. The microbiome and the intestinal epithelium developed a complex dependence necessary for sustaining intestinal homeostasis. In this review, we highlight the role of specific epithelial cell subtypes and their role in barrier arrangement, the mechanisms employed by them to control intestinal microbiota as well as the mechanisms utilized by the microbiome to regulate intestinal epithelial function. This review will provide information regarding the development of inflammatory disorders dependent on the loss of intestinal barrier function and composition of the intestinal microbiota. Abstract The gastrointestinal tract, which is constantly exposed to a multitude of stimuli, is considered responsible for maintaining the homeostasis of the host. It is inhabited by billions of microorganisms, the gut microbiota, which form a mutualistic relationship with the host. Although the microbiota is generally recognized as beneficial, at the same time, together with pathogens, they are a permanent threat to the host. Various populations of epithelial cells provide the first line of chemical and physical defense against external factors acting as the interface between luminal microorganisms and immunocompetent cells in lamina propria. In this review, we focus on some essential, innate mechanisms protecting mucosal integrity, thus responsible for maintaining intestine homeostasis. The characteristics of decisive cell populations involved in maintaining the barrier arrangement, based on mucus secretion, formation of intercellular junctions as well as production of antimicrobial peptides, responsible for shaping the gut microbiota, are presented. We emphasize the importance of cross-talk between gut microbiota and epithelial cells as a factor vital for the maintenance of the homeostasis of the GI tract. Finally, we discuss how the imbalance of these regulations leads to the compromised barrier integrity and dysbiosis considered to contribute to inflammatory disorders and metabolic diseases.
Collapse
|
14
|
Lee S, You H, Lee Y, Baik H, Paik J, Lee H, Park S, Shim J, Lee J, Hyun S. Intake of MPRO3 over 4 Weeks Reduces Glucose Levels and Improves Gastrointestinal Health and Metabolism. Microorganisms 2021; 10:microorganisms10010088. [PMID: 35056536 PMCID: PMC8780283 DOI: 10.3390/microorganisms10010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 01/01/2023] Open
Abstract
Human gut microbiota are involved in different metabolic processes, such as digestion and nutrient synthesis, among others. For the elderly, supplements are a major means of maintaining health and improving intestinal homeostasis. In this study, 51 elderly women were administered MPRO3 (n = 17), a placebo (n = 16), or both (MPRO3: 1 week, placebo: 3 weeks; n = 18) for 4 weeks. The fecal microbiota were analyzed by sequencing the 16S rRNA gene V3–V4 super-variable region. The dietary fiber intake increased, and glucose levels decreased with 4-week MPRO3 intake. Reflux, indigestion, and diarrhea syndromes gradually improved with MPRO3 intake, whereas constipation was maintained. The stool shape also improved. Bifidobacterium animalis, B. pseudolongum, Lactobacillus plantarum, and L. paracasei were relatively more abundant after 4 weeks of MPRO3 intake than in those subjects after a 1-week intake. Bifidobacterium and B. longum abundances increased after 1 week of MPRO3 intake but decreased when the intake was discontinued. Among different modules and pathways, all 10 modules analyzed showed a relatively high association with 4-week MPRO3 intake. The mineral absorption pathway and cortisol biosynthesis and secretion pathways correlated with the B. animalis and B. pseudolongum abundances at 4 weeks. Therefore, 4-week MPRO3 intake decreased the fasting blood glucose level and improved intestinal health and metabolism.
Collapse
Affiliation(s)
- Songhee Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea; (S.L.); (Y.L.)
| | - Heesang You
- Department of Senior Healthcare, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea;
| | - Yeongju Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea; (S.L.); (Y.L.)
| | - Haingwoon Baik
- Department of Biochemistry and Molecular Biology, Graduate School, Eulji University School of Medicine, Daejeon 34824, Korea;
| | - Jeankyung Paik
- Department of Food and Nutrition, Graduate School, Eulji University, Seongnam 13135, Korea;
| | - Hayera Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Soodong Park
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Jaejung Shim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Junglyoul Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Sunghee Hyun
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea; (S.L.); (Y.L.)
- Department of Senior Healthcare, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea;
- Correspondence: ; Tel.: +82-10-9412-8853
| |
Collapse
|
15
|
Gergen AK, Jarrett MJ, Li A, Meng X, Pratap A, Fullerton DA, Weyant MJ. Toll-like Receptor 4 Mediates Reflux-Induced Inflammation in a Murine Reflux Model. Semin Thorac Cardiovasc Surg 2021; 34:1324-1335. [PMID: 34534678 DOI: 10.1053/j.semtcvs.2021.07.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023]
Abstract
Dysregulation of toll-like receptor (TLR) signaling within the gastrointestinal epithelium has been associated with uncontrolled inflammation and tumorigenesis. We sought to evaluate the role of TLR4 in the development of gastroesophageal reflux-mediated inflammation and mucosal changes of the distal esophagus. Verified human esophageal Barrett's cells with high grade dysplasia (CPB) and esophageal adenocarcinoma cells (OE33) were treated with deoxycholic acid for 24 hours. Cells were pretreated with a TLR4-specific inhibitor peptide 2 hours prior to deoxycholic acid treatment. Inflammatory markers were evaluated using immunoblotting and enzyme-linked immunosorbent assay. A surgical reflux mouse model was generated by performing a side-to-side anastomosis between the second portion of the duodenum and the gastroesophageal junction. Control animals underwent laparotomy with incision and closure of the esophagus superior to the gastroesophageal junction (sham procedure). Esophageal sections were evaluated using hematoxylin and eosin staining and immunohistochemistry. Deoxycholic acid increased expression of inflammatory markers including intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and interleukin 8. Pretreatment with a TLR4 inhibitor significantly decreased deoxycholic acid-induced inflammatory marker expression. C3H/HeNCrl mice demonstrated a significant increase in mucosal hyperplasia and proliferation following DGEA compared to sham procedure. TLR4 mutant mice (C3H/HeJ) undergoing DGEA demonstrated an attenuated hyperplastic and proliferative response compared to C3H/HeNCrl mice. Inhibition of TLR4 signaling attenuates reflux-induced inflammation in vivo. These findings identify TLR4 inhibition as a potential therapeutic target to halt the progression of pathologic esophageal changes developing in the setting of chronic gastroesophageal reflux disease.
Collapse
Affiliation(s)
- Anna K Gergen
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado.
| | - Michael J Jarrett
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Anqi Li
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Xianzhong Meng
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Akshay Pratap
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - David A Fullerton
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael J Weyant
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
16
|
Ghaffari MH, Sadri H, Steinhoff-Wagner J, Hammon HM, Sauerwein H. Effects of colostrum feeding on the mRNA abundance of genes related to toll-like receptors, key antimicrobial defense molecules, and tight junctions in the small intestine of neonatal dairy calves. J Dairy Sci 2021; 104:10363-10373. [PMID: 34218909 DOI: 10.3168/jds.2021-20386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022]
Abstract
The objective of the present study was to elucidate the effect of feeding either colostrum or milk-based formula on the mRNA abundance of genes related to pathogen recognition [toll-like receptors (TLR1-10)], antimicrobial defense [β-defensin 1 (DEFB1) and peptidoglycan recognition protein 1 (PGLYRP1)], and tight junctions (claudin 1 = CLDN1, claudin 4 = CLDN4, and occludin = OCLN) in different sections of the small intestine of neonatal calves at d 4 of life. Holstein dairy calves were fed either colostrum (COL; n = 7) or milk-based formula (FOR; n = 7) with comparable nutrient composition but lower contents of several bioactives in the formula than in the respective colostrum group until d 4 of life. Following euthanasia on d 4 (2 h after feeding), tissue samples from the duodenum, jejunum (proximal, middle, and distal), and ileum were collected. The mRNA abundance of the target genes was quantified by quantitative PCR. The mRNA abundance of TLR1, TLR6, TLR9, and TLR10 were greater in COL than in FOR calves. However, the mRNA abundance of TLR2, TLR3, TLR4, TLR5, and TLR7 did not differ between groups. A group × gut region interaction was observed for the mRNA abundance of TLR8 with greater values in duodenum and proximal jejunum of COL than in FOR calves but in the more distal regions, in mid and distal jejunum, and ileum, this diet effect disappeared or was reversed. We observed greater mRNA abundance of TLR1 in the jejunum (middle and distal) and ileum, TLR2, TLR4, TLR6, and TLR9-10 in the distal jejunum and ileum, and of TLR3 in the distal jejunum, and TLR5, TLR7, and TLR8 in the ileum compared with the other gut regions. The mRNA abundance of PGLYRP1, DEFB1, and OCLN did not differ between groups. The mRNA abundance of CLDN1 was greater, but the CLDN4 mRNA tended to be lower in COL than in FOR calves. The mRNA abundance of PGLYRP1 was lower in the distal jejunum and DEFB1 mRNA in the middle jejunum compared with the other gut regions. The mRNA abundances of OCLN and CLDN4 were greater in the duodenum, and of CLDN1 in the middle and proximal jejunum compared with the other gut regions. Overall, the greater mRNA abundance of 5 different TLR, and CLDN1 in most intestinal sections of the COL calves may suggest that feeding colostrum improves immune responsiveness and epithelial barrier function in neonatal calves.
Collapse
Affiliation(s)
- Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - Julia Steinhoff-Wagner
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Harald M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany.
| |
Collapse
|
17
|
Gupta T, Kaur H, Kapila S, Kapila R. Lactobacillus fermentum (MTCC-5898) alleviates Escherichia coli-induced inflammatory responses in intestinal epithelial cells by modulating immune genes and NF-κB signalling. J Appl Microbiol 2021; 131:3008-3017. [PMID: 33999475 DOI: 10.1111/jam.15153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
AIM Dietary intervention using probiotic bacteria has emerged as a promising preventive strategy in addressing foodborne infections or gastrointestinal disorders. This study investigated the immunomodulatory effects of Lactobacillus fermentum (MTCC-5898) on Escherichia coli-induced inflammatory responses in intestinal epithelial cells. METHODS AND RESULTS The immune response of intestinal cells (Caco-2) in the presence of probiotic Lact. fermentum was determined during exclusion, competition and displacement of E. coli as the inflammatory agent. To achieve this objective, transcriptional modulation of key immune-related genes (cytokines, pattern recognition receptors and NF-κB), release of cytokines and nuclear translocation of the NF-κB subunit p-65 were studied. Expression of pro-inflammatory cytokines IL-8, TNF-α, IFN-ϒ and IL-23 was high in E. coli-exposed intestinal cells. However, overexpression of these E. coli-induced pro-inflammatory cytokines was prevented by Lact. fermentum during exclusion and competition assays. It also modulated the transcriptional expression of regulatory cytokines (IL-10 and TGF-β), pattern recognition receptors (TLR-2 and TLR-4) and genes associated with master inflammatory regulators (NF-κB and SIGIRR) to reduce E. coli-induced inflammation. The protective effect of Lact. fermentum was further confirmed by suppression of nuclear translocation of cytoplasmic NF-κB subunit (p-65). CONCLUSION Lactobacillus fermentum alleviated E. coli-induced inflammatory responses by modulating the NF-κB signalling besides pro-inflammatory and regulatory cytokines expression. SIGNIFICANCE AND IMPACT OF THE STUDY Lactobacillus fermentum holds significant promise as a potent nutraceutical that prevents and manages inflammatory gut-associated dysfunctions.
Collapse
Affiliation(s)
- T Gupta
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - H Kaur
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - R Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
18
|
The Potential Protective Role of RUNX1 in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms22105239. [PMID: 34063472 PMCID: PMC8156882 DOI: 10.3390/ijms22105239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
The pathogenic mechanisms underlying nonalcoholic fatty liver disease (NAFLD) are beginning to be understood. RUNX1 is involved in angiogenesis, which is crucial in inflammation, but its role in nonalcoholic steatohepatitis (NASH) remains unclear. The aim of this study was to analyze RUNX1 mRNA hepatic and jejunal abundance in women with morbid obesity (MO) and NAFLD. RUNX1, lipid metabolism-related genes, and TLRs in women with MO and normal liver (NL, n = 28), NAFLD (n = 41) (simple steatosis (SS, n = 24), or NASH (n = 17)) were analyzed by RT-qPCR. The RUNX1 hepatic expression was higher in SS than in NL or NASH, as likewise confirmed by immunohistochemistry. An increased expression of hepatic FAS was found in NAFLD. Hepatic RUNX1 correlated positively with FAS. There were no significant differences in the jejunum RUNX1 expressions in the different groups. Jejunal FXR expression was lower in NASH than in NL, while the TLR9 expression increased as NAFLD progressed. Jejunal RUNX1 correlated positively with jejunal PPARγ, TLR4, and TLR5. In summary, the hepatic expression of RUNX1 seems to be involved in the first steps of the NAFLD process; however, in NASH, it seems to be downregulated. Our findings provide important insights into the role of RUNX1 in the context of NAFLD/NASH, suggesting a protective role.
Collapse
|
19
|
Yang M, Yang Y, He Q, Zhu P, Liu M, Xu J, Zhao M. Intestinal Microbiota-A Promising Target for Antiviral Therapy? Front Immunol 2021; 12:676232. [PMID: 34054866 PMCID: PMC8149780 DOI: 10.3389/fimmu.2021.676232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is thought to be an important biological barrier against enteric pathogens. Its depletion, however, also has curative effects against some viral infections, suggesting that different components of the intestinal microbiota can play both promoting and inhibitory roles depending on the type of viral infection. The two primary mechanisms by which the microbiota facilitates or inhibits viral invasion involve participation in the innate and adaptive immune responses and direct or indirect interaction with the virus, during which the abundance and composition of the intestinal microbiota might be changed by the virus. Oral administration of probiotics, faecal microbiota transplantation (FMT), and antibiotics are major therapeutic strategies for regulating intestinal microbiota balance. However, these three methods have shown limited curative effects in clinical trials. Therefore, the intestinal microbiota might represent a new and promising supplementary antiviral therapeutic target, and more efficient and safer methods for regulating the microbiota require deeper investigation. This review summarizes the latest research on the relationship among the intestinal microbiota, anti-viral immunity and viruses and the most commonly used methods for regulating the intestinal microbiota with the goal of providing new insight into the antiviral effects of the gut microbiota.
Collapse
Affiliation(s)
- Mengling Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yang Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengqi Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Xu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Dong S, Jiao J, Jia S, Li G, Zhang W, Yang K, Wang Z, Liu C, Li D, Wang X. 16S rDNA Full-Length Assembly Sequencing Technology Analysis of Intestinal Microbiome in Polycystic Ovary Syndrome. Front Cell Infect Microbiol 2021; 11:634981. [PMID: 34041041 PMCID: PMC8141595 DOI: 10.3389/fcimb.2021.634981] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
Objective To study the characteristics and relationship of the gut microbiota in patients with polycystic ovary syndrome (PCOS). Method We recruited 45 patients with PCOS and 37 healthy women from the Reproductive Department of Shengjing Hospital. We recorded their clinical indexes, and sequenced their fecal samples by 16S rDNA full-length assembly sequencing technology (16S-FAST). Result We found decreased α diversity and different abundances of a series of microbial species in patients with PCOS compared to healthy controls. We found LH and AMH were significantly increased in PCOS with Prevotella enterotype when compared to control women with Prevotella enterotype, while glucose and lipid metabolism level remained no significant difference, and situations were opposite in PCOS and control women with Bacteroides enterotype. Ruminococcus gnavus, Prevotella stercorea, Dialister succinatiphilus and Bacteroides fragilis were more abundant while Christensenellaceae spp. were less abundant in the PCOS group. P. stercorea was significantly more prevalent in PCOS-not insulin resistance (NIR) compared to control-NIR and PCOS-not overweight (NOW) patient groups compared to control-NOW groups. Kyoto Encyclopedia Genes and Genomes reflecting pathways related to lipopolysaccharide biosynthesis were more abundant in the PCOS group. Conclusion Our study found gut microbiota that had different abundance in patients with PCOS compared to healthy controls. An intimate relationship was shown between the gut microbiota and pathological changes in PCOS. We suggest the gut microbiota should be taken into consideration in the treatment of symptoms of PCOS via drugs and diet.
Collapse
Affiliation(s)
- Sitong Dong
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiao Jiao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gaoyu Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Zhang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kai Yang
- Department of Research and Development, Germountx Company, Beijing, China
| | - Zhen Wang
- Department of Research and Development, Germountx Company, Beijing, China
| | - Chao Liu
- Department of Biological Information, Kangwei Medical Analysis Laboratory, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Zhou R, He D, Xie J, Zhou Q, Zeng H, Li H, Huang L. The Synergistic Effects of Polysaccharides and Ginsenosides From American Ginseng ( Panax quinquefolius L.) Ameliorating Cyclophosphamide-Induced Intestinal Immune Disorders and Gut Barrier Dysfunctions Based on Microbiome-Metabolomics Analysis. Front Immunol 2021; 12:665901. [PMID: 33968068 PMCID: PMC8100215 DOI: 10.3389/fimmu.2021.665901] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cyclophosphamide (CTX), used in cancer chemotherapy, a high dose of which would cause immunosuppressive effect and intestinal mucosa damage. American ginseng (Panax quinquefolius L.) has a long history of functional food use for immunological disorder, colitis, cancer, and so on. This study aimed to illustrate the underlying mechanism of American ginseng’s immunomodulatory effect in CTX-induced mice. In this study, all groups of American ginseng (American ginseng polysaccharide [AGP], American ginseng ginsenoside [AGG], co-treated with American ginseng polysaccharide and ginsenoside [AGP_AGG]) have relieve the immune disorder by reversing the lymphocyte subsets ratio in spleen and peripheral blood, as well as stimulating CD4+T cells and IgA-secreting cells in small intestine. These three treatment groups, especially AGP_AGG co-treated group recovered the intestine morphology that up-regulated villus height (VH)/crypt depth (CD) ratio, areas of mucins expression, quantity of goblet cells, and expression of tight junction proteins (ZO-1, occludin). Importantly, the microbiome-metabolomics analysis was applied in this study to illustrate the possible immuno-modulating mechanism. The synergistic effect of polysaccharides and ginsenosides (AGP_AGG group) restored the gut microbiota composition and increased various beneficial mucosa-associated bacterial taxa Clostridiales, Bifidobacterium, and Lachnospiraceae, while decreased harmful bacteria Escherichia-Shigella and Peptococcaceae. Also, AGP_AGG group altered various fecal metabolites such as uric acid, xanthurenic acid, acylcarnitine, 9,10-DHOME, 13-HDoHE, LysoPE15:0, LysoPC 16:0, LysoPI 18:0, and so on, that associated with immunometabolism or protective effect of gut barrier. These results suggest AG, particularly co-treated of polysaccharide and ginsenoside may be used as immunostimulants targeting microbiome-metabolomics axis to prevent CTX-induced side effects in cancer patients.
Collapse
Affiliation(s)
- Rongrong Zhou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qingyijun Zhou
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hongliang Zeng
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hongmei Li
- Insitute of Chinese Materia, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Moradi K, Ashraf-Ganjouei A, Tavolinejad H, Bagheri S, Akhondzadeh S. The interplay between gut microbiota and autism spectrum disorders: A focus on immunological pathways. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110091. [PMID: 32891667 DOI: 10.1016/j.pnpbp.2020.110091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by impairments in social and cognitive activities, stereotypical and repetitive behaviors and restricted areas of interest. A remarkable proportion of ASD patients represent immune dysregulation as well as gastrointestinal complications. Hence, a novel concept has recently emerged, addressing the possible intercommunication between the brain, the immune system, the gut and its commensals. Here, we provide an overview of how gut microbes and their metabolites are associated with neurobehavioral features of ASD through various immunologic mechanisms. Moreover, we discuss the potential therapeutic options that could modify these features.
Collapse
Affiliation(s)
- Kamyar Moradi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Tavolinejad
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayna Bagheri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Statins Inhibit Toll-Like Receptor 4-Mediated Growth of Human Esophageal Adenocarcinoma Cells. J Surg Res 2020; 260:436-447. [PMID: 33272595 DOI: 10.1016/j.jss.2020.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/30/2020] [Accepted: 11/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Esophageal adenocarcinoma (EAC) is a lethal malignancy with poor prognosis. Pharmacologic inhibitors of inflammation, such as statins, have been shown to decrease the risk of development and progression of esophageal cancer, but the mechanism of this protection is unclear. The objective of this study was to elucidate the effect of statins on toll-like receptor 4-mediated-proliferation of human EAC cells and identify the mechanism responsible for these observed effects. METHODS Human EAC cells (OE33 and FLO1) were treated with simvastatin or atorvastatin for increasing doses and time periods. Toll-like receptor 4 (TLR4) expression was assessed. Cells were pretreated with statin followed by lipopolysaccharide (LPS). Cell proliferation and expression of signaling proteins were evaluated. FLO1 cells were injected into the flank of nude mice. Mice received intraperitoneal injections of simvastatin, atorvastatin, or control solution and tumor volume was measured. RESULTS OE33 and FLO1 cells demonstrated decreased TLR4 expression after treatment with simvastatin or atorvastatin for 8 h (P < 0.05). LPS increased proliferation, whereas pretreatment with statin abolished this response (P < 0.05). Statins decreased expression and activation of LPS-induced signaling proteins, including MyD88, TRAF6, Akt, and NF-κB (P < 0.05). Mice receiving daily statin injections demonstrated smaller tumors than control mice (P < 0.001 at day 33). CONCLUSIONS Treatment of EAC cells with simvastatin or atorvastatin decreases TLR4-mediated proliferation and in vivo tumor growth. Decreased TLR4 expression and subsequent reduction in MyD88-dependent signaling could be a mechanism by which statins act to reduce tumor growth rates.
Collapse
|
24
|
Effects of TLR agonists on immune responses in Trichinella spiralis infected mice. Parasitol Res 2020; 119:2505-2510. [PMID: 32535733 PMCID: PMC7292931 DOI: 10.1007/s00436-020-06747-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Human trichinellosis is acquired by eating raw or undercooked meats carrying muscle larvae of Trichinella spp. Toll-like receptors (TLRs) are essential components of the innate immune system. However, little is known about the potential application of TLR agonists for immunotherapy against Trichinella spiralis (T. spiralis) infection. Here, we evaluated the effects of four TLR agonists (i.e., TLR3, TLR4, TLR8, and TLR9 agonists) on T. spiralis infection in mice. The reduction rate of worm burden showed that TLR3 agonist poly(I:C) significantly reduced T. spiralis infection rather than TLR4, TLR8, and TLR9 agonists (p < 0.05). Moreover, TLR3 showed a continuous high-level of expression during 6–35 days post infection (dpi). The levels of interferon-gamma (IFN-γ), interleukin (IL)-2, and IL-6 increased significantly in mice serum compared with control group after treatment with TLR3 agonist at 0, 3, 6, 9, 12, 15, 18, 21, 28, and 35 dpi (p < 0.05). A significant decreasing trend was also detected in levels of IL-10 and IL-4 after treatment with TLR3 agonist compared with control group at 0, 3, 6, 9, 12, 15, 18, 21, 28, and 35 dpi (p < 0.05). Overall, this study suggested that TLR3-targeted therapies might be effective on worm burden reduction by regulation of the cytokine levels in the mice infected with T. spiralis.
Collapse
|
25
|
Dou X, Gao N, Lan J, Han J, Yang Y, Shan A. TLR2/EGFR Are Two Sensors for pBD3 and pEP2C Induction by Sodium Butyrate Independent of HDAC Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:512-522. [PMID: 31870150 DOI: 10.1021/acs.jafc.9b06569] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Host defense peptides (HDPs) are vital mucosal defense effectors of the innate immune response. The expression of HDPs is inducible in epithelial cells by potent endogenous inducers. Herein, our results demonstrate that sodium butyrate (NaB) induces the expression of porcine β-defensin-3 (pBD3) and porcine epididymis protein 2 splicing variant C (pEP2C) in a dose- and time-dependent manner, without modifying the production of proinflammatory cytokines, in porcine intestinal epithelial cells (IPEC J2). Moreover, NaB promotes toll-like receptor 2 (TLR2) expression. TLR2 silencing inhibits the pBD3 and pEP2C expression induced by NaB but does not abolish the histone deacetylase (HDAC) inhibitory activity of NaB. We found that NaB activated the nuclear factor-κB (NF-κB) pathway. Importantly, the degree of cell confluence governs the regulatory responses but does not affect the HDAC activity of NaB. Furthermore, epidermal growth factor receptor (EGFR), but not the mitogen-activated protein kinase (MAPK) pathway, is vital during the NaB-induced pBD3 and pEP2C regulation process. We also demonstrated that pBD3 overexpression increases interleukin-18 levels. This study showed that NaB simultaneously induces pBD3 and pEP2C via TLR2 and EGFR in IPEC J2 cells without increasing the risk of a harmful inflammatory response.
Collapse
Affiliation(s)
- Xiujing Dou
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Nan Gao
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Jing Lan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Junlan Han
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Yang Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P.R. China
| |
Collapse
|
26
|
Zheng Y, Zeng X, Chen P, Chen T, Peng W, Su W. Integrating Pharmacology and Gut Microbiota Analysis to Explore the Mechanism of Citri Reticulatae Pericarpium Against Reserpine-Induced Spleen Deficiency in Rats. Front Pharmacol 2020; 11:586350. [PMID: 33192528 PMCID: PMC7606944 DOI: 10.3389/fphar.2020.586350] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Citri Reticulatae Pericarpium (CRP), dried peels of Citrus reticulata Blanco and its cultivars, is an important traditional Chinese medicine for the treatment of spleen deficiency-related diseases. To date, the mechanism of CRP alleviating spleen deficiency has not been well investigated. This study aimed to explore corresponding mechanisms with integrating pharmacology and gut microbiota analysis. Firstly, the therapeutic effects of CRP against spleen deficiency were evaluated in reserpine-treated rats. CRP was found to effectively relieve the typical symptoms of spleen deficiency, including poor digestion and absorption capacity, and disorder in gastrointestinal hormones, immune cytokines and oxidative stress. Secondly, high throughput 16S rRNA gene sequencing revealed that CRP could not only up-regulate some short-chain fatty acids producing and anti-inflammatory bacteria but also down-regulate certain spleen deficiency aggravated related bacteria, eventually led to the rebalance of gut microbiota in spleen deficiency rats. In addition, a total of 49 compounds derived from CRP were identified in rat urine using ultra-high performance liquid chromatography-quadrupole- time of flight tandem mass spectrometry. Network pharmacology analysis showed that apigenin, luteolin, naringenin, hesperidin, hesperetin, homoeriodictyol, dihydroxy-tetramethoxyflavone, and monohydroxy-tetramethoxyflavone were the core bioactive components for CRP against spleen deficiency. Further Gene Ontology analysis and pathway enrichment suggested that therapeutic effects of CRP against spleen deficiency involved multiple pathways such as tumor necrosis factor signaling, hypoxia-inducible factor-1 signaling and Toll-like receptor signaling pathway. These results would help to understand the mechanism of CRP alleviating spleen deficiency and provide a reference for further studies.
Collapse
|
27
|
Tian X, Zhao H, Zhang Z, Guo Z, Li W. Intestinal mucosal injury induced by obstructive jaundice is associated with activation of TLR4/TRAF6/NF-κB pathways. PLoS One 2019; 14:e0223651. [PMID: 31671112 PMCID: PMC6822728 DOI: 10.1371/journal.pone.0223651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES To investigate the role of TLR4/TRAF6/NF-κB pathways in intestinal mucosal injury induced by obstructive jaundice (OJ). METHODS A total of 100 male C57BL/6J mice were randomly assigned to two groups: (I) sham operation (SH); (II) OJ. The mice were sacrificed before operation and on the 1st, 3rd, 5th and 7th day after operation. The blood and terminal ileum were simultaneously collected under the aseptic condition for further detection. RESULTS In the SH group, TLR4 protein and mRNA rarely expressed in the intestinal mucosa of the mice and there were no significant differences at different time points (p>0.05). By contrast, in the OJ group TLR4 protein (0.12±0.06, 0.16±0.08, 0.27±0.10, 0.35±0.12 and 0.41±0.13, respectively) and mRNA (0.49±0.19, 0.62±0.23, 0.98±0.32, 1.42±0.41 and 1.72±0.49, respectively) increased gradually with the extension of time (p<0.05). Also in the OJ group, the levels of DAO and endotoxin in plasma as well as the expressions of NF-κB and caspase-3 increased gradually with the extension of time, showing positive correlation with the expression of TLR4 (p<0.05). CONCLUSIONS The expression of TLR4 was significantly up-regulated in the distal ileum of mice with OJ. Activation of the TLR4/TRAF6/NF-κB pathways was involved in the occurrence and development of intestinal mucosal injury and endotoxemia in mice with OJ.
Collapse
Affiliation(s)
- Xiaopeng Tian
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Huimin Zhao
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | | | - Zengcai Guo
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Wen Li
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Aragonès G, Colom-Pellicer M, Aguilar C, Guiu-Jurado E, Martínez S, Sabench F, Antonio Porras J, Riesco D, Del Castillo D, Richart C, Auguet T. Circulating microbiota-derived metabolites: a "liquid biopsy? Int J Obes (Lond) 2019; 44:875-885. [PMID: 31388096 DOI: 10.1038/s41366-019-0430-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/08/2019] [Accepted: 06/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) causes a wide spectrum of liver damage, from simple steatosis (SS) to cirrhosis. SS and non-alcoholic steatohepatitis (NASH) cannot be distinguished by clinical or laboratory features. Dysregulation of the gut microbiota is involved in NASH pathogenesis. The aim of this study was to assess the relationship between microbiota-derived metabolites and the degrees of NAFLD; also, to investigate whether these metabolites could be included in a panel of NASH biomarkers. SUBJECTS/METHODS We used liquid chromatography coupled to triple-quadrupole-mass spectrometry (LC-QqQ) analysis to quantify choline and its derivatives, betaine, endogenous ethanol, bile acids, short-chain fatty acids and soluble TLR4 in serum from women with normal weight (n = 29) and women with morbid obesity (MO) (n = 82) with or without NAFLD. We used real-time polymerase chain reaction (RT-PCR) analysis to evaluate the hepatic and intestinal expression level of all genes studied (TLR2, TLR4, TLR9, LXRα, SREBP1C, ACC1, FAS, PPARα, CPT1α, CROT, SREBP2, ABCA1, ABCG1 and FXR in the liver; TLR2, TLR4, TLR5, TLR9, GLP-1R, DPP-4, FXR and PPARɣ in the jejunum) in 82 women with MO with normal liver histology (NL, n = 29), SS (n = 32), and NASH (n = 21). RESULTS Hepatic FAS, TLR2, and TLR4 expression were overexpressed in NAFLD patients. TLR2 was overexpressed in NASH patients. In women with MO with NAFLD, we found upregulation of intestinal TLR9 expression and downregulation of intestinal FXR expression in women with NASH. Circulating TMAO, glycocholic acid and deoxycholic acid levels were significantly increased in NAFLD patients. Endogenous circulating ethanol levels were increased in NASH patients in comparison to those in SS patients. CONCLUSIONS These findings suggest that the intestine participates in the progression of NAFLD. Moreover, levels of certain circulating microbiota-related metabolites are associated with NAFLD severity and could be used as a "liquid biopsy" in the noninvasive diagnosis of NASH.
Collapse
Affiliation(s)
- Gemma Aragonès
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43007, Tarragona, Spain
| | - Marina Colom-Pellicer
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43007, Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43007, Tarragona, Spain
| | - Esther Guiu-Jurado
- IFB-Adiposity Diseases, Leipzig University, Liebigstraße 19-21, 04103, Leipzig, Germany
| | - Salomé Martínez
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007, Tarragona, Spain
| | - Fàtima Sabench
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, Avinguda Doctor Josep Laporte, 2, 43204, Reus, Spain
| | - José Antonio Porras
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007, Tarragona, Spain
| | - David Riesco
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007, Tarragona, Spain
| | - Daniel Del Castillo
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, Avinguda Doctor Josep Laporte, 2, 43204, Reus, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43007, Tarragona, Spain.,Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007, Tarragona, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43007, Tarragona, Spain. .,Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007, Tarragona, Spain.
| |
Collapse
|
29
|
Tian X, Zhang Z, Li W. Expression of TLR2 and TLR5 in distal ileum of mice with obstructive jaundice and their role in intestinal mucosal injury. Arch Med Sci 2019; 18:237-250. [PMID: 35154543 PMCID: PMC8826794 DOI: 10.5114/aoms.2019.85648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/18/2019] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION The aim was to investigate the expression of TLR2 and TLR5 in the distal ileum of mice with obstructive jaundice (OJ) and their role in intestinal mucosal injury. MATERIAL AND METHODS A total of 100 male C57BL/6J mice were randomly assigned to two groups: (I) sham operation (SH); (II) bile duct ligation (BDL). The mice were respectively sacrificed before operation and on the 1st, 3rd, 5th and 7th days after operation to collect specimens. Various indicators were detected by PCR, immunohistochemistry and other methods. RESULTS TLR2 was increased gradually with the extension of OJ time in the BDL group (p < 0.05). However, the changes in the expression of TLR5 were not obvious at different time points. The amount of Bifidobacteria and Lactobacillus showed downward trends in intestinal tract of the BDL group. Furthermore, the amount of Escherichia coli was increased in intestinal tract of the BDL group. The pathological score of intestinal mucosa and the expression of NF-κB increased gradually in the BDL group with the extension of OJ time. There were positive correlations between the pathological score of intestinal mucosa and expressions of TLR2(r = 0.767, p < 0.05) and NF-κB (r = 0.817, p < 0.05) in BDL group. NF-κB expression was positively correlated with TLR2 expression(r = 0.706, p < 0.05). CONCLUSIONS Disturbance of intestinal flora caused by OJ could increase the expression of NF-κB via up-regulating the expression of TLR2 to activate the downstream signaling pathway, thus aggravated the injury of intestinal mucosa.
Collapse
Affiliation(s)
- Xiaopeng Tian
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | | | - Wen Li
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Dou X, Han J, Ma Q, Cheng B, Shan A, Gao N, Yang Y. TLR2/4-mediated NF-κB pathway combined with the histone modification regulates β-defensins and interleukins expression by sodium phenyl butyrate in porcine intestinal epithelial cells. Food Nutr Res 2018; 62:1493. [PMID: 30574051 PMCID: PMC6294838 DOI: 10.29219/fnr.v62.1493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background Host defense peptides (HDPs) possess direct antibacterial, antineoplastic, and immunomodulatory abilities, playing a vital role in innate immunity. Dietary-regulated HDP holds immense potential as a novel pathway for preventing infection. Objective In this study, we examined the regulation mechanism of HDPs (pEP2C, pBD-1, and pBD-3) and cytokines (IL-8 and IL-18) expression by sodium phenylbutyrate (PBA). Design The effects of PBA on HDP induction and the mechanism involved were studied in porcine intestinal epithelial cell lines (IPEC J2). Results In this study, the results showed that HDPs (pEP2C, pBD-1, and pBD-3) and cytokines (IL-8 and IL-18) expression was increased significantly upon stimulation with PBA in IPEC J2 cells. Furthermore, toll-like receptor 2 (TLR2) and TLR4 were required for the PBA-mediated upregulation of the HDPs. This process occurred and further activated the NF-κB pathway via the phosphorylation of p65 and an IκB α synthesis delay. Meanwhile, histone deacetylase (HDAC) inhibition and an increased phosphorylation of histone H3 on serine S10 also occurred in PBA-induced HDP expression independently with TLR2 and TLR4. Furthermore, p38-MAPK suppressed PBA-induced pEP2C, pBD-1 pBD-3, IL-8, and IL-18 expression, but ERK1/2 failed to abolish the regulation of pBD-3, IL-8, and IL-18. Moreover, epidermal growth factor receptor (EGFR) is involved in PBA-mediated HDP regulation. Conclusions We concluded that PBA induced HDP and cytokine increases but did not cause an excessive pro-inflammatory response, which proceeded through the TLR2 and TLR4-NF-κB pathway and histone modification in IPEC J2 cells.
Collapse
Affiliation(s)
- Xiujing Dou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Junlan Han
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Qiuyuan Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baojing Cheng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yu Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
31
|
Zhu CS, Grandhi R, Patterson TT, Nicholson SE. A Review of Traumatic Brain Injury and the Gut Microbiome: Insights into Novel Mechanisms of Secondary Brain Injury and Promising Targets for Neuroprotection. Brain Sci 2018; 8:brainsci8060113. [PMID: 29921825 PMCID: PMC6025245 DOI: 10.3390/brainsci8060113] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 12/16/2022] Open
Abstract
The gut microbiome and its role in health and disease have recently been major focus areas of research. In this review, we summarize the different ways in which the gut microbiome interacts with the rest of the body, with focus areas on its relationships with immunity, the brain, and injury. The gut–brain axis, a communication network linking together the central and enteric nervous systems, represents a key bidirectional pathway with feed-forward and feedback mechanisms. The gut microbiota has a central role in this pathway and is significantly altered following injury, leading to a pro-inflammatory state within the central nervous system (CNS). Herein, we examine traumatic brain injury (TBI) in relation to this axis and explore potential interventions, which may serve as targets for improving clinical outcomes and preventing secondary brain injury.
Collapse
Affiliation(s)
- Caroline S Zhu
- Division of Trauma and Emergency Surgery, Department of Surgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229, USA.
| | - Ramesh Grandhi
- Division of Trauma and Emergency Surgery, Department of Surgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229, USA.
- Department of Neurosurgery, The University of Texas Health Sciences Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
- Department of Neurosurgery, The University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Thomas Tyler Patterson
- Division of Trauma and Emergency Surgery, Department of Surgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229, USA.
| | - Susannah E Nicholson
- Division of Trauma and Emergency Surgery, Department of Surgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229, USA.
| |
Collapse
|
32
|
Bumgardner SA, Zhang L, LaVoy AS, Andre B, Frank CB, Kajikawa A, Klaenhammer TR, Dean GA. Nod2 is required for antigen-specific humoral responses against antigens orally delivered using a recombinant Lactobacillus vaccine platform. PLoS One 2018; 13:e0196950. [PMID: 29734365 PMCID: PMC5937747 DOI: 10.1371/journal.pone.0196950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Safe and efficacious orally-delivered mucosal vaccine platforms are desperately needed to combat the plethora of mucosally transmitted pathogens. Lactobacillus spp. have emerged as attractive candidates to meet this need and are known to activate the host innate immune response in a species- and strain-specific manner. For selected bacterial isolates and mutants, we investigated the role of key innate immune pathways required for induction of innate and subsequent adaptive immune responses. Co-culture of murine macrophages with L. gasseri (strain NCK1785), L. acidophilus (strain NCFM), or NCFM-derived mutants—NCK2025 and NCK2031—elicited an M2b-like phenotype associated with TH2 skewing and immune regulatory function. For NCFM, this M2b phenotype was dependent on expression of lipoteichoic acid and S layer proteins. Through the use of macrophage genetic knockouts, we identified Toll-like receptor 2 (TLR2), the cytosolic nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, and the inflammasome-associated caspase-1 as contributors to macrophage activation, with NOD2 cooperating with caspase-1 to induce inflammasome derived interleukin (IL)-1β in a pyroptosis-independent fashion. Finally, utilizing an NCFM-based mucosal vaccine platform with surface expression of human immunodeficiency virus type 1 (HIV-1) Gag or membrane proximal external region (MPER), we demonstrated that NOD2 signaling is required for antigen-specific mucosal and systemic humoral responses. We show that lactobacilli differentially utilize innate immune pathways and highlight NOD2 as a key mediator of macrophage function and antigen-specific humoral responses to a Lactobacillus acidophilus mucosal vaccine platform.
Collapse
Affiliation(s)
- Sara A. Bumgardner
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lin Zhang
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alora S. LaVoy
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Barbara Andre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chad B. Frank
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Akinobu Kajikawa
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Todd R. Klaenhammer
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gregg A. Dean
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
33
|
Gao K, Wang C, Liu L, Dou X, Liu J, Yuan L, Zhang W, Wang H. Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharide. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:700-713. [DOI: 10.1016/j.jmii.2015.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/27/2015] [Accepted: 05/05/2015] [Indexed: 12/13/2022]
|
34
|
de la Fuente-Núñez C, Silva ON, Lu TK, Franco OL. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol Ther 2017; 178:132-140. [DOI: 10.1016/j.pharmthera.2017.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Close association between intestinal microbiota and irritable bowel syndrome. Eur J Clin Microbiol Infect Dis 2017; 36:2303-2317. [DOI: 10.1007/s10096-017-3060-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022]
|
36
|
Mooney D, Edgar D, Einarsson G, Downey D, Elborn S, Tunney M. Chronic lung disease in common variable immune deficiency (CVID): A pathophysiological role for microbial and non-B cell immune factors. Crit Rev Microbiol 2017; 43:508-519. [PMID: 28068853 DOI: 10.1080/1040841x.2016.1268568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the most common and most severe forms of primary antibody deficiency encountered in the clinical setting is a heterogeneous group of syndromes termed common variable immune deficiency (CVID). This disorder is characterized by reduced immunoglobulin production and increased susceptibility to infection, particularly of the respiratory tract. Infection and subsequent immunological/inflammatory processes may contribute to the development of pulmonary complications such as bronchiectasis and interstitial lung disease. Immunoglobulin replacement and/or antibiotic therapy, to prevent infection, are routinely prescribed treatments. However, chronic lung disease, the major cause of morbidity and mortality in this patient cohort, may still progress. This clinical progression suggests that pathogens recalcitrant to currently prescribed treatments and other immunological defects may be contributing to the development of pulmonary disease. This review describes the potential role of microbiological and non-B cell immunological factors, including T-cells, neutrophils, complement, toll like receptors, and antimicrobial peptides, in the pathogenicity of chronic lung disease in patients with CVID.
Collapse
Affiliation(s)
- Denver Mooney
- a Halo Research Group, Queen's University Belfast , Belfast , United Kingdom
- b Centre for Experimental Medicine, School of Medicine , Dentistry and Biomedical Sciences. Queen's University Belfast , Belfast , United Kingdom
| | - David Edgar
- c T he Royal Hospitals, Belfast Health and Social Care Trust , Regional Immunology Service , Belfast , United Kingdom
| | - Gisli Einarsson
- a Halo Research Group, Queen's University Belfast , Belfast , United Kingdom
- b Centre for Experimental Medicine, School of Medicine , Dentistry and Biomedical Sciences. Queen's University Belfast , Belfast , United Kingdom
| | - Damian Downey
- d Belfast City Hospital, Belfast Health and Social Care Trust , Regional Respiratory Centre , Belfast , United Kingdom
| | - Stuart Elborn
- a Halo Research Group, Queen's University Belfast , Belfast , United Kingdom
- b Centre for Experimental Medicine, School of Medicine , Dentistry and Biomedical Sciences. Queen's University Belfast , Belfast , United Kingdom
| | - Michael Tunney
- a Halo Research Group, Queen's University Belfast , Belfast , United Kingdom
- e School of Pharmacy , Queen's University Belfast , Belfast , United Kingdom
| |
Collapse
|
37
|
Qi X, Qin L, Du R, Chen Y, Lei M, Deng M, Wang J. Lipopolysaccharide Upregulated Intestinal Epithelial Cell Expression of Fn14 and Activation of Fn14 Signaling Amplify Intestinal TLR4-Mediated Inflammation. Front Cell Infect Microbiol 2017; 7:315. [PMID: 28744451 PMCID: PMC5504244 DOI: 10.3389/fcimb.2017.00315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
TLR4 in intestinal epithelial cells has been shown both inflammatory and homeostatic roles following binding of its cognate ligand lipopolysaccharide (LPS). TWEAK-Fn14 axis plays an important role in pathologies caused by excessive or abnormal inflammatory responses. This study aimed to evaluate potential cross-talk between TLR4 and TWEAK/Fn14 system in porcine small intestinal epithelial cells. Our in vivo results showed that, compared with the age-matched normal control piglets, increased expression of Fn14 in epithelium and decreased TWEAK expression in lamina propria were detected in the small intestinal of piglets stimulated with LPS. Consistent with this finding, treatment with LPS increased the expression of Fn14 and TLR4 while decreased TWEAK expression in porcine small intestinal epithelial cell lines SIEC02. Interestingly, modulating Fn14 activation using agonistic anti-Fn14 decreased TLR4-mediated TNF-α production by SIEC02. In addition, pretreatment of LPS-stimulated SIEC02 with recombinant TWEAK protein suppresses the expression of Fn14 and TNF-α and inhibits the negative impact of LPS on the tight junctional protein occludin expression. In conclusion, this study demonstrates that the TWEAK-independent Fn14 activation augments TLR4-mediated inflammatory responses in the intestine of piglets. Furthermore, the TWEAK-dependent suppression of Fn14 signaling may play a role in intestinal homeostasis.
Collapse
Affiliation(s)
- Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Lijuan Qin
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Ruijing Du
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Yungang Chen
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Mingzhu Lei
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Meiyu Deng
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| |
Collapse
|
38
|
Biffi E. Microbiome and Cardiac Health. INTEGRATIVE CARDIOLOGY 2017:67-97. [DOI: 10.1007/978-3-319-40010-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
39
|
Okazaki S, Loupakis F, Stintzing S, Cao S, Zhang W, Yang D, Ning Y, Sunakawa Y, Stremitzer S, Matsusaka S, Berger MD, Parekh A, West JD, Miyamoto Y, Suenaga M, Schirripa M, Cremolini C, Falcone A, Heinemann V, DePaolo RW, Lenz HJ. Clinical Significance of TLR1 I602S Polymorphism for Patients with Metastatic Colorectal Cancer Treated with FOLFIRI plus Bevacizumab. Mol Cancer Ther 2016; 15:1740-1745. [PMID: 27196764 PMCID: PMC4936942 DOI: 10.1158/1535-7163.mct-15-0931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to evaluate the clinical significance of single-nucleotide polymorphisms in TLR1, TLR2, TLR6, and TAK1 in patients with metastatic colorectal cancer (mCRC). We genotyped 9 SNPs of TLR1, TLR2, TLR6, and TAK1 in mCRC patients treated with first-line FOLFIRI (combination therapy of irinotecan, 5-fluorouracil, and folinic acid) plus bevacizumab, using a discovery cohort (TRIBE trial, n = 228) and a validation cohort (FIRE-3 trial, n = 297), and analyzed for the association with response rate (RR), progression-free survival (PFS), and overall survival (OS). There was a significant association of TLR1 rs5743618 (T1805G) with the clinical outcome. In the TRIBE cohort, a homozygous wild-type genotype (T/T) associated with a significantly lower RR compared with variant T/G and G/G genotypes (43% vs. 62%, P = 0.025), and this observation was validated in the FIRE-3 cohort (46% vs. 65%, P = 0.021). In addition, those patients with the T/T genotype had significantly worse PFS (median, 8.2 vs. 10.5 months; HR, 1.57; 95% CI, 1.09-2.28, P = 0.014) and OS (median: 19.9 vs. 27.9 months; HR, 1.63; 95% CI, 1.14-2.35, P = 0.007), compared with those with other genotypes in the TRIBE cohort. These differences remained statistically significant in multivariate analysis. Our data suggest that TLR1 rs5743618 could serve as a predictor of clinical response to FOLFIRI plus bevacizumab in patients with mCRC. Mol Cancer Ther; 15(7); 1740-5. ©2016 AACR.
Collapse
Affiliation(s)
- Satoshi Okazaki
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Fotios Loupakis
- U.O. Oncologia Medica 2, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy
| | - Sebastian Stintzing
- Department of Medical Oncology and Comprehensive Cancer Center, University of Munich, Munich, Germany
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Wu Zhang
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yan Ning
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yu Sunakawa
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Stefan Stremitzer
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Satoshi Matsusaka
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martin D Berger
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Anish Parekh
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jordan D West
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yuji Miyamoto
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mitsukuni Suenaga
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Marta Schirripa
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chiara Cremolini
- U.O. Oncologia Medica 2, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy
| | - Alfredo Falcone
- U.O. Oncologia Medica 2, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy
| | - Volker Heinemann
- Department of Medical Oncology and Comprehensive Cancer Center, University of Munich, Munich, Germany
| | - R William DePaolo
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Heinz-Josef Lenz
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
40
|
Xin Y, Wei J, Chunhua M, Danhong Y, Jianguo Z, Zongqi C, Jian-An B. Protective effects of Ginsenoside Rg1 against carbon tetrachloride-induced liver injury in mice through suppression of inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:583-588. [PMID: 27161399 DOI: 10.1016/j.phymed.2016.02.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/18/2016] [Accepted: 02/25/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is one of the principal cellular energy sensors participating in maintenance of energy balance but recent evidences also suggested that AMPK might be involved in the regulation of inflammation. STUDY DESIGN/METHODS Ginsenoside Rg1 (Rg1) was used to investigate the potential roles of AMPK in carbon tetrachloride (CCl4)-induced hepato-toxicity. The experimental data indicated that treatment with Rg1 significantly decreased the elevation of plasma aminotransferases and alleviated hepatic histological abnormalities in CCl4-exposed mice. Treatment with Rg1 also inhibited the increase of myeloperoxidase (MPO) and malondialdehyde (MDA), the induction of TNF-α, IL-6, inducible nitric oxide synthase (iNOS), nitric oxide and the upregulation of matrix metalloproteinase 2 (MMP-2), MMP-3 and MMP-9 in mice exposed to CCl4. These effects were associated with suppressed nuclear accumulation of NF-κB p65. CONCLUSION These results indicated that Rg1 effectively suppressed the inflammatory responses and alleviated liver damage induced by CCl4, implying that AMPK activation might be beneficial for ameliorating inflammation-based liver damage.
Collapse
Affiliation(s)
- Yao Xin
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Jiang Wei
- Taizhou Institute for Food and Drug Control, Taizhou 225300, PR China
| | - Ma Chunhua
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yu Danhong
- Soochow University Affiliated Children's Hospital, Suzhou 215003, PR China
| | - Zhu Jianguo
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Cheng Zongqi
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China.
| | - Bao Jian-An
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China.
| |
Collapse
|
41
|
Swiatczak B, Cohen IR. Gut feelings of safety: tolerance to the microbiota mediated by innate immune receptors. Microbiol Immunol 2016; 59:573-85. [PMID: 26306708 DOI: 10.1111/1348-0421.12318] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/09/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022]
Abstract
To enable microbial colonization of the gut mucosa, the intestinal immune system must not only react to danger signals but also recognize cues that indicate safety. Recognition of safety, paradoxically, is mediated by the same environmental sensors that are involved in signaling danger. Indeed, in addition to their well-established role in inducing inflammation in response to stress signals, pattern recognition receptors and a variety of metabolic sensors also promote gut-microbiota symbiosis by responding to "microbial symbiosis factors", "resolution-associated molecular patterns", markers of energy extraction and other signals indicating the absence of pathogenic infection and tissue damage. Here we focus on how the paradoxical roles of immune receptors and other environmental sensors define the microbiota signature of an individual.
Collapse
Affiliation(s)
- Bartlomiej Swiatczak
- Department of History of Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Irun R Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
42
|
Panwar H, Calderwood D, Gillespie AL, Wylie AR, Graham SF, Grant IR, Grover S, Green BD. Identification of lactic acid bacteria strains modulating incretin hormone secretion and gene expression in enteroendocrine cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
43
|
Klinman DM. Therapeutic implications of orally delivered immunomodulatory oligonucleotides. Mol Ther 2016; 23:222-3. [PMID: 25633172 DOI: 10.1038/mt.2014.251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Dennis M Klinman
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
44
|
Tanaka K, Fujiya M, Konishi H, Ueno N, Kashima S, Sasajima J, Moriichi K, Ikuta K, Tanabe H, Kohgo Y. Probiotic-derived polyphosphate improves the intestinal barrier function through the caveolin-dependent endocytic pathway. Biochem Biophys Res Commun 2015; 467:541-8. [PMID: 26459590 DOI: 10.1016/j.bbrc.2015.09.159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
Probiotics exhibit beneficial functions for host homeostasis maintenance. We herein investigated the mechanism by which Lactobacillus brevis-derived poly P exhibited a beneficial function. Immunostaining indicated that poly P was captured in the plasma membrane via integrin β1 in Caco2/bbe cells. The uptake of poly P was reduced by the inhibition of integrin β1 as well as caveolin-1, a major component of lipid rafts. The function of poly P, including the induction of HSP27 and enhancement of the intestinal barrier function, was suppressed by the inhibition of caveolin-1, illustrating that the function of poly P was mediated by the endocytic pathway. High-throughput sequencing revealed that poly P induced tumor necrosis factor alpha-induced protein 3, which contributes to cytoprotection, including upregulation of the intestinal barrier function. The present study demonstrates a novel host-probiotic interaction through the uptake of bacterial substance into host cells, which is distinct from pattern recognition receptor pathways.
Collapse
Affiliation(s)
- Kazuyuki Tanaka
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan.
| | - Hiroaki Konishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Nobuhiro Ueno
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Shin Kashima
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Junpei Sasajima
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Kentaro Moriichi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Katsuya Ikuta
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Hiroki Tanabe
- Department of Gastroenterology, International Health and Science University Hospital, Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of Gastroenterology, International Health and Science University Hospital, Japan
| |
Collapse
|
45
|
Land WG. The Role of Damage-Associated Molecular Patterns (DAMPs) in Human Diseases: Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos Univ Med J 2015; 15:e157-e170. [PMID: 26052447 PMCID: PMC4450777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/05/2014] [Accepted: 10/30/2014] [Indexed: 06/04/2023] Open
Abstract
This article is the second part of a review that addresses the role of damage-associated molecular patterns (DAMPs) in human diseases by presenting examples of traumatic (systemic inflammatory response syndrome), cardiovascular (myocardial infarction), metabolic (type 2 diabetes mellitus), neurodegenerative (Alzheimer's disease), malignant and infectious diseases. Various DAMPs are involved in the pathogenesis of all these diseases as they activate innate immune machineries including the unfolded protein response and inflammasomes. These subsequently promote sterile autoinflammation accompanied, at least in part, by subsequent adaptive autoimmune processes. This review article discusses the future role of DAMPs in routine practical medicine by highlighting the possibility of harnessing and deploying DAMPs either as biomarkers for the appropriate diagnosis and prognosis of diseases, as therapeutics in the treatment of tumours or as vaccine adjuncts for the prophylaxis of infections. In addition, this article examines the potential for developing strategies aimed at mitigating DAMPs-mediated hyperinflammatory responses, such as those seen in systemic inflammatory response syndrome associated with multiple organ failure.
Collapse
Affiliation(s)
- Walter G Land
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie, Université de Strasbourg, Strasbourg, France, E-mail:
| |
Collapse
|
46
|
Abstract
Modern immunology, in many ways, is based on 3 major paradigms: the clonal selection theory (Medawar, Burnet; 1953/1959), the pattern recognition theory (Janeway; 1989), and the danger/injury theory (Matzinger, Land; 1994). The last theory holds that any cell stress and tissue injury including allograft injury, via induction of damage-associated molecular patterns, induces immunity including alloimmunity leading to allograft rejection. On the other hand, the concept precludes that "non-self " per se induces immunity as proposed by the two former theories. Today, the danger/injury model has been largely accepted by immunologists, as documented by a steadily increasing number of publications. In particular, overwhelming evidence in support of the correctness of the model has come from recent studies on the gut microbiota representing a huge assemblage of "non-self. " Here, harmless noninjurious commensal microbes are protected by innate immunity-based immune tolerance whereas intestinal injury-causing pathogenic microbes are immunology attacked. The ability of the immune system to discriminate between harmless beneficial "non-self " to induce tolerance and harmful life-threatening "non-self " to induce immunity has apparently emerged during evolution: Protection of innate immunity-controlled beneficial "non-self " (eg, as reflected by microbiotas but also by the fetus of placental mammals) as well as immune defense responses to injuring/injured "non-self " (eg, as reflected by plant resistance to biotic and abiotic stress and allograft rejection in mammals) evolved under pressure across the tree of life, that is, in plants, lower and higher invertebrates as well as lower and higher vertebrates. And evolution tells us why the overall existence of protected microbiotas really makes sense: It is the formation of the "holobiont, " - a metaorganism - that is, the host plus all of its associated microorganisms that - in terms of a strong unit of selection in evolution - provides that kind of fitness to all species on earth to successfully live, survive and reproduce. In other words: "We all evolve, develop, grow, and reproduce as multigenomic ecosystems! Regarding reproduction, another impressive example of active immunologic protection of "nonself " refers to pregnancy in placental mammals that emerged about 400 millions of years ago. Similar to "non-self " microbiotas, pregnancy in placental mammals reflects an evolution-driven phenomenon on the basis of innate immunity-controlled tolerance induction to semiallogeneic non-injuring/non-injured "non-self " aiming to ensure reproduction! Altogether, the lesson learned from evolution of how to avoid allograft rejection is clear: prevent allograft injury to induce allotolerance, in other words: create a "transplant holobiont. ".
Collapse
Affiliation(s)
- Walter Gottlieb Land
- From Molecular ImmunoRheumatology, INSERM, UMR S 1109, LabEx Transplantex, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| |
Collapse
|
47
|
Khanna R, Feagan BG. Safety of infliximab for the treatment of inflammatory bowel disease: current understanding of the potential for serious adverse events. Expert Opin Drug Saf 2015; 14:987-97. [DOI: 10.1517/14740338.2015.1029915] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Yang C, Gong X, Ai Q, Ge P, Lin L, Zhang L. 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside alleviated carbon tetrachloride-induced acute hepatitis in mice. Int Immunopharmacol 2015; 25:393-9. [PMID: 25711693 DOI: 10.1016/j.intimp.2015.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/28/2015] [Accepted: 02/11/2015] [Indexed: 01/02/2023]
Abstract
AMP-activated protein kinase (AMPK) is one of the principal cellular energy sensors participating in maintenance of energy balance but recent evidences also suggested that AMPK might be involved in the regulation of inflammation. In the present study, the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) was used to investigate the potential roles of AMPK in carbon tetrachloride (CCl4)-induced acute hepatitis. The experimental data indicated that treatment with AICAR significantly decreased the elevation of plasma aminotransferases and alleviated hepatic histological abnormalities in CCl4-exposed mice. Treatment with AICAR also inhibited the increase of myeloperoxidase (MPO), the induction of TNF-α, IL-6, inducible nitric oxide synthase (iNOS), nitric oxide and the upregulation of matrix metalloproteinase 2 (MMP-2), MMP-3 and MMP-9 in mice exposed to CCl4. These effects were associated with suppressed nuclear accumulation of NF-κB p65. These results indicated that the AMPK activator AICAR effectively suppressed the inflammatory responses and alleviated liver damage induced by CCl4, implying that AMPK activation might be beneficial for ameliorating inflammation-based liver damage.
Collapse
Affiliation(s)
- Changming Yang
- Department of Anesthesiology, The First People's Hospital of Jingmen, Jingmen, Hubei Province, China
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Qing Ai
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Pu Ge
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
49
|
Maier E, Anderson RC, Roy NC. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine. Nutrients 2014; 7:45-73. [PMID: 25545102 PMCID: PMC4303826 DOI: 10.3390/nu7010045] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases.
Collapse
Affiliation(s)
- Eva Maier
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
| | - Rachel C Anderson
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
| |
Collapse
|
50
|
Hansen AK, Hansen CHF, Krych L, Nielsen DS. Impact of the gut microbiota on rodent models of human disease. World J Gastroenterol 2014; 20:17727-17736. [PMID: 25548471 PMCID: PMC4273123 DOI: 10.3748/wjg.v20.i47.17727] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Traditionally bacteria have been considered as either pathogens, commensals or symbionts. The mammal gut harbors 1014 organisms dispersed on approximately 1000 different species. Today, diagnostics, in contrast to previous cultivation techniques, allow the identification of close to 100% of bacterial species. This has revealed that a range of animal models within different research areas, such as diabetes, obesity, cancer, allergy, behavior and colitis, are affected by their gut microbiota. Correlation studies may for some diseases show correlation between gut microbiota composition and disease parameters higher than 70%. Some disease phenotypes may be transferred when recolonizing germ free mice. The mechanistic aspects are not clear, but some examples on how gut bacteria stimulate receptors, metabolism, and immune responses are discussed. A more deeper understanding of the impact of microbiota has its origin in the overall composition of the microbiota and in some newly recognized species, such as Akkermansia muciniphila, Segmented filamentous bacteria and Faecalibacterium prausnitzii, which seem to have an impact on more or less severe disease in specific models. Thus, the impact of the microbiota on animal models is of a magnitude that cannot be ignored in future research. Therefore, either models with specific microbiota must be developed, or the microbiota must be characterized in individual studies and incorporated into data evaluation.
Collapse
|