1
|
Li Z, Zhang T, Yang X, Peng Y. Role of noncoding RNA and protein interaction in pancreatic cancer. Chin Med J (Engl) 2025; 138:1019-1036. [PMID: 40205638 PMCID: PMC12068769 DOI: 10.1097/cm9.0000000000003587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Indexed: 04/11/2025] Open
Abstract
ABSTRACT Noncoding RNAs (ncRNAs) are a class of RNA molecules with little or no protein-coding potential. Emerging evidence indicates that ncRNAs are frequently dysregulated and play pivotal roles in the pathogenesis of pancreatic cancer. Their aberrant expression can arise from chromosomal abnormalities, dysregulated transcriptional control, and epigenetic modifications. ncRNAs function as protein scaffolds or molecular decoys to modulate interactions between proteins and other biomolecules, thereby regulating gene expression and contributing to pancreatic cancer progression. In this review, we summarize the mechanisms underlying ncRNA dysregulation in pancreatic cancer, emphasize the biological significance of ncRNA-protein interactions, and highlight their clinical relevance. A deeper understanding of ncRNA-protein interactions is essential to elucidate molecular mechanisms and advance translational research in pancreatic cancer.
Collapse
Affiliation(s)
- Zhang Li
- Center for Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tingting Zhang
- Center for Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaojuan Yang
- Center for Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Peng
- Center for Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Zhang H, Tang H, Tu W, Peng F. Regulatory role of non-coding RNAs in 5-Fluorouracil resistance in gastrointestinal cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:4. [PMID: 39935428 PMCID: PMC11810461 DOI: 10.20517/cdr.2024.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Gastrointestinal (GI) cancers are becoming a growing cause of morbidity and mortality globally, posing a significant risk to human life and health. The main treatment for this kind of cancer is chemotherapy based on 5-fluorouracil (5-FU). However, the issue of 5-FU resistance is becoming increasingly prominent, which greatly limits its effectiveness in clinical treatment. Recently, numerous studies have disclosed that some non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), exert remarkable physiological functions within cells. In addition, these ncRNAs can also serve as important information communication molecules in the tumor microenvironment and regulate tumor chemotherapy resistance. In particular, they have been shown to play multiple roles in regulating 5-FU resistance in GI cancers. Herein, we summarize the targets, pathways, and mechanisms involved in regulating 5-FU resistance by ncRNAs and briefly discuss the application potential of ncRNAs as biomarkers or therapeutic targets for 5-FU resistance in GI cancers, aiming to offer a reference to tackle issues related to 5-FU resistance.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu 610051, Sichuan, China
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, Sichuan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510700, Guangdong, China
| | - Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu 610051, Sichuan, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
3
|
Chen Z, Li K, Mofatteh M, Guo W, Pan L, Wang Q. Comprehensive bioinformatics analysis of lncRNA regulation and screening for pathogenic genes in NF2-related schwannomatosis. ONCOLOGIE 2024; 26:1055-1064. [DOI: 10.1515/oncologie-2024-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Abstract
Objectives
NF2-related Schwannomatosis (NF2-SWN) is an autosomal dominant disease with full penetrance. Increasing data shows that long non-coding RNAs (lncRNA) can act as competitive endogenous RNAs (ceRNA), regulating target gene expression. This study aims to investigate lncRNAs in NF2-SWN that may be involved in regulating NF2 pathogenic genes.
Methods
Data were collected from three patients with NF2-SWN, including medical records, physical examination, imaging, pathology, and RNA from the tumor and adjacent tissues. differentially expressed genes (DEGs) between the two groups were screened by conducting gene differential analysis on the sequenced data. Next, GO & KEGG enrichment analysis was performed on DEGs, and an association network between lncRNA and NF2 was established to identify regulatory lncRNA. Finally, qRT-PCR was used to substantiate the expression patterns of critical lncRNAs and NF2 in NF2-SWN.
Results
Sequencing revealed 6433 DEGs involved in key biological processes and pathways, such as axon guidance, intracellular signal transduction, cell migration, phosphorylation, cell adhesion molecules, taste transduction, axon guidance, and ErbB signaling pathways, etc. The ceRNA correlation network identified four lncRNAs (CADM3-AS1, MTMR9LP, LOC101929536, PRDM16-DT) that may regulate the NF2 gene. As expected, qRT-PCR results revealed that compared with the control group, the expression levels of L0C10929536 and PRDM16-DT in the tumor group were significantly increased. In contrast, the expression levels of MTMR9LP and CADM3-AS1 genes were decreased.
Conclusions
Four identified lncRNAs could be crucial for NF2-SWN development, potentially serving as diagnosis biomarkers or therapeutic targets. This study contributes to the understanding of NF2-SWN’s molecular mechanism.
Collapse
Affiliation(s)
- Zhuming Chen
- 47885 Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University , Guangzhou , China
| | - Kai Li
- Department of Orthopaedics , The Second Affiliated Hospital of Guangdong Medical University , Zhanjiang , China
| | - Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences , Queen’s University Belfast , Belfast , UK
| | - Weitao Guo
- Department of Orthopaedics , The Second Affiliated Hospital of Guangdong Medical University , Zhanjiang , China
| | - Lei Pan
- Department of Orthopaedics , Foshan Sanshui District People’s Hospital , Foshan , China
| | - Qingsong Wang
- 47885 Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University , Guangzhou , China
| |
Collapse
|
4
|
Helen H, Gunawan MC, Halim P, Dinata MR, Ahmed A, Dalimunthe A, Marianne M, Ribeiro RIMDA, Hasibuan PAZ, Nurkolis F, Hey-Hawkins E, Park MN, Harahap U, Kim SH, Kim B, Syahputra RA. Flavonoids as modulators of miRNA expression in pancreatic cancer: Pathways, Mechanisms, And Therapeutic Potential. Biomed Pharmacother 2024; 179:117347. [PMID: 39241569 DOI: 10.1016/j.biopha.2024.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Pancreatic cancer (PC) is a complex malignancy, distinguished by its aggressive characteristics and unfavorable prognosis. Recent developments in understanding the molecular foundations of this disease have brought attention to the noteworthy involvement of microRNAs (miRNAs) in disease development, advancement, and treatment resistance. The anticancer capabilities of flavonoids, which are a wide range of phytochemicals present in fruits and vegetables, have attracted considerable interest because of their ability to regulate miRNA expression. This review provides the effects of flavonoids on miRNA expression in PC, explains the underlying processes, and explores the possible therapeutic benefits of flavonoid-based therapies. Flavonoids inhibit PC cell proliferation, induce apoptosis, and enhance chemosensitivity via the modulation of miRNAs involved in carcinogenesis. Additionally, this review emphasizes the significance of certain miRNAs as targets of flavonoid action. These miRNAs have a role in regulating important signaling pathways such as the phosphoinositide-3-kinase-protein kinase B/Protein kinase B (Akt), mitogen activated protein kinase (MAPK), Janus kinase/signal transducers and activators of transcription (JAK/STAT), and Wnt/β-catenin pathways. This review aims to consolidate current knowledge on the interaction between flavonoids and miRNAs in PC, providing a comprehensive analysis of how flavonoid-mediated modulation of miRNA expression could influence cancer progression and therapy. It highlights the use of flavonoid nanoformulations to enhance stability, increase absorption, and maximize anti-PC activity, improving patient outcomes. The review calls for further research to optimize the use of flavonoid nanoformulations in clinical trials, leading to innovative treatment strategies and more effective approaches for PC.
Collapse
Affiliation(s)
- Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Marianne Marianne
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Rosy Iara Maciel De Azambuja Ribeiro
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | | | - Fahrul Nurkolis
- Biological Sciences, Faculty of Sciences and Technology, UIN Sunan Kalijaga, Yogyakarta, Indonesia
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 05253, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Sung-Hoon Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 05253, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia.
| |
Collapse
|
5
|
Yang B, Jiao Z, Feng N, Zhang Y, Wang S. Long non-coding RNA MIR600HG as a ceRNA inhibits the pancreatic cancer progression through regulating the miR-1197/PITPNM3 axis. Heliyon 2024; 10:e24546. [PMID: 38312687 PMCID: PMC10834820 DOI: 10.1016/j.heliyon.2024.e24546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Objective Pancreatic cancer (PC) is considered to be a highly malignant cancer with poor prognosis. Long non-coding RNAs (lncRNAs) is the potential factor to predict cancer prognosis. The effect of MIR600HG in PC needs to be further studied. Our work mainly focused on the importance of MIR600HG for PC prognosis and its underlying molecular mechanism of regulating PC progression. Methods Data set was acquired from TCGA database to find differentially expressed genes and prognostic significance of MIR600HG in PC, and to construct the MIR600HG competitive endogenous RNA (ceRNA). Clinical specimens were collected to prove the analysis results. Vector over-expressed MIR600HG was transfected to study the roles of MIR600HG in proliferation, apoptosis, invasion and migration. The methods of CCK-8, flow cytometry, Transwell and scratch assays were all used in order to explore the apoptosis, migration and invasion. We evaluated the proliferation-related genes (PCNA, CyclinD1 and P27), as well as invasion and migration-related genes such as MMP-9, MMP-7 and ICAM-1. The transcriptional regulation between MIR600HG and miR-1197/PITPNM3 axis was determined with luciferase reporter assays. Results In present study, MIR600HG was dropped in both PC tissues and cells, and the down-regulated MIR600HG was closely related to the poor clinical outcomes in PC patients. MIR600HG could inhibit proliferation, migration and invasion in PC cells. We also investigated whether MIR600HG acting as a sponge of microRNA-1197 (miR-1197) and miR-1197 acting on PITPNM3. We found the positive association between MIR600HG and PITPNM3, as well as the negative association of miR-1197 and MIR600HG (or PITPNM3). Moreover, PITPNM3 mRNA and protein expression saw a simultaneous increase after the MIR600HG-overexpression (MIR600HG-OE), but this result partially diminished in MIR600HG-OE cells and miR-1197 mimics. Conclusions Our study explored the anticancer action of MIR600HG in PC by regulating miR-1197 to increase the expression of PITPNM3, which might help the diagnosis and therapy of PC.
Collapse
Affiliation(s)
- Baoming Yang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhikai Jiao
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ningning Feng
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yueshan Zhang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shunxiang Wang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
6
|
Zhao Y, Qin C, Zhao B, Wang Y, Li Z, Li T, Yang X, Wang W. Pancreatic cancer stemness: dynamic status in malignant progression. J Exp Clin Cancer Res 2023; 42:122. [PMID: 37173787 PMCID: PMC10182699 DOI: 10.1186/s13046-023-02693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignancies worldwide. Increasing evidence suggests that the capacity for self-renewal, proliferation, and differentiation of pancreatic cancer stem cells (PCSCs) contribute to major challenges with current PC therapies, causing metastasis and therapeutic resistance, leading to recurrence and death in patients. The concept that PCSCs are characterized by their high plasticity and self-renewal capacities is central to this review. We focused specifically on the regulation of PCSCs, such as stemness-related signaling pathways, stimuli in tumor cells and the tumor microenvironment (TME), as well as the development of innovative stemness-targeted therapies. Understanding the biological behavior of PCSCs with plasticity and the molecular mechanisms regulating PC stemness will help to identify new treatment strategies to treat this horrible disease.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Xiaoying Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
7
|
Makler A, Narayanan R, Asghar W. An Exosomal miRNA Biomarker for the Detection of Pancreatic Ductal Adenocarcinoma. BIOSENSORS 2022; 12:831. [PMID: 36290970 PMCID: PMC9599289 DOI: 10.3390/bios12100831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a difficult tumor to diagnose and treat. To date, PDAC lacks routine screening with no markers available for early detection. Exosomes are 40-150 nm-sized extracellular vesicles that contain DNA, RNA, and proteins. These exosomes are released by all cell types into circulation and thus can be harvested from patient body fluids, thereby facilitating a non-invasive method for PDAC detection. A bioinformatics analysis was conducted utilizing publicly available miRNA pancreatic cancer expression and genome databases. Through this analysis, we identified 18 miRNA with strong potential for PDAC detection. From this analysis, 10 (MIR31, MIR93, MIR133A1, MIR210, MIR330, MIR339, MIR425, MIR429, MIR1208, and MIR3620) were chosen due to high copy number variation as well as their potential to differentiate patients with chronic pancreatitis, neoplasms, and PDAC. These 10 were examined for their mature miRNA expression patterns, giving rise to 18 mature miRs for further analysis. Exosomal RNA from cell culture media was analyzed via RTqPCR and seven mature miRs exhibited statistical significance (miR-31-5p, miR-31-3p, miR-210-3p, miR-339-5p, miR-425-5p, miR-425-3p, and miR-429). These identified biomarkers can potentially be used for early detection of PDAC.
Collapse
Affiliation(s)
- Amy Makler
- Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ramaswamy Narayanan
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
8
|
Zhu X, Yu R, Peng Y, Miao Y, Jiang K, Li Q. Identification of genomic instability related lncRNA signature with prognostic value and its role in cancer immunotherapy in pancreatic cancer. Front Genet 2022; 13:990661. [PMID: 36118868 PMCID: PMC9481284 DOI: 10.3389/fgene.2022.990661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Increasing evidence suggested the critical roles of lncRNAs in the maintenance of genomic stability. However, the identification of genomic instability-related lncRNA signature (GILncSig) and its role in pancreatic cancer (PC) remains largely unexplored. Methods: In the present study, a systematic analysis of lncRNA expression profiles and somatic mutation profiles was performed in PC patients from The Cancer Genome Atlas (TCGA). We then develop a risk score model to describe the characteristics of the model and verify its prediction accuracy. ESTIMATE algorithm, single-sample gene set enrichment analysis (ssGSEA), and CIBERSORT analysis were employed to reveal the correlation between tumor immune microenvironment, immune infiltration, immune checkpoint blockade (ICB) therapy, and GILncSig in PC. Results: We identified 206 GILnc, of which five were screened to develop a prognostic GInLncSig model. Multivariate Cox regression analysis and stratified analysis revealed that the prognostic value of the GILncSig was independent of other clinical variables. Receiver operating characteristic (ROC) analysis suggested that GILncSig is better than the existing lncRNA-related signatures in predicting survival. Additionally, the prognostic performance of the GILncSig was also found to be favorable in patients carrying wild-type KRAS, TP53, and SMAD4. Besides, a nomogram exhibited appreciable reliability for clinical application in predicting the prognosis of patients. Finally, the relationship between the GInLncSig model and the immune landscape in PC reflected its application value in clinical immunotherapy. Conclusion: In summary, the GILncSig identified by us may serve as novel prognostic biomarkers, and could have a crucial role in immunotherapy decisions for PC patients.
Collapse
Affiliation(s)
- Xiaole Zhu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Yu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunpeng Peng
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Miao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kuirong Jiang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Kuirong Jiang, ; Qiang Li,
| | - Qiang Li
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Kuirong Jiang, ; Qiang Li,
| |
Collapse
|
9
|
Francischini CRD, Mendonça CR, Barcelos KA, Silva MAM, Botelho AFM. Antitumor effects of oleandrin in different types of cancers: Systematic review. Toxicon 2022; 216:15-27. [PMID: 35772506 DOI: 10.1016/j.toxicon.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
Oleandrin, a cardiac glycoside isolated from the leaves of Nerium oleander, has known effects on the heart. Evidence from recent studies have highlighted its potential for anticancer properties. Therefore, we aimed to investigate the effects of oleandrin on cancer cell proliferation, viability and apoptosis in vitro and in vivo. We performed a systematic search in six electronic databases up to Jan 2022. We extracted information about the effects of oleandrin on cell proliferation, cell viability, apoptosis and/or cell cycle arrest in in vitro studies, and the effects on tumor size and volume in animal experimental models. We have retrieved 775 scientific studies. 14 studies met the inclusion criteria. They investigated the effects of oleandrin on breast, lung, pancreatic, colon, prostate, colorectal, oral, ovarian, glioma, melanoma, glioblastoma, osteosarcoma, and histiocytic lymphoma cancers. Overall, in vitro studies demonstrated that oleandrin was able to inhibit cell proliferation, decrease cell viability, and induce apoptosis and/or cell cycle arrest. In addition, oleandrin had an effect on reducing mean tumor size and volume in animal studies. Oleandrin, as a cytotoxic agent, demonstrated antitumor effects in different types of cancers, however important clinical limitations remain a concern. These results encourage future studies to verify the applicability of oleandrin in antineoplastic therapeutic protocols human and veterinary medicine, the investigation of antimetastatic properties, as well as the potential increase in patient survival and the decrease of tumor markers.
Collapse
Affiliation(s)
| | | | - Kênia Alves Barcelos
- Postgraduate Program of Animal Science, Escola de Veterinária e Zootecnia, Federal University of Goiás, Brazil
| | - Marco Augusto Machado Silva
- Postgraduate Program of Animal Science, Escola de Veterinária e Zootecnia, Federal University of Goiás, Brazil
| | - Ana Flávia Machado Botelho
- Postgraduate Program of Animal Science, Escola de Veterinária e Zootecnia, Federal University of Goiás, Brazil.
| |
Collapse
|
10
|
Gao KF, Zhao YF, Liao WJ, Xu GL, Zhang JD. CERS6-AS1 promotes cell proliferation and represses cell apoptosis in pancreatic cancer via miR-195-5p/WIPI2 axis. Kaohsiung J Med Sci 2022; 38:542-553. [PMID: 35199935 DOI: 10.1002/kjm2.12522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is a lethal malignancy that threatens human health. Long noncoding RNAs (lncRNAs) act as important mediators in PC development. Our study aimed to investigate the function and mechanism of lncRNA ceramide synthase 6 antisense RNA 1 (CERS6-AS1) in PC. As shown by RT-qPCR, CERS6-AS1 was significantly upregulated in PC cells and tissues. Silencing CERS6-AS1 suppressed PC cell viability and proliferation while enhancing cell apoptosis according to colony formation assays, EdU assays, and flow cytometry analyses. Mechanistically, CERS6-AS1 interacted with miR-195-5p to elevate the expression level of the WD repeat domain phosphoinositide interacting 2 (WIPI2), which is a downstream target gene of miR-195-5p in PC. Moreover, miR-195-5p expression was negatively associated with CERS6-AS1 expression (or WIPI2 expression) in PC tissues. Rescue assays revealed that WIPI2 overexpression rescued the effects of CERS6-AS1 deficiency on cell viability, proliferation, and apoptosis. In summary, CERS6-AS1 facilitates PC cell proliferation while inhibiting PC cell apoptosis by upregulating WIPI2 via miR-195-5p. This study might provide promising insight into the role of CERS6-AS1 in PC development.
Collapse
Affiliation(s)
- Kan-Fei Gao
- Department of Hepatobiliary Surgery, Hangzhou Xiaoshan No. 1 People's Hospital, Hangzhou, China
| | - Yu-Fang Zhao
- Department of Operating Room, Hangzhou Xiaoshan No. 1 People's Hospital, Hangzhou, China
| | - Wu-Jun Liao
- Department of Hepatobiliary Surgery, Hangzhou Xiaoshan No. 1 People's Hospital, Hangzhou, China
| | - Guo-Li Xu
- Department of Hepatobiliary Surgery, Hangzhou Xiaoshan No. 1 People's Hospital, Hangzhou, China
| | - Jian-Dong Zhang
- Department of Hepatobiliary Surgery, Hangzhou Xiaoshan No. 1 People's Hospital, Hangzhou, China
| |
Collapse
|
11
|
Liang Z, Tang S, He R, Luo W, Qin S, Jiang H. The effect and mechanism of miR-30e-5p targeting SNAI1 to regulate epithelial-mesenchymal transition on pancreatic cancer. Bioengineered 2022; 13:8013-8028. [PMID: 35300562 PMCID: PMC9161848 DOI: 10.1080/21655979.2022.2050880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence indicates that abnormally expressed microRNAs (miRNAs, miRs) contribute to cancer progression. Nonetheless, the role of miR-30e-5p in pancreatic cancer (PCa) remains unclear. In this study, using quantitative real-time polymerase chain reaction analysis, we found that miR-30e-5p expression was downregulated in human PCa tissues compared with that in normal para-cancerous tissues. After transfecting with miR-30e-5p inhibitors, miR-30e-5p mimics, or empty vectors in the BxPC-3 and PANC-1 cells, respectively, the experiments revealed that the upregulation of miR-30e-5p expression inhibited cell growth, invasion, migration and epithelial-mesenchymal transition (EMT), and promoted apoptosis, while miR-30e-5p downregulation had the opposite effects. RNA sequencing of miR-30e-5p inhibitor-, miR-30e-5p mimic-, and the negative control (NC)-treated groups revealed that miR-30e-5p may affect epithelial cell differentiation, cell growth and death. Next, the snail family transcriptional repressor 1 (SNAI1) was predicted and verified as the target gene of miR-30e-5p using bioinformatics analysis and luciferase assays. SNAI1 expression levels were decreased in the PCa cells transfected with miR-30e-5p mimics, whereas the opposite was observed in the cells transfected with miR-30e-5p inhibitors. Subsequently, PCa cells were transfected with a vector overexpressing SNAI1 (OE-SNAI1) and miR-30e-5p mimics, miR-30e-5p inhibitors, or empty vectors. Compared with that in the OE-SNAI1 + miR-30e-5p NC group, transfection with OE-SNAI1 + miR-30e-5p mimics inhibited the PCa cell growth, migration, and increased apoptosis, whereas transfection with OE-SNAI1 + miR-30e-5p inhibitors had the opposite effects. In conclusion, miR-30e-5p potentially inhibits PCa cell proliferation, migration, and invasion via the SNAI1/EMT axis.
Collapse
Affiliation(s)
- Ziyu Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shaomei Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rongquan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Luo
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shanyu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haixing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
12
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
13
|
Lambert M, Benmoussa A, Diallo I, Ouellet-Boutin K, Dorval V, Majeau N, Joly-Beauparlant C, Droit A, Bergeron A, Têtu B, Fradet Y, Pouliot F, Provost P. Identification of Abundant and Functional dodecaRNAs (doRNAs) Derived from Ribosomal RNA. Int J Mol Sci 2021; 22:9757. [PMID: 34575920 PMCID: PMC8467515 DOI: 10.3390/ijms22189757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
Using a modified RNA-sequencing (RNA-seq) approach, we discovered a new family of unusually short RNAs mapping to ribosomal RNA 5.8S, which we named dodecaRNAs (doRNAs), according to the number of core nucleotides (12 nt) their members contain. Using a new quantitative detection method that we developed, we confirmed our RNA-seq data and determined that the minimal core doRNA sequence and its 13-nt variant C-doRNA (doRNA with a 5' Cytosine) are the two most abundant doRNAs, which, together, may outnumber microRNAs. The C-doRNA/doRNA ratio is stable within species but differed between species. doRNA and C-doRNA are mainly cytoplasmic and interact with heterogeneous nuclear ribonucleoproteins (hnRNP) A0, A1 and A2B1, but not Argonaute 2. Reporter gene activity assays suggest that C-doRNA may function as a regulator of Annexin II receptor (AXIIR) expression. doRNAs are differentially expressed in prostate cancer cells/tissues and may control cell migration. These findings suggest that unusually short RNAs may be more abundant and important than previously thought.
Collapse
Affiliation(s)
- Marine Lambert
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Abderrahim Benmoussa
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Idrissa Diallo
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Katheryn Ouellet-Boutin
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Véronique Dorval
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
| | - Nathalie Majeau
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
| | - Charles Joly-Beauparlant
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Arnaud Droit
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Alain Bergeron
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1R 2J6, Canada
| | - Bernard Têtu
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Yves Fradet
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1R 2J6, Canada
| | - Frédéric Pouliot
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1R 2J6, Canada
| | - Patrick Provost
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
14
|
lncRNA MSTRG.29039.1 Promotes Proliferation by Sponging hsa-miR-12119 via JAK2/STAT3 Pathway in Multiple Myeloma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9969449. [PMID: 34422217 PMCID: PMC8376436 DOI: 10.1155/2021/9969449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/12/2021] [Indexed: 12/27/2022]
Abstract
Noncoding RNA (ncRNA) is involved in the occurrence, development, metastasis, and drug resistance of tumors and involves a variety of biological functions. In addition, miRNA can regulate proliferation and migration and even regulate epigenetics to promote the development of multiple myeloma (MM). However, the mechanism of ncRNA involved in MM is still unclear, and there are many unknown ncRNAs to be explored. This research is aimed at discovering the unknown lncRNA in MM through high-throughput sequencing and to study the mechanism and role of competitive endogenous RNA (ceRNA) involved in the pathogenesis of MM for the development of novel molecular markers and potential new targeted drugs. We screened out 262 new lncRNAs with statistical differences by RNA sequencing and selected the lncRNA MSTRG.29039.1 according to the expression and function of lncRNAs and their target genes in MM. We verified that MSTRG.29039.1 and its target gene OSMR were highly expressed in MM. After knockdown of MSTRG.29039.1 in MM cell lines, the expression of OSMR was decreased, and the expression of hsa-miR-12119 was upregulated which can also promote cell apoptosis and inhibit proliferation. Then, we knocked down hsa-miR-12119 and MSTRG.29039.1, we found that apoptosis of MM cells was reduced, and cell proliferation was increased compared with just knocking down hsa-miR-12119. We further verified the direct binding relationship between MSTRG.29039.1 and OSMR by the dual-luciferase reporter assay system. Thus, MSTRG.29039.1 can competitively bind with miRNA to counteract the inhibitory effect of miRNA on OSMR, which regulates cell proliferation and apoptosis through the JAK2/STAT3 pathway. In a conclusion, lncRNA MSTRG.29039.1 could promote proliferation by sponging hsa-miR-12119 via the JAK2/STAT3 pathway in multiple myeloma. This may be a molecular marker and a potential therapeutic target for MM.
Collapse
|
15
|
Zhu Y, Wu F, Gui W, Zhang N, Matro E, Zhu L, Eserberg DT, Lin X. A positive feedback regulatory loop involving the lncRNA PVT1 and HIF-1α in pancreatic cancer. J Mol Cell Biol 2021; 13:676-689. [PMID: 34245303 PMCID: PMC8648389 DOI: 10.1093/jmcb/mjab042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 11/22/2022] Open
Abstract
Extreme hypoxia is among the most prominent pathogenic features of pancreatic cancer (PC). Both the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) and hypoxic inducible factor-1α (HIF-1α) are highly expressed in PC patients and play a crucial role in disease progression. Reciprocal regulation involving PVT1 and HIF-1α in PC, however, is poorly understood. Here, we report that PVT1 binds to the HIF-1α promoter and activates its transcription. In addition, we found that PVT1 could bind to HIF-1α and increases HIF-1α post-translationally. Our findings suggest that the PVT1‒HIF-1α positive feedback loop is a potential therapeutic target in the treatment of PC.
Collapse
Affiliation(s)
- Yiping Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Wu
- Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwei Gui
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Erik Matro
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Linghua Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Xihua Lin
- Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Mortoglou M, Tabin ZK, Arisan ED, Kocher HM, Uysal-Onganer P. Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy. Transl Oncol 2021; 14:101090. [PMID: 33831655 PMCID: PMC8042452 DOI: 10.1016/j.tranon.2021.101090] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19-9 (CA 19-9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Zoey Kathleen Tabin
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - E Damla Arisan
- Institution of Biotechnology, Gebze Technical University, Gebze, Turkey.
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University London, London EC1M 6BQ, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
17
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Xue M, Shi M, Xie J, Zhang J, Jiang L, Deng X, Peng C, Shen B, Xu H, Chen H. Serum tRNA-derived small RNAs as potential novel diagnostic biomarkers for pancreatic ductal adenocarcinoma. Am J Cancer Res 2021; 11:837-848. [PMID: 33791157 PMCID: PMC7994152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal common cancer because of late diagnosis. Novel biomarkers for PDAC early detection are urgently needed. tRNA-derived small RNAs (tsRNAs) are novel small RNAs might serve as biomarkers for cancer diagnosis and participate in diverse physiological and pathological process. We investigated whether the expression of tsRNAs in serum could be a noninvasive method in the early detection of PDAC. Blood sample of PDAC patients and healthy controls were collected from Ruijin Hospital, Shanghai, China. Tumor and adjacent normal pancreas tissues were collected from 51 patients with PDAC undergoing therapeutic surgery. The testing cohort comprised 6 PDAC patients and 6 healthy controls and the expression of small RNAs in serum was analyzed by small RNA sequence. We verified the diagnostic performance of serum tsRNAs by qPCR in validation cohort including 110 PDAC patients and 100 healthy controls. Expression level of tsRNAs in tissue was also verified in another independent cohort including 51 tumor and 51 adjacent normal pancreas tissues. Unpaired t-test and paired t-test are used for comparing depending on whether the samples are paired. The predictive performance of tsRNAs was evaluated by Kaplan-Meier survival and receiver operating characteristic (ROC) curve. There were 45 tsRNAs expressed at remarkably higher levels, 6 tsRNAs expressed at lower levels in PDAC patients, respectively, compared with healthy volunteers. tsRNA-ValTAC-41, tsRNA-MetCAT-37 and tsRNA-ThrTGT-23 expressed significant highly (P < 0.05) in serum of PDAC patients in validation cohort. tsRNA-ValTAC-41 or tsRNA-MetCAT-37 combined with CA19-9 could increase the AUC of PDAC prediction (AUC = 0.947 and 0.949 respectively), relative to CA19-9 test alone. Besides, patients with higher serum tsRNA-ValTAC-41 level showed shorter overall survival (OS). tsRNA-ValTAC-41 also expressed at remarkably higher level in tumor tissue, and it was obviously associated with tumor staging both in serum and tissue. We provide tsRNAs profiles observed by small RNA sequencing. The diagnostic accuracy of tsRNA-ValTAC-41 and tsRNA-MetCAT-37 in serum of PDAC patients were verified. Further studies for tsRNA-ValTAC-41 are needed to confirm the findings. These tsRNAs may be promising and effective candidates in the development of highly sensitive, noninvasive biomarkers for PDAC diagnosis.
Collapse
Affiliation(s)
- Meilin Xue
- Pancreatic Disease Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Minmin Shi
- Pancreatic Disease Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Junjie Xie
- Pancreatic Disease Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Jun Zhang
- Pancreatic Disease Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Lingxi Jiang
- Pancreatic Disease Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Xiaxing Deng
- Pancreatic Disease Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Chenghong Peng
- Pancreatic Disease Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Baiyong Shen
- Pancreatic Disease Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Hong Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine280 South Chongqing Road, Shanghai 200025, PR China
| | - Hao Chen
- Pancreatic Disease Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
- Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine197 Ruijin 2nd Road, Shanghai 200025, PR China
| |
Collapse
|
19
|
Mirzaei S, Gholami MH, Mahabady MK, Nabavi N, Zabolian A, Banihashemi SM, Haddadi A, Entezari M, Hushmandi K, Makvandi P, Samarghandian S, Zarrabi A, Ashrafizadeh M, Khan H. Pre-clinical investigation of STAT3 pathway in bladder cancer: Paving the way for clinical translation. Biomed Pharmacother 2020; 133:111077. [PMID: 33378975 DOI: 10.1016/j.biopha.2020.111077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Effective cancer therapy requires identification of signaling networks and investigating their potential role in proliferation and invasion of cancer cells. Among molecular pathways, signal transducer and activator of transcription 3 (STAT3) has been of importance due to its involvement in promoting proliferation, and invasion of cancer cells, and mediating chemoresistance. In the present review, our aim is to reveal role of STAT3 pathway in bladder cancer (BC), as one of the leading causes of death worldwide. In respect to its tumor-promoting role, STAT3 is able to enhance the growth of BC cells via inhibiting apoptosis and cell cycle arrest. STAT3 also contributes to metastasis of BC cells via upregulating of MMP-2 and MMP-9 as well as genes in the EMT pathway. BC cells obtain chemoresistance via STAT3 overexpression and its inhibition paves the way for increasing efficacy of chemotherapy. Different molecular pathways such as KMT1A, EZH2, DAB2IP and non-coding RNAs including microRNAs and long non-coding RNAs can function as upstream mediators of STAT3 that are discussed in this review article.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- IstitutoItaliano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, OrtaMahalle, ÜniversiteCaddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| |
Collapse
|
20
|
Lu X, Zhang Y, Xie G, Ding Y, Cong H, Xuan S. Exosomal non‑coding RNAs: Novel biomarkers with emerging clinical applications in gastric cancer (Review). Mol Med Rep 2020; 22:4091-4100. [PMID: 33000279 PMCID: PMC7533435 DOI: 10.3892/mmr.2020.11519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common types of malignant tumor and it demonstrates high mortality rates. The majority of cases of GC are diagnosed at an advanced stage, which seriously endangers the health of the patient. Therefore, discovering a novel diagnostic method for GC is a current priority. Exosomes are 40 to 150-nm-diameter vesicles consisting of a lipid bilayer secreted by a variety of cells that exist in multiple different types of body fluids. Exosomes contain diverse types of active substances, including RNAs, proteins and lipids, and play important roles in tumor cell communication, metastasis and neovascularization, as well as tumor growth. Non-coding RNAs (ncRNAs) do not code proteins, and instead have roles in a variety of genetic mechanisms, such as regulating the structure, expression and stability of RNAs, and modulating the translation and function of proteins. In recent years, exosomal ncRNAs have become a novel focus in research. An increasing number of studies have demonstrated that exosomal ncRNAs can be used in the prediction and treatment of GC. The present review briefly discusses the role of exosomal ncRNAs as a potential biomarker, and summarizes important regulatory genes involved in the development and progression of GC.
Collapse
Affiliation(s)
- Xu Lu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guangfei Xie
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ye Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shihai Xuan
- Department of Laboratory Medicine, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| |
Collapse
|
21
|
Han Q, Li J, Xiong J, Song Z. Long noncoding RNA LINC00514 accelerates pancreatic cancer progression by acting as a ceRNA of miR-28-5p to upregulate Rap1b expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:151. [PMID: 32771045 PMCID: PMC7414678 DOI: 10.1186/s13046-020-01660-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Background Pancreatic cancer (PC) is one of the most aggressive cancers and has an extremely poor prognosis worldwide. Long noncoding RNA (lncRNA) has been reported to be a potential prognostic biomarker in the initiation and prognosis of PC. Nevertheless, the biological functions and the detailed molecular mechanism of LINC00514 in PC remain unclear. Methods We measured the expression level of LINC00514 in PC tissues and cell lines by quantitative real-time PCR. Gain- and loss-of-function experiments were performed to explore the bioeffects of LINC00514 on PC development both in vitro and in vivo. Subcellular fractionation, luciferase reporter assay, RNA immunoprecipitation assay, pull-down assay and western blotting were performed to investigate the oncogenic molecular mechanisms of LINC00514. Results In this study, LINC00514 was shown to be upregulated in PC tissues and cell lines. Increased LINC00514 expression was significantly associated with the clinical progression and prognosis of PC patients. In addition, silencing LINC00514 inhibited PC cell proliferation, migration and invasion, while LINC00514 overexpression promoted these processes. Moreover, LINC00514 knockdown remarkably inhibited PC development and metastasis in vivo. Deeper investigations indicated that LINC00514 acted as a sponge for microRNA-28-5p (miR-28-5p) in PC and that Rap1b was a downstream target of miR-28-5p. Furthermore, the positive correlation of LINC00514 and Rap1b and the negative correlation between miR-28-5p and LINC00514 (or Rap1b) were revealed. Based on the rescue assays, Rap1b inhibition partially suppressed the oncogenic effect of LINC00514 overexpression on PC cell proliferation, migration and invasion. Conclusions This study is the first to characterize the oncogenic function of the long noncoding RNA LINC00514 in pancreatic cancer progression by acting as a competing endogenous RNA (ceRNA) of miR-28-5p to upregulate Rap1b expression. Understanding this molecular mechanism might contribute to further discoveries of better diagnostic and therapeutic options for pancreatic cancer.
Collapse
Affiliation(s)
- Qing Han
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Junhe Li
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jianping Xiong
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zhiwang Song
- Department of Oncology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
22
|
Yang S, Wang Y, Zhang S, Hu X, Ma Q, Tian Y. NCResNet: Noncoding Ribonucleic Acid Prediction Based on a Deep Resident Network of Ribonucleic Acid Sequences. Front Genet 2020; 11:90. [PMID: 32180792 PMCID: PMC7059790 DOI: 10.3389/fgene.2020.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 01/15/2023] Open
Abstract
Noncoding RNA (ncRNA) is a kind of RNA that plays an important role in many biological processes, diseases, and cancers, while cannot translate into proteins. With the development of next-generation sequence technology, thousands of novel RNAs with long open reading frames (ORFs, longest ORF length > 303 nt) and short ORFs (longest ORF length ≤ 303 nt) have been discovered in a short time. How to identify ncRNAs more precisely from novel unannotated RNAs is an important step for RNA functional analysis, RNA regulation, etc. However, most previous methods only utilize the information of sequence features. Meanwhile, most of them have focused on long-ORF RNA sequences, but not adapted to short-ORF RNA sequences. In this paper, we propose a new reliable method called NCResNet. NCResNet employs 57 hybrid features of four categories as inputs, including sequence, protein, RNA structure, and RNA physicochemical properties, and introduces feature enhancement and deep feature learning policies in a neural net model to adapt to this problem. The experiments on benchmark datasets of 8 species shows NCResNet has higher accuracy and higher Matthews correlation coefficient (MCC) compared with other state-of-the-art methods. Particularly, on four short-ORF RNA sequence datasets, specifically mouse, Saccharomyces cerevisiae, zebrafish, and cow, NCResNet achieves greater than 10 and 15% improvements over other state-of-the-art methods in terms of accuracy and MCC. Meanwhile, for long-ORF RNA sequence datasets, NCResNet also has better accuracy and MCC than other state-of-the-art methods on most test datasets. Codes and data are available at https://github.com/abcair/NCResNet.
Collapse
Affiliation(s)
- Sen Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China.,School of Artificial Intelligence, Jilin University, Changchun, China
| | - Shuangquan Zhang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China
| | - Xuemei Hu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Yuan Tian
- School of Artificial Intelligence, Jilin University, Changchun, China
| |
Collapse
|
23
|
Zhang S, Shi W, Hu W, Ma D, Yan D, Yu K, Zhang G, Cao Y, Wu J, Jiang C, Wang Z. DEP Domain-Containing Protein 1B (DEPDC1B) Promotes Migration and Invasion in Pancreatic Cancer Through the Rac1/PAK1-LIMK1-Cofilin1 Signaling Pathway. Onco Targets Ther 2020; 13:1481-1496. [PMID: 32110046 PMCID: PMC7035893 DOI: 10.2147/ott.s229055] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Background With increasing incidence, pancreatic cancer (PC) is one of the most common digestive tract tumors. However, the prognosis of PC is particularly dismal due to the highly invasive and metastatic behavior of this deadly disease. DEP domain-containing protein 1B (DEPDC1B), which is overexpressed in multiple tumors, such as breast cancer, oral cancer and non-small cell lung cancer, plays a significant role in cell movement, cell cycle and cytoskeleton reorganization. However, the function of DEPDC1B in PC remains poorly understood. Methods The function of DEPDC1B in the migration and invasion of PC was evaluated by wound healing and Transwell assays in vitro and PC-derived liver metastasis models in vivo. The molecular mechanisms of DEPDC1B were investigated through cell line establishment, Western blotting, qRT-PCR, immunoprecipitation, histological examination and immunohistochemistry analysis. Results DEPDC1B was overexpressed in PC cell lines. DEPDC1B regulated cell migration and invasion. DEPDC1B regulated the Rac1/PAK1-LIMK1-cofilin1 signaling pathway by interacting with Rac1. Rac1 inhibition suppressed DEPDC1B-induced migration and invasion in PC in vitro and DEPDC1B-induced liver metastasis in vivo. Conclusion DEPDC1B promoted cell migration and invasion by activating the Rac1/PAK1-LIMK1-cofilin1 signaling pathway, thus providing a potential therapeutic target against PC.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Weiwei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Wei Hu
- Department of Hepatobiliary Surgery, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu 222001, People's Republic of China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Ding Ma
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Dongliang Yan
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Kuanyong Yu
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Guang Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Yin Cao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Zhongxia Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| |
Collapse
|
24
|
Ou ZL, Luo Z, Lu YB. Long non-coding RNA HULC as a diagnostic and prognostic marker of pancreatic cancer. World J Gastroenterol 2019; 25:6728-6742. [PMID: 31857775 PMCID: PMC6920662 DOI: 10.3748/wjg.v25.i46.6728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) is abnormally expressed in various malignant tumors. In recent years, it has been found that IncRNA HULC is increasingly expressed in pancreatic cancer tissues and is involved in the development and progression of pancreatic cancer. However, the clinical value of serum HULC in pancreatic cancer remains unclear, and there are few studies on how HULC regulates the biological function of pancreatic cancer cells.
AIM To determine the value of lncRNA HULC in the diagnosis and prognosis of pancreatic cancer, and its possible biological potential.
METHODS Sixty patients with pancreatic cancer and sixty patients with benign pancreatic diseases admitted to Xiangya Hospital, Central South University were assigned to the pancreatic cancer group and the benign disease group, respectively, and another 60 healthy subjects were enrolled as the normal group during the same period. HULC-siRNA and NC-siRNA were transfected into pancreatic cancer cells. Quantitative real-time polymerase chain reaction was performed to determine the expression of HULC in tissues, serum, and cells. Western Blot was carried out to determine the expression of β-catenin, c-myc, and cyclin D1 in cells, and the cell counting kit-8, flow cytometry, and Transwell assay were conducted to determine the proliferation, apoptosis and invasion of cells.
RESULTS Highly expressed in the tissues and serum of pancreatic cancer patients, HULC showed good clinical value in distinguishing between patients with pancreatic cancer, patients with benign pancreatic diseases and healthy subjects. HULC was related to pathological parameters including tumor size, T staging, M staging and vascular invasion, and the area-under-the-curve for evaluating these four parameters was 0.844, 0.834, 0.928 and 0.818, respectively. Patients with low expression of HULC had a significantly higher 3-year overall survival (OS) and 5-year OS than those with high expression. T staging, M staging, vascular invasion, and HULC were independent prognostic factors affecting the 3-year OS of patients with pancreatic cancer. Inhibition of HULC expression prevented the proliferation and invasion of pancreatic cancer cells, promoted apoptosis, and inhibited the expression of Wnt/β-catenin signaling pathway-related proteins, β-catenin, c-myc, and cyclin D1. The Wnt/β-catenin signaling pathway agonist (LiCl) restored proliferation, apoptosis, and invasion of pancreatic cancer cells with inhibited expression of HULC.
CONCLUSION HULC is an effective marker for the diagnosis and prognosis of pancreatic cancer, which may affect the biological function of pancreatic cancer cells through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zheng-Lin Ou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Zhen Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Ye-Bin Lu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
25
|
Zhou C, Wang S, Zhou Q, Zhao J, Xia X, Chen W, Zheng Y, Xue M, Yang F, Fu D, Yin Y, Atyah M, Qin L, Zhao Y, Bruns C, Jia H, Ren N, Dong Q. A Long Non-coding RNA Signature to Improve Prognostic Prediction of Pancreatic Ductal Adenocarcinoma. Front Oncol 2019; 9:1160. [PMID: 31781487 PMCID: PMC6857660 DOI: 10.3389/fonc.2019.01160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive solid malignant tumors worldwide. Increasing investigations demonstrate that long non-coding RNAs (lncRNAs) expression is abnormally dysregulated in cancers. It is crucial to identify and predict the prognosis of patients for the selection of further therapeutic treatment. Methods: PDAC lncRNAs abundance profiles were used to establish a signature that could better predict the prognosis of PDAC patients. The least absolute shrinkage and selection operator (LASSO) Cox regression model was applied to establish a multi-lncRNA signature in the TCGA training cohort (N = 107). The signature was then validated in a TCGA validation cohort (N = 70) and another independent Fudan cohort (N = 46). Results: A five-lncRNA signature was constructed and it was significantly related to the overall survival (OS), either in the training or validation cohorts. Through the subgroup and Cox regression analyses, the signature was proven to be independent of other clinic-pathologic parameters. Receiver operating characteristic curve (ROC) analysis also indicated that our signature had a better predictive capacity of PDAC prognosis. Furthermore, ClueGO and CluePedia analyses showed that a number of cancer-related and drug response pathways were enriched in high risk groups. Conclusions: Identifying the five-lncRNA signature (RP11-159F24.5, RP11-744N12.2, RP11-388M20.1, RP11-356C4.5, CTC-459F4.9) may provide insight into personalized prognosis prediction and new therapies for PDAC patients.
Collapse
Affiliation(s)
- Chenhao Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qiang Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Zhao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xianghou Xia
- Department of Breast Surgery, Zhejiang Cancer Hospital, Zhejiang, China
| | - Wanyong Chen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Min Xue
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Yirui Yin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Manar Atyah
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Emerging epigenomic landscapes of pancreatic cancer in the era of precision medicine. Nat Commun 2019; 10:3875. [PMID: 31462645 PMCID: PMC6713756 DOI: 10.1038/s41467-019-11812-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic studies have advanced our understanding of pancreatic cancer at a mechanistic and translational level. Genetic concepts and tools are increasingly starting to be applied to clinical practice, in particular for precision medicine efforts. However, epigenomics is rapidly emerging as a promising conceptual and methodological paradigm for advancing the knowledge of this disease. More importantly, recent studies have uncovered potentially actionable pathways, which support the prediction that future trials for pancreatic cancer will involve the vigorous testing of epigenomic therapeutics. Thus, epigenomics promises to generate a significant amount of new knowledge of both biological and medical importance. In pancreatic cancer, the epigenomic landscape can strongly impact the disease phenotype. Here, the authors discuss recent advances in our understanding of pancreatic cancer epigenomics, and how this knowledge can integrate with precision medicine approaches in this lethal disease.
Collapse
|
27
|
Lv Y, Huang S. Role of non-coding RNA in pancreatic cancer. Oncol Lett 2019; 18:3963-3973. [PMID: 31579086 PMCID: PMC6757267 DOI: 10.3892/ol.2019.10758] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a malignant disease that develops rapidly and carries a poor prognosis. Currently, surgery is the only radical treatment. Non-coding RNAs (ncRNAs) are protein-free RNAs produced by genome transcription; they play important roles in regulating gene expression, participating in epigenetic modification, cell proliferation, differentiation and reproduction. ncRNAs also play key roles in the development of cancer; microRNA (miRNA) and long non-coding RNA (lncRNA) may lead the way to new treatments for pancreatic cancer. miRNAs are short-chain ncRNAs (19–24 nt) that inhibit the degradation of protein translation or their target gene mRNAs to regulate gene expression. lncRNAs contain >200 nt of ncRNA and play important regulatory roles in a number of malignant tumors, in terms of tumor cell proliferation, apoptosis, invasion and distant metastasis. lncRNAs can be exploited for the diagnosis and treatment of pancreatic cancer and have substantial prospects for clinical application. Nevertheless, the molecular mechanism of their regulation and function, as well as the significance of other ncRNAs, such as piwi-interacting RNA, in the pathogenesis of pancreatic cancer, are largely unknown. In this review, the structures of ncRNAs with various classifications, as well as the functions and important roles of ncRNAs in the diagnosis and treatment of pancreatic cancer are reviewed.
Collapse
Affiliation(s)
- Yinghao Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuai Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
28
|
RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis 2019; 10:207. [PMID: 30814490 PMCID: PMC6393474 DOI: 10.1038/s41419-019-1384-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to be involved in a variety of human diseases, including cancers. However, their mechanisms have not yet been fully elucidated. We investigated lncRNA changes that may be associated with pancreatic cancer (PC) by analyzing published microarray data, and identified AGAP2-AS1 as a relatively overexpressed lncRNA in PC tissues. qRT-PCR assays were performed to examine expression levels of AGAP2-AS1. MTT assays, colony formation assays, and EdU assays were used to determine the proliferative capacity of cells. Flow cytometry and TUNEL assays were used to study the regulation of AGAP2-AS1 in the cell cycle and apoptosis. Transwell experiments were used to study changes in cell invasion and metastasis, and a nude mouse model was established to assess the effects of AGAP2-AS1 on tumorigenesis in vivo. RNA sequencing was performed to probe AGAP2-AS1-related pathways. Subcellular fractionation and FISH assays were used to determine the distribution of AGAP2-AS1 in PC cells, and RIP and ChIP were used to determine the molecular mechanism of AGAP2-AS1-mediated regulation of potential target genes. Increased expression of AGAP2-AS1 was associated with tumor size and pathological stage progression in patients with PC. RREB1 was found to activate transcription of AGAP2-AS1 in PC cells. AGAP2-AS1 affected proliferation, apoptosis, cycle arrest, invasion, and metastasis of PC cells in vitro, and AGAP2-AS1 regulated PC proliferation in vivo. Furthermore, AGAP2-AS1 epigenetically inhibited the expression of ANKRD1 and ANGPTL4 by recruiting zeste homolog 2 (EZH2), thereby promoting PC proliferation and metastasis. In summary, our data show that RREB1-induced upregulation of AGAP2-AS1 regulates cell proliferation and migration in PC partly through suppressing ANKRD1 and ANGPTL4 by recruiting EZH2. AGAP2-AS1 represents a potential target for the diagnosis and treatment of PC in the future.
Collapse
|
29
|
Moschovis D, Vasilaki E, Tzouvala M, Karamanolis G, Katifelis H, Legaki E, Vezakis A, Aravantinos G, Gazouli M. Association between genetic polymorphisms in long non-coding RNAs and pancreatic cancer risk. Cancer Biomark 2019; 24:117-123. [PMID: 30475759 DOI: 10.3233/cbm-181959] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are emerging as candidate biomarkers of cancer, having regulatory functions in both oncogenic and tumor-suppressive pathways. Concerning pancreatic cancer (PC), deregulation of lncRNAs involved in tumor initiation, invasion, and metastasis seem to play a key role. However, data is scarce about regulatory mechanism of lncRNA expression. OBJECTIVE The aim of our study was to investigate the contribution of two lncRNAs polymorphisms (rs1561927 and rs4759313 of PVT1 and HOTAIR, respectively) in PC susceptibility. METHODS A case-control study was conducted analysing rs1561927 and rs4759313 polymorphisms using DNA collected in a population-based case-control study of pancreatic cancer (111 pancreatic ductal adenocarcinoma cases (PDAC), 56 pancreatic neuroendocrine tumor (PNET), and 125 healthy controls). RESULTS Regarding the PVT1 rs1561927 polymorphism the G allele was significantly overrepresented in both PDAC and PNET patients compared to the controls, while the presence of the HOTAIR rs4759314 G allele was found to be overrepresented in the PNET patients only compared to the controls. The PVT1 rs1561927 AG/GG genotypes were associated with poor overall survival in PDAC patients. CONCLUSIONS Our results suggested that polymorphisms of these two lncRNA polymorphisms implicated in pancreatic carcinogenesis. Further large-scale and functional studies are needed to confirm our results.
Collapse
Affiliation(s)
- D Moschovis
- Department of Gastroenterology, General Hospital of Nikea and Piraeus "Agios Panteleimon", Nikea, Greece
| | - E Vasilaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - M Tzouvala
- Department of Gastroenterology, General Hospital of Nikea and Piraeus "Agios Panteleimon", Nikea, Greece
| | - G Karamanolis
- Academic Department of Gastroenterology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - H Katifelis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - E Legaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - A Vezakis
- Second Department of Surgery, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - G Aravantinos
- Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - M Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Mungamuri SK. Targeting the epigenome as a therapeutic strategy for pancreatic tumors. THERANOSTIC APPROACH FOR PANCREATIC CANCER 2019:211-244. [DOI: 10.1016/b978-0-12-819457-7.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
31
|
Karihtala P, Porvari K, Soini Y, Eskelinen M, Juvonen P, Haapasaari KM. Expression Levels of microRNAs miR-93 and miR-200a in Pancreatic Adenocarcinoma with Special Reference to Differentiation and Relapse-Free Survival. Oncology 2018; 96:164-170. [PMID: 30537722 DOI: 10.1159/000494274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/02/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Protein levels of the transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) have been proposed as prognostic factors in pancreatic ductal adenocarcinomas (PDACs). These cellular redox-state-regulating enzymes are targeted by several microRNAs, including miR-93 and miR-200a. METHODS We assessed mRNA levels of Nrf2 and Keap1 and tissue expression of miR-93 and miR-200a in 51 patients with surgically treated PDAC. Expression levels were separately measured in malignant cells and adjacent benign cells. RESULTS Keap1 and Nrf2 mRNA expression levels in cancer cells were lower than in adjacent benign tissue (Wilcoxon's test; p = 0.0015 and p = 0.000032, respectively). Conversely, miR-93 expression was higher in cancer cells than in adjacent benign tissue (p = 0.00082). Low levels of miR-93 and miR-200a in cancer cells were associated with poorer differentiation (p = 0.004 and p = 0.002, respectively). In univariate survival analysis, benign-tissue levels of miR-200a above the median predicted better relapse-free survival (RFS) (p = 0.045). CONCLUSIONS High miR-93 and miR-200a levels in cancer cells of PDAC were associated with better differentiation, and miR-200a expression in benign tissue with excellent RFS. Keap1 and Nrf2 mRNA levels showed prominent down-regulation in cancerous versus benign tissue, but they were not associated with disease aggressiveness or outcome.
Collapse
Affiliation(s)
- Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland,
| | - Katja Porvari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ylermi Soini
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Matti Eskelinen
- Department of Surgery, Kuopio University Hospital and School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Petri Juvonen
- Department of Surgery, Kuopio University Hospital and School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsi-Maria Haapasaari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
32
|
Guraya S. Prognostic significance of circulating microRNA-21 expression in esophageal, pancreatic and colorectal cancers; a systematic review and meta-analysis. Int J Surg 2018; 60:41-47. [PMID: 30336280 DOI: 10.1016/j.ijsu.2018.10.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/17/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Literature has shown that aberrantly expressed microRNAs may have implications in certain cancers. A wealth of studies signal potential prognostic role of microRNA-21 in GIT cancers. This meta-analysis quantitatively determines prognostic significance of circulating microRNA-21 in esophageal squamous cell carcinoma (ESCC), pancreatic ductal adenocarcinoma (PDAC) and colorectal carcinoma (CRC). METHODS Databases of Medline, Wiley online library, Cochrane library, Taylor and Francis Online, CINAHL, Springer, Proquest, ISI Web of knowledge, ScienceDirect, and Emerald were searched using MeSH terms serum/tissue microRNA-21, prognosis, esophagus squamous cell carcinoma, pancreatic ductal adenocarcinoma, colorectal cancer. A systematic algorithm was used that selected 15 relevant studies. Meta-analysis was conducted using forest plot and a summary effect model was employed. RESULTS This meta-analysis reports significant prognostic value of miR-21 in predicting worse overall survival (OS) in ESCC, PDAC, and CRC with pooled hazard ratio (HR) of 3.49 (95% CI 2.58-4.71, p-value < 0.01). Subgroup analysis for ESCC showed a pooled HR of 3.46 (95% CI 1.88-635, p value of <0.01), worse overall survival (OS) with the pooled HR of 3.14 (95% CI 2.22-4.43, p value < 0.01) for CRC and a pooled HR of 3.77 (95% CI 1.63-8.73, p value < 0.01) for PDAC. CONCLUSION This research infers that microRNA-21 expression is a powerful prognostic tool. Expression of micro-RNA-21 is associated with poor OS and poorer disease-free survival in ESCC, PDAC and CRC.
Collapse
Affiliation(s)
- Salman Guraya
- Professor of Surgery and Vice Dean, College of Medicine, University of Sharjah, UAE.
| |
Collapse
|
33
|
Kunovsky L, Tesarikova P, Kala Z, Kroupa R, Kysela P, Dolina J, Trna J. The Use of Biomarkers in Early Diagnostics of Pancreatic Cancer. Can J Gastroenterol Hepatol 2018; 2018:5389820. [PMID: 30186820 PMCID: PMC6112218 DOI: 10.1155/2018/5389820] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies with increasing incidence. The poor prognosis is due to the aggressive nature of the tumor, late detection, and the resistance to chemotherapy and radiotherapy. A radical surgery procedure is the only treatment that has been shown to improve the 5-year survival rate to 20-25%. However, the majority of patients (80-85%) are diagnosed with locally advanced or metastatic disease and just 15-20% patients are diagnosed in an early stage allowing them to undergo the potentially curative surgical resection. The early detection of PDAC without the use of invasive methods is challenging and discovery of a cost-effective biomarker with high specificity and sensitivity could significantly improve the treatment and survival in these patients. In this review, we summarize current and newly examined biomarkers in early PDAC detection.
Collapse
Affiliation(s)
- Lumir Kunovsky
- Department of Gastroenterology, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
- Department of Surgery, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
| | - Pavla Tesarikova
- Department of Internal Medicine, Hospital Boskovice, Czech Republic
| | - Zdenek Kala
- Department of Surgery, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
| | - Radek Kroupa
- Department of Gastroenterology, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
| | - Petr Kysela
- Department of Surgery, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
| | - Jiri Dolina
- Department of Gastroenterology, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
| | - Jan Trna
- Department of Gastroenterology, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Czech Republic
- Department of Internal Medicine, Hospital Boskovice, Czech Republic
| |
Collapse
|
34
|
Huang F, Chen W, Peng J, Li Y, Zhuang Y, Zhu Z, Shao C, Yang W, Yao H, Zhang S. LncRNA PVT1 triggers Cyto-protective autophagy and promotes pancreatic ductal adenocarcinoma development via the miR-20a-5p/ULK1 Axis. Mol Cancer 2018; 17:98. [PMID: 30001707 PMCID: PMC6043995 DOI: 10.1186/s12943-018-0845-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/26/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Defective autophagy is thought to contribute to the pathogenesis of many diseases, including cancer. Human plasmacytoma variant translocation 1 (PVT1) is an oncogenic long non-coding RNA that has been identified as a prognostic biomarker in pancreatic ductal adenocarcinoma, but how PVT1 operates in the regulation of autophagy in pancreatic ductal adenocarcinoma (PDA) is unclear. METHODS PVT1 expression level was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and hybridization in situ (ISH). Western blot or qRT-PCR was performed to assess the ULK1 protein or mRNA level. Autophagy was explored via autophagic flux detection under a confocal microscope and autophagic vacuoles investigation under a transmission electron microscopy (TEM). The biological role of PVT1 in autophagy and PDA development was determined by gain-of-function and loss-of-function assays. RESULTS We found that PVT1 levels paralleled those of ULK1 protein in PDA cancer tissues. PVT1 promoted cyto-protective autophagy and cell growth by targeting ULK1 both in vitro and in vivo. Moreover, high PVT1 expression was associated with poor prognosis. Furthermore, we found that PVT1 acted as sponge to regulate miR-20a-5p and thus affected ULK1 expression and the development of pancreatic ductal adenocarcinoma. CONCLUSIONS The present study demonstrates that the "PVT1/miR-20a-5p/ULK1/autophagy" pathway modulates the development of pancreatic ductal adenocarcinoma and may be a novel target for developing therapeutic strategies for pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Fengting Huang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120 China
| | - Wenying Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Juanfei Peng
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Yuanhua Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Yanyan Zhuang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Zhe Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093 USA
| | - Chunkui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630 China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Centre for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Herui Yao
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120 China
| | - Shineng Zhang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120 China
| |
Collapse
|
35
|
Zhou B, Guo W, Sun C, Zhang B, Zheng F. Linc00462 promotes pancreatic cancer invasiveness through the miR-665/TGFBR1-TGFBR2/SMAD2/3 pathway. Cell Death Dis 2018; 9:706. [PMID: 29899418 PMCID: PMC5999603 DOI: 10.1038/s41419-018-0724-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/31/2022]
Abstract
Emerging evidence has identified that long non-coding RNAs (lncRNAs) may play an important role in the pathogenesis of many cancers, pancreatic cancer (PC) included. However, the role of linc00462 in PC remains unclear. The aim of our present study was to investigate the potential functions of linc00462 in PC and to identify the underlying mechanisms of action. CCK8 assay, transwell assay, cell cycle assay, cell apoptosis assay, EdU assay, western blot assay, cell adhesion assay, HE staining, IF staining, ELISA assay, vivo growth and metastasis assay, and colony formation assay were performed. We demonstrated that OSM mediated up-regulation of linc00462 promoted cell proliferation by accelerating cell cycle process and inhibiting cell apoptosis and adhesion in vitro, enhanced cell migration and invasion by accelerating EMT process, promoted tumor growth and matastasis in vivo and was associated with large tumor size, poor tumor differentiation, TNM stage and distant metastasis in patients of PC. In addition, we demonstrated that linc00462 was a target of miR-665. Linc00462 overexpression enhanced the expression levels of TGFBR1 and TGFBR2, and thus activated the SMAD2/3 pathway in PC cells. In conclusion, linc00462/miR-665/TGFBR1/2 regulatory network may shed light on tumorigenesis in PC.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Hepatopacreatobiliary, Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Weidong Guo
- Department of Hepatopacreatobiliary, Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Chuandong Sun
- Department of Hepatopacreatobiliary, Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Bingyuan Zhang
- Department of Hepatopacreatobiliary, Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Fang Zheng
- School of Integrative Medicine, Tianjin Traditional Medical University, 300193, Tianjin, China.
| |
Collapse
|
36
|
Adamopoulos PG, Raptis GD, Kontos CK, Scorilas A. Discovery and expression analysis of novel transcripts of the human SR-related CTD-associated factor 1 (SCAF1) gene in human cancer cells using Next-Generation Sequencing. Gene 2018; 670:155-165. [PMID: 29787824 DOI: 10.1016/j.gene.2018.05.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
The human SR-related CTD associated factor 1 (SCAF1) gene is a new member of the human SR (Ser/Arg-rich) superfamily of pre-mRNA splicing factors, which has been discovered and cloned by members of our lab. SCAF1 interacts with the CTD domain of the RNA polymerase II polypeptide A and is firmly involved in pre-mRNA splicing. Although it was found to be expressed widely in multiple human tissues, its mRNA levels vary a lot. The significant relation of SCAF1 with cancer has been confirmed by many studies, since SCAF1 mRNA transcript was found to be overexpressed in breast and ovarian tumors, confirming its significant prognostic value as a cancer biomarker in both these human malignancies. In this study, we describe the discovery and cloning of fifteen novel transcripts of the human SCAF1 gene (SCAF1 v.2 - v.16), using nested PCR and NGS technology. In detail, extensive bioinformatic analysis revealed that these novel SCAF1 splice variants comprise a total of nine novel alternative splicing events between the annotated exons of the gene, thus producing seven novel SCAF1 transcripts with open-reading frames, which are predicted to encode novel SCAF1 isoforms and eight novel SCAF1 transcripts with premature termination codons that are likely long non-coding RNAs. Additionally, a novel 3' UTR was discovered and cloned using nested 3' RACE and was validated with Sanger sequencing. In order to validate the NGS findings as well as to investigate the expression profile of each novel transcript, RT-PCR experiments were carried out with the use of variant-specific primers. Since SCAF1 is implicated in many human malignancies, qualifying as a potential biomarker, the quantification of the presented novel transcripts in human samples may have clinical applications in different types of cancer.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios D Raptis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
37
|
Ottaviani S, Stebbing J, Frampton AE, Zagorac S, Krell J, de Giorgio A, Trabulo SM, Nguyen VTM, Magnani L, Feng H, Giovannetti E, Funel N, Gress TM, Jiao LR, Lombardo Y, Lemoine NR, Heeschen C, Castellano L. TGF-β induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression. Nat Commun 2018; 9:1845. [PMID: 29748571 PMCID: PMC5945639 DOI: 10.1038/s41467-018-03962-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
TGF-β/Activin induces epithelial-to-mesenchymal transition and stemness in pancreatic ductal adenocarcinoma (PDAC). However, the microRNAs (miRNAs) regulated during this response have remained yet undetermined. Here, we show that TGF-β transcriptionally induces MIR100HG lncRNA, containing miR-100, miR-125b and let-7a in its intron, via SMAD2/3. Interestingly, we find that although the pro-tumourigenic miR-100 and miR-125b accordingly increase, the amount of anti-tumourigenic let-7a is unchanged, as TGF-β also induces LIN28B inhibiting its maturation. Notably, we demonstrate that inactivation of miR-125b or miR-100 affects the TGF-β-mediated response indicating that these miRNAs are important TGF-β effectors. We integrate AGO2-RIP-seq with RNA-seq to identify the global regulation exerted by these miRNAs in PDAC cells. Transcripts targeted by miR-125b and miR-100 significantly overlap and mainly inhibit p53 and cell-cell junctions' pathways. Together, we uncover that TGF-β induces an lncRNA, whose encoded miRNAs, miR-100, let-7a and miR-125b play opposing roles in controlling PDAC tumourigenesis.
Collapse
Affiliation(s)
- Silvia Ottaviani
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Adam E Frampton
- Department of Surgery and Cancer, HPB Surgical Unit, Imperial College, Hammersmith Hospital Campus, London, W12 0HS, UK
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Institute of Reproductive and Developmental Biology (IRDB), London, W12 0NN, UK
| | - Sladjana Zagorac
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Jonathan Krell
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Institute of Reproductive and Developmental Biology (IRDB), London, W12 0NN, UK
| | - Alexander de Giorgio
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Sara M Trabulo
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28028, Spain
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Van T M Nguyen
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Luca Magnani
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Hugang Feng
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, 56126, Italy
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, 56126, Italy
| | - Thomas M Gress
- Clinic for Gastroenterology, Endocrinology, Metabolism and Infectiology, Philipps-University Marburg, Marburg, 35037, Germany
| | - Long R Jiao
- Department of Surgery and Cancer, HPB Surgical Unit, Imperial College, Hammersmith Hospital Campus, London, W12 0HS, UK
| | - Ylenia Lombardo
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Christopher Heeschen
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28028, Spain
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Leandro Castellano
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK.
- University of Sussex, School of life Sciences, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
38
|
Xiao Z, Shen J, Zhang L, Li M, Hu W, Cho C. Therapeutic targeting of noncoding RNAs in hepatocellular carcinoma: Recent progress and future prospects. Oncol Lett 2018; 15:3395-3402. [PMID: 29467864 PMCID: PMC5796293 DOI: 10.3892/ol.2018.7758] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Due to the high mortality rate and unsatisfactory treatment options available, hepatocellular carcinoma (HCC) remains one of the most common malignancies and a leading cause of cancer-associated mortality. Novel therapeutic targets for HCC are urgently required. Advanced RNA sequencing technology enables the identification of considerable amounts of noncoding RNAs (ncRNAs), including small noncoding RNAs and long noncoding RNAs, which exhibit no protein-coding activities. In this respect, ncRNAs and their regulatory processes are important factors in liver tumorigenesis. The present review focuses on the characteristics and biological roles of ncRNAs in HCC. Potential therapeutic applications of ncRNAs in HCC are also evaluated.
Collapse
Affiliation(s)
- Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lin Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Hu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Chihin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| |
Collapse
|
39
|
Garajová I, Balsano R, Tommasi C, Giovannetti E. Noncoding Rnas Emerging as Novel Biomarkers in Pancreatic Cancer. Curr Pharm Des 2018; 24:4601-4604. [PMID: 30659532 DOI: 10.2174/1381612825666190119125804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs play important regulatory roles in diverse biological processes and their misregulation might lead to different diseases, including cancer. Previous studies have reported the evolving role of miRNAs as new potential biomarkers in cancer diagnosis, prognosis, as well as predictive biomarkers of chemotherapy response or therapeutic targets. In this review, we outline the involvement of noncoding RNA in pancreatic cancer, providing an overview of known miRNAs in its diagnosis, prognosis and chemoresistance. In addition, we discuss the influence of non-coding RNAs in the metastatic behavior of pancreatic cancer, as well as the role of diet in epigenetic regulation of non-coding RNAs in cancer, which can, in turn, lead the development of new prevention's techniques or novel targets for cancer therapy.
Collapse
Affiliation(s)
- Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Rita Balsano
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Chiara Tommasi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, and Fondazione Pisa per la Scienza Pisa, Italy
| |
Collapse
|
40
|
Raffenne J, Cros J. [Molecular characterisation defines several subtypes of pancreatic ductal adenocarcinoma]. Bull Cancer 2017; 105:55-62. [PMID: 29273547 DOI: 10.1016/j.bulcan.2017.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 02/04/2023]
Abstract
Multi-omics high throughput analyses lead to the description of multiple molecular subtypes of pancreatic adenocarcinoma with major prognostic impact for most of them. There is no consensual multilevel integrative classification yet like in colon or breast cancers. Genomic classifications have identified a tumor subtype (15% of the patients) with deficient homologous DNA repair-system leading to increase sensitivity to platinum-based therapies and possibly to PARP inhibitors and immunotherapies. Transcriptomic classifications are still debated but all have identified an aggressive subtype with a very poor prognosis, presumably unfit for a surgical approach. Finally, approaches based on metabolomic or proteomic profiling have identified subtypes with a particular sensitivity to compounds targeting the hallmarks metabolomics or oncogenic pathways of each subtype. These classifications were mostly based on tumor cell but the micro-environment is also very heterogeneous and several types of stroma will be described soon. Subtype determination in daily practice remains a major challenge as most technologies used to build these classifications are very expensive, requires dedicated bio-informatics analysis pipelines and are not adapted to routine samples that are mostly formal in fixed paraffin embedded biopsies, in which tumor cells are highly contaminated by the cell from the microenvironment and the clot.
Collapse
Affiliation(s)
- Jérôme Raffenne
- Faculté de médecine Paris-Diderot Paris 7 - site Bichat, centre de recherche sur l'inflammation, Inserm-U1149, 16, rue Henri-Huchard, 75890 Paris cedex 18, France
| | - Jérôme Cros
- Faculté de médecine Paris-Diderot Paris 7 - site Bichat, centre de recherche sur l'inflammation, Inserm-U1149, 16, rue Henri-Huchard, 75890 Paris cedex 18, France; Hôpital Beaujon, service de pathologie, 92110 Clichy, France.
| |
Collapse
|
41
|
Fabbri C, Gibiino G, Fornelli A, Cennamo V, Grifoni D, Visani M, Acquaviva G, Fassan M, Fiorino S, Giovanelli S, Bassi M, Ghersi S, Tallini G, Jovine E, Gasbarrini A, de Biase D. Team work and cytopathology molecular diagnosis of solid pancreatic lesions. Dig Endosc 2017; 29:657-666. [PMID: 28190274 DOI: 10.1111/den.12845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/08/2017] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer-associated death in the next decade or so. It is widely accepted that tumorigenesis is linked to specific alterations in key genes and pancreatic neoplasms are some of the best characterized at the genomic level. Recent whole-exome and whole-genome sequencing analyses confirmed that PDAC is frequently characterized by mutations in a set of four genes among others: KRAS, TP53, CDKN2A/p16, and SMAD4. Sequencing, for example, is the preferable technique available for detecting KRAS mutations, whereas in situ immunochemistry is the main approach for detecting TP53 gene alteration. Nevertheless, the diagnosis of PDAC is still a clinical challenge, involving adequate acquisition of endoscopic ultrasound (EUS)-guided fine-needle aspiration (FNA) and specific pathological assessment from tissue architecture to specific biomolecular tests. The aim of the present review is to provide a complete overview of the current knowledge of the biology of pancreatic cancer as detected by the latest biomolecular techniques and, moreover, to propose a paradigm for strict teamwork collaboration in order to improve the correct use of diagnostic sources.
Collapse
Affiliation(s)
- Carlo Fabbri
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
| | - Giulia Gibiino
- Medical Pathology, Department of Internal Medicine, Gastroenterology Division, Policlinico Universitario A. Gemelli, Catholic University of Sacred Heart, Rome, Italy
| | - Adele Fornelli
- Anatomic Pathology Unit, AUSL of Bologna, Maggiore Hospital, Italy
| | - Vincenzo Cennamo
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Italy
| | - Michela Visani
- Department of Medicine (DIMES), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna School of Medicine, Italy
| | - Giorgia Acquaviva
- Department of Medicine (DIMES), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna School of Medicine, Italy
| | - Matteo Fassan
- Department of Medicine, Anatomic Pathology, University of Padua, Padova, Italy
| | - Sirio Fiorino
- Internal Medicine Unit, Maggiore Hospital, Bologna, Italy
| | - Silvia Giovanelli
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
| | - Marco Bassi
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
| | - Stefania Ghersi
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
| | - Giovanni Tallini
- Department of Medicine (DIMES), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna School of Medicine, Italy
| | - Elio Jovine
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
| | - Antonio Gasbarrini
- Medical Pathology, Department of Internal Medicine, Gastroenterology Division, Policlinico Universitario A. Gemelli, Catholic University of Sacred Heart, Rome, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Italy
| |
Collapse
|
42
|
Wald P, Liu XS, Pettit C, Dillhoff M, Manilchuk A, Schmidt C, Wuthrick E, Chen W, Williams TM. Prognostic value of microRNA expression levels in pancreatic adenocarcinoma: a review of the literature. Oncotarget 2017; 8:73345-73361. [PMID: 29069873 PMCID: PMC5641216 DOI: 10.18632/oncotarget.20277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/23/2017] [Indexed: 01/17/2023] Open
Abstract
Background Clinical and pathologic markers of prognosis and patterns of failure help guide clinicians in selecting patients for adjuvant therapy after surgical resection for pancreatic adenocarcinoma (PDAC). Recent studies have reported the prognostic utility of microRNA profiling in numerous malignancies. Here, we review and summarize the current literature regarding associations between microRNA expression and overall survival in PDAC patients. Materials and Methods We conducted a systematic search in the PubMed database to identify all primary research studies reporting prognostic associations between tumor and/or serum microRNA expression and overall survival in PDAC patients. Eligible articles were reviewed by the authors and relevant findings are summarized below. Results We found 53 publications that fit our search criteria. In total, 23 up-regulated and 49 down-regulated miRNAs have been associated with worse overall survival. MiR-21 is the most commonly reported miRNA, appearing in 19 publications, all of which report aberrant over-expression and association with shorter survival in PDAC. Other miRNAs that appear in multiple publications include miR-10b, −21, −34a, −155, −196a, −198, −200c, −203, −210, −218, −222, and −328. We summarize the preclinical and clinical data implicating these miRNAs in various molecular signaling pathways and cellular functions. Conclusions There is growing evidence that miRNA expression profiles have the potential to provide tumor-specific prognostic information to assist clinicians in more appropriately selecting patients for adjuvant therapy. These molecules are often aberrantly expressed and exhibit oncogenic and/or tumor suppressor functions in PDAC. Additional efforts to develop prognostic and predictive molecular signatures, and further elucidate miRNA mechanisms of action, are warranted.
Collapse
Affiliation(s)
- Patrick Wald
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - X Shawn Liu
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Cory Pettit
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Mary Dillhoff
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Andrei Manilchuk
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Carl Schmidt
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Evan Wuthrick
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Wei Chen
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Terence M Williams
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| |
Collapse
|
43
|
Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res 2017; 77:3965-3981. [PMID: 28701486 PMCID: PMC8330958 DOI: 10.1158/0008-5472.can-16-2634] [Citation(s) in RCA: 2129] [Impact Index Per Article: 266.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
In addition to mutations or aberrant expression in the protein-coding genes, mutations and misregulation of noncoding RNAs, in particular long noncoding RNAs (lncRNA), appear to play major roles in cancer. Genome-wide association studies of tumor samples have identified a large number of lncRNAs associated with various types of cancer. Alterations in lncRNA expression and their mutations promote tumorigenesis and metastasis. LncRNAs may exhibit tumor-suppressive and -promoting (oncogenic) functions. Because of their genome-wide expression patterns in a variety of tissues and their tissue-specific expression characteristics, lncRNAs hold strong promise as novel biomarkers and therapeutic targets for cancer. In this article, we have reviewed the emerging functions and association of lncRNAs in different types of cancer and discussed their potential implications in cancer diagnosis and therapy. Cancer Res; 77(15); 3965-81. ©2017 AACR.
Collapse
Affiliation(s)
- Arunoday Bhan
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas
| | - Milad Soleimani
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas.
| |
Collapse
|
44
|
Culturing and transcriptome profiling of progenitor-like colonies derived from adult mouse pancreas. Stem Cell Res Ther 2017; 8:172. [PMID: 28747214 PMCID: PMC5530554 DOI: 10.1186/s13287-017-0626-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/16/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
Background Transplantation of insulin-producing cells is considered an important diabetes therapy. Many research studies have shown that insulin-producing cells can be derived from the in-vitro cultured pancreatic colonies with self-renewal ability and multilineage potential. Even though these progenitor-like colonies have been prepared from adult pancreas cells, the efficient culture method is hardly established and regulation of the colonies is rarely known. We confirmed previously that single cells acquired from adult mouse pancreas could form cyst-like colonies in a 3D semi-solid system containing Matrigel and methylcellulose. These colonies could be passaged continuously without losing progenitor-like capacity. In the previous culturing system, however, conditioned medium from murine embryonic-stem-cell-derived pancreatic-like cells was used. This unregulated ingredient may reduce repeatability and affect following study. Thus, a new culturing system with certain components needs to be developed. Methods Single cell suspension was acquired from adult mouse pancreas and cultured in a Matrigel-based 3D system with epidermal growth factor, Nicotinamide, B27, and Noggin to form ring colonies. Serial-passage assay was performed to evaluate self-renewal ability. Real-time polymerase chain reaction and immunostaining were used to detect the expression of progenitor-related genes. A 2D differentiation method was used to testify the multilineage potency of the colonies. High-throughput sequencing (HTS) of the colonies was performed to profile the differentially expressed genes. Results We developed a 3D culturing system deprived of conditioned medium to propagate those colonies with high proliferative efficiency. HTS of the transcriptome of mRNAs, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) showed differentially expressed genes compared to the whole pancreas (as control). In mRNAs, several surface marker genes were identified in the colonies. Moreover in noncoding RNAs, miR-21a, miR-31 and miR-155 were upregulated and miR-217, miR-802 and miR-375 were downregulated in colonies along with a number of other miRNAs and lncRNAs. Conclusions Our results offer an efficient culture system for pancreatic progenitor-like colonies and HTS of the colonies serves as a target resource for following study of in-vitro cultured pancreatic progenitors. These findings should also contribute to our understanding of the transcriptional regulation of these progenitor-like colonies and the mechanisms behind their functions. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0626-y) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Abreu FBD, Liu X, Tsongalis GJ. miRNA analysis in pancreatic cancer: the Dartmouth experience. Clin Chem Lab Med 2017; 55:755-762. [PMID: 28343174 DOI: 10.1515/cclm-2017-0046] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/28/2017] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is considered one of the most lethal cancers being the fourth leading cause of cancer deaths in adults in the United States because of the lack of early signs and symptoms and the lack of early detection. Pancreatic ductal adenocarcinoma (PDAC) is the most common histological type among pancreatic cancers, representing 80%-90% of all solid tumors of the pancreas. The majority of PDAC develops from three precursor lesions: pancreatic intraepithelial neoplasia, intraductual papillary mucinous neoplasm and mucinous cystic neoplasm. Although histologic tissue evaluation remains the gold standard for diagnosis, endoscopic ultrasound-guided fine needle aspiration has become the preferred modality for obtaining pathologic confirmation. At Dartmouth-Hitchcock Medical Center (DHMC),we have developed and validated a microRNA (miRNA) panel for patients with pancreatic diseases that can be used in association with the gold standard method for diagnosis. miRNAs have an important role in biological processes, such as apoptosis, metabolism, cell growth and differentiation. In cancer, miRNAs can be classified as either oncogenic or tumor suppressor according to their function in the carcinogenic process. In this study, we describe the expression of many miRNA in benign and malignant pancreatic tissues as well as their clinical significance. For this reason, miRNAs have been considered potential biomarkers of pancreatic diseases that could potentially contribute to an early diagnosis, predict disease progression, accurately monitor disease, contribute to better treatment strategies and reduce mortality by improving disease management.
Collapse
Affiliation(s)
- Francine B de Abreu
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH
| | - Xiaoying Liu
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH
| | - Gregory J Tsongalis
- Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756
| |
Collapse
|
46
|
Khan MAA, Azim S, Zubair H, Bhardwaj A, Patel GK, Khushman M, Singh S, Singh AP. Molecular Drivers of Pancreatic Cancer Pathogenesis: Looking Inward to Move Forward. Int J Mol Sci 2017; 18:ijms18040779. [PMID: 28383487 PMCID: PMC5412363 DOI: 10.3390/ijms18040779] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to rank among the most lethal cancers. The consistent increase in incidence and mortality has made it the seventh leading cause of cancer-associated deaths globally and the third in the United States. The biggest challenge in combating PC is our insufficient understanding of the molecular mechanism(s) underlying its complex biology. Studies during the last several years have helped identify several putative factors and events, both genetic and epigenetic, as well as some deregulated signaling pathways, with implications in PC onset and progression. In this review article, we make an effort to summarize our current understanding of molecular and cellular events involved in the pathogenesis of pancreatic malignancy. Specifically, we provide up-to-date information on the genetic and epigenetic changes that occur during the initiation and progression of PC and their functional involvement in the pathogenic processes. We also discuss the impact of the tumor microenvironment on the molecular landscape of PC and its role in aggressive disease progression. It is envisioned that a better understanding of these molecular factors and the mechanisms of their actions can help unravel novel diagnostic and prognostic biomarkers and can also be exploited for future targeted therapies.
Collapse
Affiliation(s)
- Mohammad Aslam Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Moh'd Khushman
- Departments of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|
47
|
Huang FT, Peng JF, Cheng WJ, Zhuang YY, Wang LY, Li CQ, Tang J, Chen WY, Li YH, Zhang SN. MiR-143 Targeting TAK1 Attenuates Pancreatic Ductal Adenocarcinoma Progression via MAPK and NF-κB Pathway In Vitro. Dig Dis Sci 2017; 62:944-957. [PMID: 28194669 DOI: 10.1007/s10620-017-4472-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is one of the major regulators of inflammation-induced cancer cell growth and progression. MiR-143 dysregulation is a common event in a variety of human diseases including pancreatic ductal adenocarcinoma (PDA). AIMS To identify the interaction between TAK1 and miR-143 in PDA. METHODS Data mining of TAK1 expression in PDA patient gene profiling was conducted. QRT-PCR and western blot were performed to detect the expression of TAK1 in PDA tissues and cell lines. Ectopic miR-143 and TAK1 were introduced to PDA cells. Cell growth, apoptosis and migration were examined. Xenograft models were used to examine the function of TAK1 in vivo. Western blot and luciferase assay were carried out to investigate the direct target of miR-143. RESULTS PDA patient gene profiling data (GSE15471 and GSE16515) showed that TAK1 mRNA was aberrantly up-regulated in PDA tissues. TAK1 protein levels were overexpressed in PDA tissues and cell lines. Overexpression of TAK1 was strongly associated with positive lymph node metastasis. Inhibition of TAK1 suppressed cell growth, migration, and induced cell apoptosis in vitro and in vivo. Further studies demonstrated that TAK1 was a direct target gene of miR-143. MiR-143 also inhibited PDA cells proliferation and migration, induced apoptosis and G1/S arrest. Moreover, TAK1 depletion inactivated MAPK and NF-κB pathway, mimicking the function of miR-143. CONCLUSIONS The study highlights that miR-143 acts as a tumor suppressor in PDA through directly targeting TAK1, and their functional regulation may provide potential therapeutic strategies in clinics.
Collapse
Affiliation(s)
- Feng-Ting Huang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Juan-Fei Peng
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Wen-Jie Cheng
- Department of Ultrasound, the Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong Province, People's Republic of China
| | - Yan-Yan Zhuang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Ling-Yun Wang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Chu-Qiang Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong Province, People's Republic of China
| | - Wen-Ying Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Yuan-Hua Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Shi-Neng Zhang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China.
| |
Collapse
|
48
|
Increased Serum Level of MicroRNA-663 Is Correlated with Poor Prognosis of Patients with Nasopharyngeal Carcinoma. DISEASE MARKERS 2016; 2016:7648215. [PMID: 27667893 PMCID: PMC5030438 DOI: 10.1155/2016/7648215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/31/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRs) play crucial roles in the carcinogenesis and malignant progression of human cancers including nasopharyngeal carcinoma (NPC). In this study, we aimed to investigate the association of serum miR-663 levels with the clinical factors and prognosis of NPC patients. Real-time PCR was performed to examine the amount of miR-663 in serum in NPC patients and healthy controls. Our data showed that the amount of miR-663 in serum was significantly higher in NPC patients than in healthy controls. Moreover, the serum levels of miR-663 were significantly correlated with the grade, lymph node metastasis, and clinical stage of NPC. Furthermore, higher serum miR-663 levels were closely associated with worse 5-year overall survival (OS) and relapse-free survival (RFS) of patients with NPC, and the serum level of miR-663 was found to be an independent predicator for the prognosis of NPC. In addition, after receiving chemoradiotherapy, the serum levels of miR-663 were significantly reduced in NPC patients. In summary, miR-663 was upregulated in the serum of NPC patients, which was downregulated after chemoradiotherapy, and its increased levels were closely associated with malignant progression and poor prognosis in NPC patients. Therefore, the amount of miR-663 in serum may become a potential predicator for the clinical outcome of NPC patients.
Collapse
|
49
|
Zhang M, Du X. Noncoding RNAs in gastric cancer: Research progress and prospects. World J Gastroenterol 2016; 22:6610-6618. [PMID: 27547004 PMCID: PMC4970485 DOI: 10.3748/wjg.v22.i29.6610] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/26/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs (ncRNAs) have attracted much attention in cancer research field. They are involved in cellular development, proliferation, differentiation and apoptosis. The dysregulation of ncRNAs has been reported in tumor initiation, progression, invasion and metastasis in various cancers, including gastric cancer (GC). In the past few years, an accumulating body of evidence has deepened our understanding of ncRNAs, and several emerging ncRNAs have been identified, such as PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs). The competing endogenous RNA (ceRNA) networks include mRNAs, microRNAs, long ncRNAs (lncRNAs) and circRNAs, which play critical roles in the tumorigenesis of GC. This review summarizes the recent hotspots of ncRNAs involved in GC pathobiology and their potential applications in GC. Finally, we briefly discuss the advances in the ceRNA network in GC.
Collapse
|