1
|
Chen L, Tian L, Zhang Y, Shi Y, Yuan W, Zou Y, Zhang Q, Chen M, Zeng P. Updated Insights into Probiotic Interventions for Metabolic Syndrome: Mechanisms and Evidence. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10554-x. [PMID: 40332670 DOI: 10.1007/s12602-025-10554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
Metabolic syndrome (MetS) is a disease with complex and diverse etiologies. Extrinsic factors such as diet and lifestyle can induce dysbiosis of gut microbes, compromising intestinal barrier integrity and leading to inflammation and insulin resistance, thereby advancing MetS. Probiotic interventions have shown potential in ameliorating gut microbiota dysbiosis and regulating host metabolism by assimilating lipids, metabolizing carbohydrates, and producing short-chain fatty acids (SCFA), indole compounds, secondary bile acids, conjugated linoleic acid (CLA), and other active ingredients. An increasing number of new strains are being isolated and validated for their effective roles intervening on MetS in animal and population studies. This review aims to provide updated insights into the pathogenic mechanisms of MetS, highlight the newly identified probiotic strains that have demonstrated improvements in MetS, and elucidate their mechanisms of action, with the aim of offering contemporary perspectives for the future use of probiotics in mitigating MetS.
Collapse
Affiliation(s)
- Lili Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Lvbo Tian
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Yuqi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Ying Shi
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Wenyi Yuan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Yue Zou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Qin Zhang
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong 510070, Guangzhou, China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China.
| |
Collapse
|
2
|
Aleali MS, Mahapatro A, Maddineni G, Paladiya R, Jeanty H, Mohanty E, Mirchandani M, Jahanshahi A, Devulapally P, Alizadehasl A, Tariq MD, Hosseini Jebelli SF, Aliabadi AY, Hashemi SM, Amini-Salehi E. The impact of gut microbiome modulation on anthropometric indices in metabolic syndrome: an umbrella review. Ann Med Surg (Lond) 2025; 87:2263-2277. [PMID: 40212162 PMCID: PMC11981403 DOI: 10.1097/ms9.0000000000003140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/25/2025] [Indexed: 04/13/2025] Open
Abstract
Background Metabolic syndrome (MetS) is a complex disorder characterized by a cluster of metabolic risk factors. Recent research highlights the gut microbiome's role in metabolic regulation, suggesting that modulation through probiotics, prebiotics, and synbiotics may provide a novel approach to managing MetS. This umbrella review aims to integrate insights from existing meta-analyses to explore how changes in gut microbiota influence key body measurement indicators in individuals with MetS. Methods A systematic search of PubMed, Scopus, and Web of Science databases identified meta-analyses that assessed the impact of probiotics, prebiotics, or synbiotics on anthropometric indices in MetS patients. Results The results indicated that microbial therapy leads to a significant reduction in body mass index (BMI) (SMD: -0.22; 95% CI: -0.35 to -0.09; P < 0.01) and waist circumference (WC) (SMD: -0.47; 95% CI: -0.80 to -0.15; P < 0.01). However, microbial therapy did not significantly affect body fat mass (SMD: -0.30; 95% CI: -0.64 to 0.02; P = 0.06), body fat percentage (SMD: -0.29; 95% CI: -0.62 to 0.03; P = 0.07), waist-to-hip ratio (SMD: -0.09; 95% CI: -0.46 to 0.28; P = 0.63), and weight (SMD: -0.06; 95% CI: -0.21 to 0.08; P = 0.37). Conclusions Gut microbial modulation, mainly through probiotics and synbiotics, shows promise in reducing BMI and WC in MetS patients. However, its effects on other anthropometric indices remain uncertain, warranting further high-quality research to fully understand microbial interventions' therapeutic potential.
Collapse
Affiliation(s)
- Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ruchir Paladiya
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Herby Jeanty
- The Brooklyn Hospital Center, Brooklyn, New York, USA
| | - Elan Mohanty
- Gautam Maddineni, MD Mary Medical Center Apple Valley, Apple Valley, California, USA
| | | | - Ali Jahanshahi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Pavan Devulapally
- Social Determinants of Health Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Azin Alizadehasl
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | | | - Seyyed Mohammad Hashemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Chen H, Wu Q, Chen X, Yu X, Zhao H, Huang Q, Huang Y, Wang J, Huang X, Wei J, Wu F, Xiao X, Wang L. Gestational supplementation of Bifidobacterium, Lactobacillus, and Streptococcus thermophilus attenuates hepatic steatosis in offspring mice through promoting fatty acid β-oxidation. J Food Sci 2024; 89:3064-3077. [PMID: 38578136 DOI: 10.1111/1750-3841.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Currently, Bifidobacterium, Lactobacillus, and Streptococcus thermophilus (BLS) are widely recognized as the crucially beneficial bacteria in the gut. Many preclinical and clinical studies have shown their protective effects against non-alcoholic fatty liver disease (NAFLD). However, whether gestational BLS supplementation could alleviate NAFLD in the offspring is still unknown. Kunming mice were given a high-fat diet (HFD) for 4 weeks before mating. They received BLS supplementation by gavage during pregnancy. After weaning, offspring mice were fed with a regular diet up to 5 weeks old. Gestational BLS supplementation significantly increased the abundance of Actinobacteriota, Bifidobacterium, and Faecalibaculum in the gut of dams exposed to HFD. In offspring mice exposed to maternal HFD, maternal BLS intake significantly decreased the ratio of Firmicutes to Bacteroidetes as well as the relative abundance of Prevotella and Streptococcus, but increased the relative abundance of Parabacteroides. In offspring mice, maternal BLS supplementation significantly decreased the hepatic triglyceride content and mitigated hepatic steatosis. Furthermore, maternal BLS supplementation increased the glutathione content and reduced malondialdehyde content in the liver. In addition, mRNA and protein expression levels of key rate-limiting enzymes in mitochondrial β-oxidation (CPT1α, PPARα, and PGC1α) in the livers of offspring mice were significantly increased after gestational BLS supplementation. Thus, gestational BLS supplementation may ameliorate maternal HFD-induced steatosis and oxidative stress in the livers of offspring mice by modulating fatty acid β-oxidation.
Collapse
Affiliation(s)
- Hangjun Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Qiongmei Wu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Xingyi Chen
- Liwan District Maternal and Child Health Hospital, Guangzhou, People's Republic of China
| | - Xinxue Yu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Hanqing Zhao
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Qiaoli Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Yurong Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Jinting Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Xueyi Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Jun Wei
- Department of Science and Technology, Guangzhou Customs, Guangzhou, People's Republic of China
| | - Feng Wu
- Department of Science and Technology, Guangzhou Customs, Guangzhou, People's Republic of China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Lijun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Borka Balas R, Meliț LE, Lupu A, Lupu VV, Mărginean CO. Prebiotics, Probiotics, and Synbiotics-A Research Hotspot for Pediatric Obesity. Microorganisms 2023; 11:2651. [PMID: 38004665 PMCID: PMC10672778 DOI: 10.3390/microorganisms11112651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Childhood obesity is a major public health problem worldwide with an increasing prevalence, associated not only with metabolic syndrome, insulin resistance, hypertension, dyslipidemia, and non-alcoholic fatty liver disease (NAFLD), but also with psychosocial problems. Gut microbiota is a new factor in childhood obesity, which can modulate the blood lipopolysaccharide levels, the satiety, and fat distribution, and can ensure additional calories to the host. The aim of this review was to assess the differences and the impact of the gut microbial composition on several obesity-related complications such as metabolic syndrome, NAFLD, or insulin resistance. Early dysbiosis was proven to be associated with an increased predisposition to obesity. Depending on the predominant species, the gut microbiota might have either a positive or negative impact on the development of obesity. Prebiotics, probiotics, and synbiotics were suggested to have a positive effect on improving the gut microbiota and reducing cardio-metabolic risk factors. The results of clinical trials regarding probiotic, prebiotic, and synbiotic administration in children with metabolic syndrome, NAFLD, and insulin resistance are controversial. Some of them (Lactobacillus rhamnosus bv-77, Lactobacillus salivarius, and Bifidobacterium animalis) were proven to reduce the body mass index in obese children, and also improve the blood lipid content; others (Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Enterococcus faecium, and fructo-oligosaccharides) failed in proving any effect on lipid parameters and glucose metabolism. Further studies are necessary for understanding the mechanism of the gut microbiota in childhood obesity and for developing low-cost effective strategies for its management.
Collapse
Affiliation(s)
- Reka Borka Balas
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Ancuța Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Vasile Valeriu Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| |
Collapse
|
5
|
Yang M, Wang JH, Shin JH, Lee D, Lee SN, Seo JG, Shin JH, Nam YD, Kim H, Sun X. Pharmaceutical efficacy of novel human-origin Faecalibacterium prausnitzii strains on high-fat-diet-induced obesity and associated metabolic disorders in mice. Front Endocrinol (Lausanne) 2023; 14:1220044. [PMID: 37711887 PMCID: PMC10497875 DOI: 10.3389/fendo.2023.1220044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Obesity and related metabolic issues are a growing global health concern. Recently, the discovery of new probiotics with anti-obesity properties has gained interest. METHODS In this study, four Faecalibacte-rium prausnitzii strains were isolated from healthy human feces and evaluated on a high-fat diet-induced mouse model for 12 weeks. RESULTS The F. prausnitzii strains reduced body weight gain, liver and fat weights, and calorie intake while improving lipid and glucose metabolism in the liver and adipose tissue, as evidenced by regulating lipid metabolism-associated gene expression, including ACC1, FAS, SREBP1c, leptin, and adiponectin. Moreover, the F. prausnitzii strains inhibited low-grade inflammation, restored gut integrity, and ameliorated hepatic function and insulin resistance. Interestingly, the F. prausnitzii strains modulated gut and neural hormone secretion and reduced appetite by affecting the gut-brain axis. Supplementation with F. prausnitzii strains noticeably changed the gut microbiota composition. DISCUSSION In summary, the novel isolated F. prausnitzii strains have therapeutic effects on obesity and associated metabolic disorders through modulation of the gut-brain axis. Additionally, the effectiveness of different strains might not be achieved through identical mechanisms. Therefore, the present findings provide a reliable clue for developing novel therapeutic probiotics against obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Meng Yang
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Joo-Hyun Shin
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea
| | - Xiaomin Sun
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Atazadegan MA, Heidari-Beni M, Entezari MH, Sharifianjazi F, Kelishadi R. Effects of synbiotic supplementation on anthropometric indices and body composition in overweight or obese children and adolescents: a randomized, double-blind, placebo-controlled clinical trial. World J Pediatr 2023; 19:356-365. [PMID: 36484872 PMCID: PMC9734986 DOI: 10.1007/s12519-022-00664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recently, beneficial effects of probiotics and/or prebiotics on cardio-metabolic risk factors in adults have been shown. However, existing evidence has not been fully established for pediatric age groups. This study aimed to assess the effect of synbiotic on anthropometric indices and body composition in overweight or obese children and adolescents. METHODS This randomized double-blind, placebo-controlled trial was conducted among 60 participants aged 8-18 years with a body mass index (BMI) equal to or higher than the 85th percentile. Participants were randomly divided into two groups that received either a synbiotic capsule containing 6 × 109 colony forming units (CFU) Lactobacillus coagulans SC-208, 6 × 109 CFU Lactobacillus indicus HU36 and fructooligosaccharide as a prebiotic (n = 30) or a placebo (n = 30) twice a day for eight weeks. Anthropometric indices and body composition were measured at baseline and after the intervention. RESULTS The mean (standard deviation, SD) age was 11.07 (2.00) years and 11.23 (2.37) years for the placebo and synbiotic groups, respectively (P = 0.770). The waist-height ratio (WHtR) decreased significantly at the end of the intervention in comparison with baseline in the synbiotic group (0.54 ± 0.05 vs. 0.55 ± 0.05, P = 0.05). No significant changes were demonstrated in other anthropometric indices or body composition between groups. CONCLUSIONS Synbiotic supplementation might be associated with a reduction in WHtR. There were no significant changes in other anthropometric indices or body composition.
Collapse
Affiliation(s)
- Mohammad Amin Atazadegan
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahar Heidari-Beni
- Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Hassan Entezari
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Zhao L, Shen Y, Wang Y, Wang L, Zhang L, Zhao Z, Li S. Lactobacillus plantarum S9 alleviates lipid profile, insulin resistance, and inflammation in high-fat diet-induced metabolic syndrome rats. Sci Rep 2022; 12:15490. [PMID: 36109620 PMCID: PMC9478128 DOI: 10.1038/s41598-022-19839-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Probiotics are considered to play an crucial role in the treatment of high-fat diet (HFD)-induced lipid metabolic diseases, including metabolic syndrome (MS). This study aimed to investigate the effects of Lactobacillus plantarum S9 on MS in HFD-fed rats, and to explore the underlying role of probiotics in the treatment of MS. Sprague-Dawley rats were fed with HFD for 8 weeks, followed by the treatment of L. plantarum S9 for 6 weeks, and The body weight and blood glucose level of rats were detected on time. The results showed that L. plantarum S9 significantly decreased the body weight gain, Lee’s index, and liver index. Additionally, L. plantarum S9 reduced the levels of serum lipids and insulin resistance. L. plantarum S9 also decreased the levels of alanine aminotransferase (ALT) and aspartate transaminase (AST) in liver. Moreover, the serum levels of MS-related inflammatory signaling molecules, including lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α), were significantly elevated. Western blot analysis showed that L. plantarum S9 inhibited the activation of nuclear factor-κB (NF-κB) pathway, decreased the expression level of Toll-like receptor 4 (TLR4), suppressed the activation of inflammatory signaling pathways, and reduced the expression levels of inflammatory factors in HFD-fed rats. Moreover, it further decreased the ratios of p-IκBα/IκBα, p-p65/NF-κB p65, and p-p38/p38. In summary, L. plantarum S9, as a potential functional strain, prevents or can prevent onset of MS.
Collapse
|
8
|
Abstract
The consumption of fructose as sugar and high-fructose corn syrup has markedly increased during the past several decades. This trend coincides with the exponential rise of metabolic diseases, including obesity, nonalcoholic fatty liver disease, cardiovascular disease, and diabetes. While the biochemical pathways of fructose metabolism were elucidated in the early 1990s, organismal-level fructose metabolism and its whole-body pathophysiological impacts have been only recently investigated. In this review, we discuss the history of fructose consumption, biochemical and molecular pathways involved in fructose metabolism in different organs and gut microbiota, the role of fructose in the pathogenesis of metabolic diseases, and the remaining questions to treat such diseases.
Collapse
Affiliation(s)
- Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Won-Suk Song
- Department of Biological Chemistry, University of California, Irvine, California, USA;,Institute of Bioengineering, Bio-MAX, Seoul National University, Seoul, South Korea
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, California, USA;,Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA,Center for Complex Biological Systems, University of California, Irvine, California, USA,Center for Epigenetics and Metabolism, University of California, Irvine, California, USA
| |
Collapse
|
9
|
Sumlu E, Bostancı A, Sadi G, Alçığır ME, Akar F. Lactobacillus plantarum improves lipogenesis and IRS-1/AKT/eNOS signalling pathway in the liver of high-fructose-fed rats. Arch Physiol Biochem 2022; 128:786-794. [PMID: 32067511 DOI: 10.1080/13813455.2020.1727527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the present study, we investigated the influence of Lactobacillus plantarum and Lactobacillus helveticus supplementation on lipogenesis, insulin signalling and glucose transporters in liver of high-fructose-fed rats. Fructose was given to the rats as a 20% solution in drinking water for 15 weeks. Lactobacillus plantarum and L. helveticus supplementations were performed by gastric gavage once a day during final 6 weeks. Dietary high-fructose increased hepatic weight, lipid accumulation and FASN expression as well as caused a significant reduction in IRS-1 expression, pAKT/total AKT and peNOS/total eNOS ratios, but an elevation in GLUT2 and GLUT5 mRNAs in the liver. Lactobacillus plantarum supplementation decreased hepatic weight, triglyceride content and FASN expression as well as improved IRS-1/AKT/eNOS pathway and GLUT2 expression in the liver of high-fructose-fed rats. However, L. helveticus supplementation exerted a restoring effect on lipid accumulation by decreasing FASN expression, and regulating effect on IRS-1 and GLUT2 expressions.
Collapse
Affiliation(s)
- Esra Sumlu
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Aykut Bostancı
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Gökhan Sadi
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Mehmet Eray Alçığır
- Department of Pathology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
Ekici Ö, Aslan E, Aladağ T, Güzel H, Korkmaz ÖA, Bostancı A, Sadi G, Pektaş MB. Masseter muscle and gingival tissue inflammatory response following treatment with high-fructose corn syrup in rats: Anti-inflammatory and antioxidant effects of kefir. J Food Biochem 2022; 46:e13732. [PMID: 33864286 DOI: 10.1111/jfbc.13732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
The aim of the study was to evaluate whether high-fructose corn syrup (HFCS) intake (20% beverages) impacts antioxidative structures and inflammation in the gingival tissue and masseter muscle of rats. Kefir was tested for its potential utility on changes induced by HFCS. Animals were randomly divided into four groups as control, kefir, HFCS, and HFCS plus kefir. HFCS was given as 20% solutions in drinking water while kefir supplementations were given by gastric gavage for 8 weeks. It has been clearly determined that the HFCS diet increased expressions of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α proinflammatory structures via lymphocyte infiltration by suppressing antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase in both tissues. Kefir improved these undesirable changes in rats fed with HFCS. The results of this current study, the first investigation to examine the effects of kefir on masseter muscle and gingival tissue, may provide new access to the restorative effects of kefir consumption on oral health disorders caused by high fructose in the diet. PRACTICAL APPLICATIONS: In this study, at an early age, the effects of kefir on improving inflammation via antioxidation in the masseter muscle and gingival tissue were investigated for the first time. We showed that kefir feeding ameliorates lymphocyte infiltration on the high-fructose corn syrup (HFCS)-induced masseter muscle and gingival tissue inflammation in rats. The mRNA expressions of inflammatory parameters measured in the study were supported by protein measurements via ELISA or immunohistochemistry. In the present study, kefir may play an important role in the antioxidation and inflammation process on the masseter muscle and gingival tissue against HFCS.
Collapse
Affiliation(s)
- Ömer Ekici
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Esra Aslan
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Tuğçe Aladağ
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hilal Güzel
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Ömer Adil Korkmaz
- Department of Chemistry, Faculty of Science, Yildiz Technical University, Istanbul, Turkey
| | - Aykut Bostancı
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Gökhan Sadi
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Mehmet Bilgehan Pektaş
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
11
|
Zhao H, Lu Z, Lu Y. The potential of probiotics in the amelioration of hyperuricemia. Food Funct 2022; 13:2394-2414. [PMID: 35156670 DOI: 10.1039/d1fo03206b] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyperuricemia is a common disease caused by metabolic disorders or the excessive intake of high-purine foods. Persistent hyperuricemia in extreme cases induces gout, and asymptomatic hyperuricemia is probably linked to other metabolic diseases, such as hypertension. The typical damage caused by asymptomatic hyperuricemia includes inflammation, oxidative stress and gut dysbiosis. Probiotics have broad potential applications as food additives, not as drug therapies, in the amelioration of hyperuricemia. In this review, we describe novel methods for potential hyperuricemia amelioration with probiotics. The pathways through which probiotics may ameliorate hyperuricemia are discussed, including the decrease in uric acid production through purine assimilation and XOD (xanthine oxidase) inhibition as well as enhanced excretion of uric acid production by promoting ABCG2 (ATP binding cassette subfamily G member 2) activity, respectively. Three possible probiotic-related therapeutic pathways for alleviating the syndrome of hyperuricemia are also summarized. The first mechanism is to alleviate the oxidation and inflammation induced by hyperuricemia through the inhibition of NLRP3 inflammasome, the second is to restore damaged intestinal epithelium barriers and prevent gut microbiota dysbiosis, and the third is to enhance the innate immune system by increasing the secretion of immunoglobulin A (sIgA) to resist the stimulus by hyperuricemia. We propose that future research should focus on superior strain resource isolation and insight into the cause-effect mechanisms of probiotics for hyperuricemia amelioration. The safety and effects of the application of probiotics in clinical use also need verification.
Collapse
Affiliation(s)
- Hongyuan Zhao
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhaoxin Lu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
12
|
Smirne C, Croce E, Di Benedetto D, Cantaluppi V, Comi C, Sainaghi PP, Minisini R, Grossini E, Pirisi M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. LIVERS 2022; 2:30-76. [DOI: 10.3390/livers2010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it still remains an orphan of adequate therapies. This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive oxygen species generators, including those produced in the gastrointestinal tract, contribute to the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the physiological antioxidant response. Therefore, modulation of this defense system emerges as an interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics, diet, and fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual genetic and epigenetic factors as well. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers, will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further personalizing treatments.
Collapse
Affiliation(s)
- Carlo Smirne
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Eleonora Croce
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Davide Di Benedetto
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Elena Grossini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
13
|
van Laar A, Grootaert C, Van Nieuwerburgh F, Deforce D, Desmet T, Beerens K, Van Camp J. Metabolism and Health Effects of Rare Sugars in a CACO-2/HepG2 Coculture Model. Nutrients 2022; 14:nu14030611. [PMID: 35276968 PMCID: PMC8839664 DOI: 10.3390/nu14030611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide and is impacted by an unhealthy diet with excessive calories, although the role of sugars in NAFLD etiology remains largely unexplored. Rare sugars are natural sugars with alternative monomers and glycosidic bonds, which have attracted attention as sugar replacers due to developments in enzyme engineering and hence an increased availability. We studied the impact of (rare) sugars on energy production, liver cell physiology and gene expression in human intestinal colorectal adenocarcinoma (Caco-2) cells, hepatoma G2 (HepG2) liver cells and a coculture model with these cells. Fat accumulation was investigated in the presence of an oleic/palmitic acid mixture. Glucose, fructose and galactose, but not mannose, l-arabinose, xylose and ribose enhanced hepatic fat accumulation in a HepG2 monoculture. In the coculture model, there was a non-significant trend (p = 0.08) towards higher (20–55% increased) median fat accumulation with maltose, kojibiose and nigerose. In this coculture model, cellular energy production was increased by glucose, maltose, kojibiose and nigerose, but not by trehalose. Furthermore, glucose, fructose and l-arabinose affected gene expression in a sugar-specific way in coculture HepG2 cells. These findings indicate that sugars provide structure-specific effects on cellular energy production, hepatic fat accumulation and gene expression, suggesting a health potential for trehalose and l-arabinose, as well as a differential impact of sugars beyond the distinction of conventional and rare sugars.
Collapse
Affiliation(s)
- Amar van Laar
- Department of Food Technology, Safety & Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.v.L.); (C.G.)
| | - Charlotte Grootaert
- Department of Food Technology, Safety & Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.v.L.); (C.G.)
| | - Filip Van Nieuwerburgh
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Dieter Deforce
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (T.D.); (K.B.)
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (T.D.); (K.B.)
| | - John Van Camp
- Department of Food Technology, Safety & Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.v.L.); (C.G.)
- Correspondence:
| |
Collapse
|
14
|
Ding Q, Hao Q, Zhang Q, Yang Y, Olsen RE, Ringø E, Ran C, Zhang Z, Zhou Z. DHA Suppresses Hepatic Lipid Accumulation via Cyclin D1 in Zebrafish. Front Nutr 2022; 8:797510. [PMID: 35145984 PMCID: PMC8823328 DOI: 10.3389/fnut.2021.797510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
With the widespread use of high-fat diets (HFDs) in aquaculture, fatty livers are frequently observed in many fish species. The aim of this study was to investigate if docosahexaenoic acid (DHA) could be used to reduce the fatty liver in zebrafish generated by a 16% soybean oil-HFD over 2 weeks of feeding. The DHA was added to iso-lipidic HFD at 0.5, 1.0, and 2.0% of diet. Supplementation of DHA reduced growth and feed efficiency in a dose dependent manner being lowest in the HFDHA2.0 group. Hepatic triglyceride (TG) in zebrafish fed 0.5% DHA-supplemented HFD (HFDHA0.5) was significantly lower than in the HFD control. Transcriptional analyses of hepatic genes showed that lipid synthesis was reduced, while fatty acid β-oxidation was increased in the HFDHA0.5 group. Furthermore, the expression of Cyclin D1 in liver of zebrafish fed HFDHA0.5 was significantly reduced compared to that in fish fed HFD. In zebrafish liver cells, Cyclin D1 knockdown and blocking of Cyclin D1-CDK4 signal led to inhibited lipid biosynthesis and elevated lipid β-oxidation. Besides, DHA-supplemented diet resulted in a rich of Proteobacteria and Actinobacteriota in gut microbiota, which promoted lipid β-oxidation but did not alter the expression of Cyclin D1 in germ-free zebrafish model. In conclusion, DHA not only inhibits hepatic lipid synthesis and promotes lipid β-oxidation via Cyclin D1 inhibition, but also facilitates lipid β-oxidation via gut microbiota. This study reveals the lipid-lowering effects of DHA and highlights the importance of fatty acid composition when formulating fish HFD.
Collapse
Affiliation(s)
- Qianwen Ding
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringø
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zhen Zhang
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Zhigang Zhou
| |
Collapse
|
15
|
The Role of Gut-Derived Lipopolysaccharides and the Intestinal Barrier in Fatty Liver Diseases. J Gastrointest Surg 2022; 26:671-683. [PMID: 34734369 PMCID: PMC8926958 DOI: 10.1007/s11605-021-05188-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepatosteatosis is the earliest stage in the pathogenesis of nonalcoholic fatty (NAFLD) and alcoholic liver disease (ALD). As NAFLD is affecting 10-24% of the general population and approximately 70% of obese patients, it carries a large economic burden and is becoming a major reason for liver transplantation worldwide. ALD is a major cause of morbidity and mortality causing 50% of liver cirrhosis and 10% of liver cancer related death. Increasing evidence has accumulated that gut-derived factors play a crucial role in the development and progression of chronic liver diseases. METHODS A selective literature search was conducted in Medline and PubMed, using the terms "nonalcoholic fatty liver disease," "alcoholic liver disease," "lipopolysaccharide," "gut barrier," and "microbiome." RESULTS Gut dysbiosis and gut barrier dysfunction both contribute to chronic liver disease by abnormal regulation of the gut-liver axis. Thereby, gut-derived lipopolysaccharides (LPS) are a key factor in inducing the inflammatory response of liver tissue. The review further underlines that endotoxemia is observed in both NAFLD and ALD patients. LPS plays an important role in conducting liver damage through the LPS-TLR4 signaling pathway. Treatments targeting the gut microbiome and the gut barrier such as fecal microbiota transplantation (FMT), probiotics, prebiotics, synbiotics, and intestinal alkaline phosphatase (IAP) represent potential treatment modalities for NAFLD and ALD. CONCLUSIONS The gut-liver axis plays an important role in the development of liver disease. Treatments targeting the gut microbiome and the gut barrier have shown beneficial effects in attenuating liver inflammation and need to be further investigated.
Collapse
|
16
|
Cheng WL, Li SJ, Lee TI, Lee TW, Chung CC, Kao YH, Chen YJ. Sugar Fructose Triggers Gut Dysbiosis and Metabolic Inflammation with Cardiac Arrhythmogenesis. Biomedicines 2021; 9:728. [PMID: 34201938 PMCID: PMC8301417 DOI: 10.3390/biomedicines9070728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fructose is a main dietary sugar involved in the excess sugar intake-mediated progression of cardiovascular diseases and cardiac arrhythmias. Chronic intake of fructose has been the focus on the possible contributor to the metabolic diseases and cardiac inflammation. Recently, the small intestine was identified to be a major organ in fructose metabolism. The overconsumption of fructose induces dysbiosis of the gut microbiota, which, in turn, increases intestinal permeability and activates host inflammation. Endotoxins and metabolites of the gut microbiota, such as lipopolysaccharide, trimethylamine N-oxide, and short-chain fatty acids, also influence the host inflammation and cardiac biofunctions. Thus, high-fructose diets cause heart-gut axis disorders that promote cardiac arrhythmia. Understanding how gut microbiota dysbiosis-mediated inflammation influences the pathogenesis of cardiac arrhythmia may provide mechanisms for cardiac arrhythmogenesis. This narrative review updates our current understanding of the roles of excessive intake of fructose on the heart-gut axis and proposes potential strategies for inflammation-associated cardiac vascular diseases.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (W.-L.C.); (S.-J.L.)
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
| | - Shao-Jung Li
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (W.-L.C.); (S.-J.L.)
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-I.L.); (T.-W.L.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-I.L.); (T.-W.L.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Cheng-Chih Chung
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yu-Hsun Kao
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yi-Jen Chen
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
17
|
Abdelhaffez AS, Abd El-Aziz EA, Tohamy MB, Ahmed AM. N-acetyl cysteine can blunt metabolic and cardiovascular effects via down-regulation of cardiotrophin-1 in rat model of fructose-induced metabolic syndrome. Arch Physiol Biochem 2021:1-16. [PMID: 33507837 DOI: 10.1080/13813455.2021.1876735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the ability of N-acetyl cysteine (NAC) to alleviate the metabolic disorders in fructose-induced metabolic syndrome (MS) in male rats and to examine its protective effect on aortic and cardiac tissues via its influence on cardiotrophin-1 (CT-1) expression. NAC (20 mg/kg b.w./day) was administered to fructose induced MS animals for 12 weeks. Chronic fructose consumption (20% w/v) increased body weight gain, relative heart weight, systolic blood pressure (SBP), diastolic blood pressure (DBP), insulin resistance (IR), and associated with metabolic alterations. Histological and immunohistochemical examination revealed aortic stiffness and myocardial degeneration and fibrosis together with increased CT-1 expression. Treatment with NAC improved IR, SBP, DBP, and mitigated dyslipidaemia and oxidative stress. Additionally, NAC down-regulated CT-1 expression in the heart and aorta. These findings demonstrated the protective effect of NAC against aortic and myocardial degeneration and fibrosis through down-regulation of CT-1 in fructose induced MS animal model.
Collapse
Affiliation(s)
- Azza S Abdelhaffez
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Ebtihal A Abd El-Aziz
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Maha B Tohamy
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Asmaa M Ahmed
- Faculty of Medicine, Department of Pathology, Assiut University, Assiut, Egypt
| |
Collapse
|
18
|
The effects of curcumin and Lactobacillus acidophilus on certain hormones and insulin resistance in rats with metabolic syndrome. J Diabetes Metab Disord 2020; 19:907-914. [PMID: 33553015 DOI: 10.1007/s40200-020-00578-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
Purpose In this study, we tried to investigate the effects of curcumin and Lactobacillus acidophilus probiotics, given individually and in combination, to insulin, adipokines and nitric oxide changes and insulin resistance as experimental treatment of metabolic syndrome. Methods Five groups were formed in the study. Fructose (20%) was administered with drinking water for 8 weeks to develop metabolic syndrome. For treatment, curcumin (100 mg/kg/day) and L. acidophilus (2 × 108 cfu/ml/day) were given individually or in combination for the last four weeks. At the end of the experiment; insulin, resistin, leptin, adipokines, apelin and nitric oxide levels were determined by ELISA test kits. Total cholesterol, triglyceride, glucose, albumin and total protein levels were determined by autoanalyzer. Results The levels of apelin, resistin, glucose, total cholesterol and triglyceride increased significantly (P < 0.05) in the fructose added to drinking water groups whereas curcumin and L. acidophilus probiotics given individually or together groups for treatment started to decrease and the nitric oxide level decreased significantly. Insulin resistance was found to be significantly higher in the group with metabolic syndrome and insulin resistance developed. In the curcumin and probiotics given group, it was determined that the insulin resistance score was lowered compared to the group only given fructose. The administration of L. acidophilus probiotic and curcumin in rats with metabolic syndrome caused by fructose improves hormone levels and reduces insulin resistance. Conclusions These results showed that the addition of dietary curcumin as an antioxidant and probiotic could provide a natural alternative for the treatment of metabolic syndrome induced by fructose.
Collapse
|
19
|
Hussain A, Kwon MH, Kim HK, Lee HS, Cho JS, Lee YI. Anti-Obesity Effect of Lactobacillus plantarum LB818 Is Associated with Regulation of Gut Microbiota in High-Fat Diet-Fed Obese Mice. J Med Food 2020; 23:750-759. [DOI: 10.1089/jmf.2019.4627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Patil M, Jadhav A, Patil U. Functional characterization and in vitro screening of Fructobacillus fructosus MCC 3996 isolated from Butea monosperma flower for probiotic potential. Lett Appl Microbiol 2020; 70:331-339. [PMID: 32003005 DOI: 10.1111/lam.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/15/2023]
Abstract
The fructophilic bacterium Fructobacillus fructosus MCC 3996 described in the present investigation was isolated from the nectar of Butea monosperma flower and evaluated in vitro for the manifestation of probiotic features. The strain utilizes fructose faster than glucose and is capable to grow in the range of 1-35% fructose concentration (optimum 5% w/v) and thus denotes its fructophilic nature. In vitro assessments of the strain have examined for the endurance in acidic environment/gastric juice, the better auto-aggregation ability even in the presence of hydrolytic enzymes, co-aggregation with pathogenic bacteria, hydrophobicity properties and no haemolytic activity to elucidate its feasible probiotic use. The significant antagonistic activity against several detrimental bacteria, despite lacking the bacteriocin secretion, is an astonishing feature. Owing to the indigenous origin of the isolate, it could be used as a probiotic, starter culture, and/or the active ingredient of food formulation may contribute to improve the desirable fermentation, long-term storage and nutritional benefits of foods especially rich in fructose. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provided in vitro evidence that Fructobacillus fructosus MCC 3996 have endurance in acidic gastric juice, better co-aggregation, auto-aggregation properties, splendid antagonistic activities against several bacteria involved in food spoilage/human infections, pertinent antibiotic susceptibility profile and no haemolytic activity. Also, F. fructosus have the capability to survive in the appreciable amount of fructose, and this advocates that the strain could be used as starter culture and/or the active ingredient of fructose-rich foods. The current in vitro study provided a strong basis for further in vivo research to identify the health beneficial characteristics of F. fructosus and its potential could be effectively utilized as health-boosting ingredient in food and pharmaceutical industries.
Collapse
Affiliation(s)
- M Patil
- Department of Microbiology, R. C. Patel Arts, Commerce and Science College, Shirpur, India
| | - A Jadhav
- Department of Microbiology, Government Institute of Science, Aurangabad, India
| | - U Patil
- Department of Microbiology, Government Institute of Science, Aurangabad, India
| |
Collapse
|
21
|
Russo M, Marquez A, Herrera H, Abeijon-Mukdsi C, Saavedra L, Hebert E, Gauffin-Cano P, Medina R. Oral administration of Lactobacillus fermentum CRL1446 improves biomarkers of metabolic syndrome in mice fed a high-fat diet supplemented with wheat bran. Food Funct 2020; 11:3879-3894. [DOI: 10.1039/d0fo00730g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work evaluated the effect of oral administration of Lactobacillus fermentum CRL1446, feruloyl esterase producing, on metabolic biomarkers and intestinal microbiota of high fat diet-induced metabolic syndrome mice and supplemented with wheat bran.
Collapse
Affiliation(s)
- M. Russo
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
| | - A. Marquez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
| | - H. Herrera
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
- San Miguel de Tucumán
- Argentina
| | - C. Abeijon-Mukdsi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
| | - L. Saavedra
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
| | - E. Hebert
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
| | - P. Gauffin-Cano
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
| | - R. Medina
- Centro de Referencia para Lactobacilos (CERELA)-CONICET
- San Miguel de Tucumán
- Argentina
- Facultad de Agronomía y Zootecnia
- Universidad Nacional de Tucumán
| |
Collapse
|
22
|
Oh HYP, Visvalingam V, Wahli W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology. FASEB J 2019; 33:9706-9730. [PMID: 31237779 DOI: 10.1096/fj.201802681rr] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gut is colonized by commensal microorganisms, predominately bacteria that have coevolved in symbiosis with their host. The gut microbiota has been extensively studied in recent years, and many important findings on how it can regulate host metabolism have been unraveled. In healthy individuals, feeding timing and type of food can influence not only the composition but also the circadian oscillation of the gut microbiota. Host feeding habits thus influence the type of microbe-derived metabolites produced and their concentrations throughout the day. These microbe-derived metabolites influence many aspects of host physiology, including energy metabolism and circadian rhythm. Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-activated transcription factors that regulate various metabolic processes such as fatty acid metabolism. Similar to the gut microbiota, PPAR expression in various organs oscillates diurnally, and studies have shown that the gut microbiota can influence PPAR activities in various metabolic organs. For example, short-chain fatty acids, the most abundant type of metabolites produced by anaerobic fermentation of dietary fibers by the gut microbiota, are PPAR agonists. In this review, we highlight how the gut microbiota can regulate PPARs in key metabolic organs, namely, in the intestines, liver, and muscle. Knowing that the gut microbiota impacts metabolism and is altered in individuals with metabolic diseases might allow treatment of these patients using noninvasive procedures such as gut microbiota manipulation.-Oh, H. Y. P., Visvalingam, V., Wahli, W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology.
Collapse
Affiliation(s)
- Hui Yun Penny Oh
- Interdisciplinary Graduate School, Institute for Health Technologies, Nanyang Technological University, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Vivegan Visvalingam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Unité Mixte de Recherche (UMR) 1331, Institut National de la Recherche Agronomique (INRA)-ToxAlim, Toulouse, France.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Effects of Lactobacillus Plantarum and Lactobacillus Helveticus on Renal Insulin Signaling, Inflammatory Markers, and Glucose Transporters in High-Fructose-Fed Rats. ACTA ACUST UNITED AC 2019; 55:medicina55050207. [PMID: 31137715 PMCID: PMC6572085 DOI: 10.3390/medicina55050207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 11/17/2022]
Abstract
Background and Objectives: The excess consumption of fructose in the diet may cause metabolic syndrome, which is associated with an increased risk of kidney disease. There is limited data on probiotic treatment in high-fructose-induced metabolic syndrome. The present study aims to investigate whether the supplementation of Lactobacillus plantarum (L. plantarum) and Lactobacillus helveticus (L. helveticus) could provide an improving effect on the renal insulin signaling effectors, inflammatory parameters, and glucose transporters in fructose-fed rats. Materials and Methods: The model of metabolic syndrome in male Wistar rats was produced by fructose, which was given as 20% solution in drinking water for 15 weeks. L. plantarum and L. helveticus supplementations were given by gastric gavage from 10 to 15 weeks of age. Results: High-fructose consumption in rats reduced renal protein expressions of insulin receptor substrate (IRS)-1, protein kinase B (AKT), and endothelial nitric oxide synthase (eNOS), which were improved by L. plantarum and partially by L. helveticus supplementations. Dietary fructose-induced elevations in renal tissue levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and IL-10, as well as expression of IL-6 mRNA, were attenuated, especially in L. plantarum treated rats. The increased renal expression of sodium-glucose cotransporter-2 (SGLT2), but not that of glucose transporter type-5 (GLUT5), was suppressed by the treatment with L. plantarum. Conclusion: Suppression in insulin signaling pathway together with the induction of inflammatory markers and upregulation of SGLT2 in fructose-fed rats were improved by L. plantarum supplementation. These findings may offer a new approach to the management of renal dysregulation induced by dietary high-fructose.
Collapse
|
24
|
Ejtahed HS, Angoorani P, Soroush AR, Atlasi R, Hasani-Ranjbar S, Mortazavian AM, Larijani B. Probiotics supplementation for the obesity management; A systematic review of animal studies and clinical trials. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
25
|
Wang H, Mei L, Deng Y, Liu Y, Wei X, Liu M, Zhou J, Ma H, Zheng P, Yuan J, Li M. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis. Nutrition 2018; 62:63-73. [PMID: 30852460 DOI: 10.1016/j.nut.2018.11.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/02/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE High fructose consumption exacerbates purine degradation and intestinal dysbiosis, which are closely related to the development of hyperuricemia. Probiotics are powerful weapons to combat metabolic disturbance and intestinal dysbiosis. Previously we isolated a Lactobacillus strain named DM9218 that could reduce the serum uric acid (UA) level by assimilating purine nucleosides. The present study aimed to evaluate the effects of DM9218 on high-fructose-induced hyperuricemia and to elucidate the underlying mechanisms. METHODS Mice were fed a normal diet, a high-fructose diet, or high-fructose diet with DM9218. Metabolic parameters, fructose- and UA-related metabolites, and fecal microbiota were investigated. Whole-genome sequencing of strain DM9218 was also conducted. In addition, an inosine hydrolase from DM9218 was heterologously expressed in Escherichia coli, and its inosine-degrading activity was detected. RESULTS Our results indicated that DM9218 could decrease serum UA level and hepatic xanthine oxidase activity in fructose-fed mice. It could protect against high-fructose-induced liver damage and retard UA accumulation by degrading inosine. The modulation effect of DM9218 on high-fructose-induced intestinal dysbiosis resulted in enhancement of intestinal barrier function and reduction of liver lipopolysaccharide, which was closely correlated with the down-regulation of inflammatory cytokine-stimulated xanthine oxidase expression and activity. CONCLUSIONS Lactobacillus brevis DM9218 is a probiotic strain with the potential to ameliorate fructose-induced hyperuricemia.
Collapse
Affiliation(s)
- Haina Wang
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Second Hospital of Dalian Medical University, Dalian, China; Center for molecular medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Lu Mei
- Department of Gastroenterology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Deng
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yinhui Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaoqing Wei
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Man Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiaorui Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hong Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Pengyuan Zheng
- Department of Gastroenterology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jieli Yuan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
26
|
Sun W, Guo Y, Zhang S, Chen Z, Wu K, Liu Q, Liu K, Wen L, Wei Y, Wang B, Chen D. Fecal Microbiota Transplantation Can Alleviate Gastrointestinal Transit in Rats with High-Fat Diet-Induced Obesity via Regulation of Serotonin Biosynthesis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8308671. [PMID: 30370307 PMCID: PMC6189652 DOI: 10.1155/2018/8308671] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/09/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
AIM We tested the hypothesis that fecal microbiota transplantation (FMT) could regulate the biotransformation of bile acids, such as deoxycholic acid (DCA) and cholic acid (CA), which in turn regulate the biosynthesis of serotonin in the gut and relieve gastrointestinal dysmotility in high-fat diet- (HFD-) induced obesity in rats. METHODS Male Sprague-Dawley rats were randomly divided into the control diet group, HFD group, and HFD-fed with receiving FMT. HFD was fed for 12 weeks. At the end of two-week HFD, FMT was carried out for two weeks. The gastrointestinal transit, serotonin concentration, the expression of tryptophan hydroxylase 1 (TPH1) and serotonin reuptake transporter (SERT), and the levels of bile acids in intestinal contents were examined. RESULTS Compared with the control group, the gastrointestinal transit and small intestinal serotonin concentration of HFD-fed rats were increased. In HFD-fed rats, TPH1 protein expression was increased significantly, while SERT protein expression was decreased, but not significant. The levels of CA and DCA in intestinal contents were also significantly increased in HFD-fed rats compared with the control group. After HFD-fed rats receiving FMT treatment, the gastrointestinal transit, small intestinal serotonin concentration, and TPH1 expression were decreased, while SERT expression was not affected. Moreover, the levels of CA and DCA in intestinal contents were also decreased. CONCLUSIONS FMT could alleviate small intestinal transit in the HFD-fed rats by regulating the serotonin biosynthesis. In this process, CA and DCA may be related to the regulation of synthesis of serotonin.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Gastroenterology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yan Guo
- Department of Gastroenterology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shirong Zhang
- Department of Gastroenterology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhihui Chen
- Department of Gastroenterology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Kangqi Wu
- Department of Gastroenterology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qin Liu
- Department of Gastroenterology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Kaijun Liu
- Department of Gastroenterology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Liangzhi Wen
- Department of Gastroenterology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yanling Wei
- Department of Gastroenterology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Bin Wang
- Department of Gastroenterology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Dongfeng Chen
- Department of Gastroenterology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
27
|
Morshedi M, Valenlia KB, Hosseinifard ES, Shahabi P, Abbasi MM, Ghorbani M, Barzegari A, Sadigh-Eteghad S, Saghafi-Asl M. Beneficial psychological effects of novel psychobiotics in diabetic rats: the interaction among the gut, blood and amygdala. J Nutr Biochem 2018; 57:145-152. [PMID: 29730508 DOI: 10.1016/j.jnutbio.2018.03.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) can lead to major complications such as psychiatric disorders which include depressive and anxiety-like behaviors. The association of the gut-brain axis in the development of such disorders, especially in T2DM, has been elucidated; however, gut dysbiosis is also reported in patients with T2DM. Hence, the regulation of the gut-brain axis, in particular, the gut-amygdala, as a vital region for the regulation of behavior is essential. Thirty-five male Wistar rats were divided into six groups. To induce T2DM, treatment groups received high-fat diet and 35 mg/kg streptozotocin. Then, supplements of Lactobacillus plantarum, inulin or their combination were administered to each group for 8 weeks. Finally, the rats were sacrificed for measurement of blood and tissue parameters after behavioral testing. The findings demonstrated the favorable effects of the psychobiotics (L. plantarum, inulin or their combination) on oxidative markers of the blood and amygdala (superoxide dismutase, glutathione peroxidase, malondialdehyde and total antioxidant capacity), as well as on concentrations of amygdala serotonin and brain-derived neurotrophic factor, in the diabetic rats. In addition, beneficial effects were observed on the elevated plus maze and forced swimming tests with no change in locomotor activity of the rats. There was a strong correlation between the blood and amygdala oxidative markers, insulin and fasting blood sugar with depressive and anxiety-like behaviors. Our results identified L. plantarum ATCC 8014 and inulin or their combination as novel psychobiotics that could improve the systemic and nervous antioxidant status and improve amygdala performance and beneficial psychotropic effects.
Collapse
Affiliation(s)
- Mohammad Morshedi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Bavafa Valenlia
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Sadat Hosseinifard
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz, Iran
| | | | - Meysam Ghorbani
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz, Iran; Department of Biochemistry and Diet Therapy, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Athari Nik Azm S, Djazayeri A, Safa M, Azami K, Djalali M, Sharifzadeh M, Vafa M. Probiotics improve insulin resistance status in an experimental model of Alzheimer's disease. Med J Islam Repub Iran 2017; 31:103. [PMID: 29951404 PMCID: PMC6014785 DOI: 10.14196/mjiri.31.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Nowadays, Alzheimer's disease (AD) is considered as Type 3 diabetes in which insulin resistance is the common cause of both diseases. Disruption of insulin signaling cascade and insulin resistance can induce AD; and central insulin resistance causes systemic alterations in serum insulin, FBS levels, and lipid profile. Studies have shown that probiotics (Lactobacillus and Bifidobacterium species) can be used as a nutritional approach to improve these metabolic changes. We assessed the probiotic effect (4 species of Lactobacillus and Bifidobacterium) on insulin resistance biomarkers in an experimental model of AD. Methods: A total of 60 rats were divided into 5 groups: (1) a control group without surgical and dietary intervention; (2) a controlprobiotics group receiving probiotics for 8 weeks, but not receiving any surgical intervention; (3) a group receiving a sham operation in which PBS was injected intrahippocampus but without dietary intervention; (4) an Alzheimer group for which Amyloid-ß (Aß) 1- 42 was injected intrahippocampus but without dietary intervention; (5) and an Alzheimer-probiotics group for which Aß1-42 was injected intrahippocampus and given 2g probiotics for 8 weeks. The FBS levels and lipid profile were measured by a calorimetric method, insulin levels were detected by an ELISA kit, and HOMA-IR was calculated using a formula. ANOVA (one way analysis of variance followed by Bonferroni comparisons post hoc) was used to compare all the variables between groups. Results: Serum glucose, insulin levels, and HOMA-IR index increased in the Alzheimer group compared to the control (p<0.001), while probiotics decreased only insulin level and HOMA-IR index in AP group compared to Alzheimer group (p<0.001). Also, TG levels increased in the Alzheimer group (p<0.001), but no significant difference was detected between Alzheimer and Alzheimerprobiotics group. Conclusion: It seems that probiotics play an effective role in controlling glycemic status of Alzheimer's disease.
Collapse
Affiliation(s)
- Somayeh Athari Nik Azm
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghassem Djazayeri
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Cellular and Molecular Research Center and Hematology Department, School of Allied Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Kian Azami
- Department of Pharmacology, Pharmaceutical Science Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular-Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Pilar B, Güllich A, Oliveira P, Ströher D, Piccoli J, Manfredini V. Protective Role of Flaxseed Oil and Flaxseed Lignan Secoisolariciresinol Diglucoside Against Oxidative Stress in Rats with Metabolic Syndrome. J Food Sci 2017; 82:3029-3036. [DOI: 10.1111/1750-3841.13964] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Bruna Pilar
- Postgraduate Program in Biochemistry; Federal Univ. of Pampa; Uruguaiana, Rio Grande do Sul Brazil
| | - Angélica Güllich
- Postgraduate Program in Biochemistry; Federal Univ. of Pampa; Uruguaiana, Rio Grande do Sul Brazil
| | - Patrícia Oliveira
- Postgraduate Program in Biochemistry; Federal Univ. of Pampa; Uruguaiana, Rio Grande do Sul Brazil
| | - Deise Ströher
- Postgraduate Program in Biochemistry; Federal Univ. of Pampa; Uruguaiana, Rio Grande do Sul Brazil
| | - Jacqueline Piccoli
- Postgraduate Program in Pharmaceutical Sciences; Federal Univ. of Pampa; Uruguaiana, Rio Grande do Sul Brazil
| | - Vanusa Manfredini
- Postgraduate Program in Biochemistry; Federal Univ. of Pampa; Uruguaiana, Rio Grande do Sul Brazil
| |
Collapse
|
30
|
Lambertz J, Weiskirchen S, Landert S, Weiskirchen R. Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease. Front Immunol 2017; 8:1159. [PMID: 28970836 PMCID: PMC5609573 DOI: 10.3389/fimmu.2017.01159] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Fructose is one of the key dietary catalysts in the development of non-alcoholic fatty liver disease (NAFLD). NAFLD comprises a complex disease spectrum, including steatosis (fatty liver), non-alcoholic steatohepatitis, hepatocyte injury, inflammation, and fibrosis. It is also the hepatic manifestation of the metabolic syndrome, which covers abdominal obesity, insulin resistance, dyslipidemia, glucose intolerance, or type 2 diabetes mellitus. Commensal bacteria modulate the host immune system, protect against exogenous pathogens, and are gatekeepers in intestinal barrier function and maturation. Dysbalanced intestinal microbiota composition influences a variety of NAFLD-associated clinical conditions. Conversely, nutritional supplementation with probiotics and preobiotics impacting composition of gut microbiota can improve the outcome of NAFLD. In crosstalk with the host immune system, the gut microbiota is able to modulate inflammation, insulin resistance, and intestinal permeability. Moreover, the composition of microbiota of an individual is a kind of fingerprint highly influenced by diet. In addition, not only the microbiota itself but also its metabolites influence the metabolism and host immune system. The gut microbiota can produce vitamins and a variety of nutrients including short-chain fatty acids. Holding a healthy balance of the microbiota is therefore highly important. In the present review, we discuss the impact of long-term intake of fructose on the composition of the intestinal microbiota and its biological consequences in regard to liver homeostasis and disease. In particular, we will refer about fructose-induced alterations of the tight junction proteins affecting the gut permeability, leading to the translocation of bacteria and bacterial endotoxins into the blood circulation.
Collapse
Affiliation(s)
- Jessica Lambertz
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Silvano Landert
- Culture Collection of Switzerland AG (CCOS), Wädenswil, Switzerland
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
31
|
Probiotic Characteristics of Lactobacillus curvatus DN317, a Strain Isolated from Chicken Ceca. Probiotics Antimicrob Proteins 2017; 9:415-424. [DOI: 10.1007/s12602-017-9301-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Steenson S, Umpleby AM, Lovegrove JA, Jackson KG, Fielding BA. Role of the Enterocyte in Fructose-Induced Hypertriglyceridaemia. Nutrients 2017; 9:nu9040349. [PMID: 28368310 PMCID: PMC5409688 DOI: 10.3390/nu9040349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 01/12/2023] Open
Abstract
Dietary fructose has been linked to an increased post-prandial triglyceride (TG) level; which is an established independent risk factor for cardiovascular disease. Although much research has focused on the effects of fructose consumption on liver-derived very-low density lipoprotein (VLDL); emerging evidence also suggests that fructose may raise post-prandial TG levels by affecting the metabolism of enterocytes of the small intestine. Enterocytes have become well recognised for their ability to transiently store lipids following a meal and to thus control post-prandial TG levels according to the rate of chylomicron (CM) lipoprotein synthesis and secretion. The influence of fructose consumption on several aspects of enterocyte lipid metabolism are discussed; including de novo lipogenesis; apolipoprotein B48 and CM-TG production; based on the findings of animal and human isotopic tracer studies. Methodological issues affecting the interpretation of fructose studies conducted to date are highlighted; including the accurate separation of CM and VLDL. Although the available evidence to date is limited; disruption of enterocyte lipid metabolism may make a meaningful contribution to the hypertriglyceridaemia often associated with fructose consumption.
Collapse
Affiliation(s)
- Simon Steenson
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - A Margot Umpleby
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
| | - Julie A Lovegrove
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - Kim G Jackson
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
| |
Collapse
|
33
|
Rodriguez-Castaño GP, Caro-Quintero A, Reyes A, Lizcano F. Advances in Gut Microbiome Research, Opening New Strategies to Cope with a Western Lifestyle. Front Genet 2017; 7:224. [PMID: 28119734 PMCID: PMC5222858 DOI: 10.3389/fgene.2016.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
The "westernization" of global eating and lifestyle habits is associated with the growing rate of chronic diseases, mainly cardiovascular diseases, cancer, type 2 diabetes mellitus, and respiratory diseases. The primary prevention approach is to make nutritional and behavioral changes, however, there is another important determinant of our health that only recently has been considered and is the presence of beneficial microorganisms and their products in our gastrointestinal tract. Microorganisms living in our body can alter the fate of food, drugs, hormones, and xenobiotics, and recent studies point to the use of microorganisms that can counteract the harmful effects of certain compounds introduced or produced endogenously in our body. This review considers the effects of the western lifestyle on adiposity, glucose metabolism, oxidative markers and inflammation profile, emphasizes on the studies that have investigated bacterial strains and products of their metabolism that are beneficial under this lifestyle, and examines the screening strategies that recent studies are using to select the most promising probiotic isolates. In addition, we consider the relevance of studying the microbiota of metabolically healthy people under a western lifestyle for the understanding of the key components that delay the development of chronic diseases.
Collapse
Affiliation(s)
| | - Alejandro Caro-Quintero
- Corporación de Investigación Agropecuaria CORPOICA, Centro de Investigación Tibaitatá Mosquera, Colombia
| | - Alejandro Reyes
- Department of Biological Sciences, Universidad de los AndesBogotá, Colombia; Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of MedicineSt. Louis, MO, USA
| | - Fernando Lizcano
- Center of Biomedical Research, CIBUS, Universidad de La Sabana Chía, Colombia
| |
Collapse
|
34
|
Zhang F, Qiu L, Xu X, Liu Z, Zhan H, Tao X, Shah NP, Wei H. Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rats. J Dairy Sci 2016; 100:1618-1628. [PMID: 28041735 DOI: 10.3168/jds.2016-11870] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/23/2016] [Indexed: 01/04/2023]
Abstract
The aim of this study was to select probiotic Enterococcus strains that have the potential to improve metabolic syndrome (MS). Ten Enterococcus strains isolated from healthy infants were evaluated for their probiotic properties in vitro, and Enterococcus faecium WEFA23 was selected due to its cholesterol removal ability (1.89 ± 0.07 mg/1010 cfu), highest glycodeoxycholic acid-hydrolase activity (1.86 ± 0.01 U/mg), and strong adhesion capacity to Caco-2 cells (17.90 ± 0.19%). The safety of E. faecium WEFA23 was verified by acute oral administration in mice, and it was found to have no adverse effects on general health status, bacterial translocation, and gut mucosal histology. Moreover, the beneficial effects of E. faecium WEFA23 on high-fat diet-induced MS in rats were investigated, and we found WEFA23 significantly decreased body weight, serum lipid levels (total cholesterol, triacylglycerols, and low-density lipoprotein cholesterol), blood glucose level, and insulin resistance in rats fed with a high-fat diet. This indicated that administration of E. faecium WEFA23 improved almost all key markers of MS, including obesity, hyperlipidemia, hyperglycemia, and insulin resistance. Our results supported E. faecium WEFA23 as a candidate for cholesterol-lowering dairy products and improvement of MS. Our research provided novel insights on Enterococcus as a strategy to combat MS.
Collapse
Affiliation(s)
- Fen Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Liang Qiu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xiongpeng Xu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhengqi Liu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Hui Zhan
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xueying Tao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Hua Wei
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
35
|
Somabhai CA, Raghuvanshi R, Nareshkumar G. Genetically Engineered Escherichia coli Nissle 1917 Synbiotics Reduce Metabolic Effects Induced by Chronic Consumption of Dietary Fructose. PLoS One 2016; 11:e0164860. [PMID: 27760187 PMCID: PMC5070853 DOI: 10.1371/journal.pone.0164860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/03/2016] [Indexed: 01/24/2023] Open
Abstract
AIMS To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN) on metabolic effects induced by chronic consumption of dietary fructose. MATERIALS AND METHODS EcN was genetically modified with fructose dehydrogenase (fdh) gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK) gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150-200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq), EcN (pqq-glf-mtlK), EcN (pqq-fdh) was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ) production. RESULTS EcN (pqq-glf-mtlK), EcN (pqq-fdh) transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK) and EcN (pqq-fdh) showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA) demonstrated the prebiotic effects of mannitol and gluconic acid. CONCLUSIONS Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome.
Collapse
Affiliation(s)
- Chaudhari Archana Somabhai
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara-390002, India
| | - Ruma Raghuvanshi
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara-390002, India
| | - G. Nareshkumar
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara-390002, India
| |
Collapse
|
36
|
Shituleni SA, Gan F, Nido SA, Mengistu BM, Khan AZ, Liu Y, Huang K. Effects of yeast polysaccharide on biochemical indices, antioxidant status, histopathological lesions and genetic expressions related with lipid metabolism in mice fed with high fat diet. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bcdf.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Liu JP, Zou WL, Chen SJ, Wei HY, Yin YN, Zou YY, Lu FG. Effects of different diets on intestinal microbiota and nonalcoholic fatty liver disease development. World J Gastroenterol 2016; 22:7353-7364. [PMID: 27621581 PMCID: PMC4997650 DOI: 10.3748/wjg.v22.i32.7353] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/09/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To study the effects of different diets on intestinal microbiota and nonalcoholic fatty liver disease (NAFLD) development at the same caloric intake.
METHODS Thirty male Sprague-Dawley rats were randomized into five groups (six rats each). The control diet (CON) group and free high-fat diet (FFAT) group were allowed ad libitum access to a normal chow diet and a high-fat diet, respectively. The restrictive high-fat diet (RFAT) group, restrictive high-sugar diet (RSUG) group, and high-protein diet (PRO) group were fed a high-fat diet, a high-sugar diet, and a high-protein diet, respectively, in an isocaloric way. All rats were killed at 12 wk. Body weight, visceral fat index (visceral fat/body weight), liver index (liver/body weight), insulin resistance, portal lipopolysaccharide (LPS), serum alanine aminotransferase (ALT), serum aspartate aminotransferase (AST), and liver triglycerides were measured. The intestinal microbiota in the different groups of rats was sequenced using high-throughput sequencing technology.
RESULTS The FFAT group had higher body weight, visceral fat index, liver index, peripheral insulin resistance, portal LPS, serum ALT, serum AST, and liver triglycerides compared with all other groups (P < 0.05). Taking the same calories, the RFAT and RSUG groups demonstrated increased body weight, visceral fat index, peripheral insulin resistance and liver triglycerides compared with the PRO group (P < 0.05). The RFAT group also showed increased portal LPS compared with the PRO group (P < 0.05). Unweighted UniFrac principal coordinates analysis of the sequencing data revealed that the intestinal microbiota structures of the CON, FFAT, RSUG and PRO groups were roughly separated away from each other. Taxon-based analysis showed that, compared with the CON group, the FFAT group had an increased abundance of Firmicutes, Roseburia and Oscillospira bacteria, a higher ratio of Firmicutes to Bacteroidetes, and a decreased abundance of Bacteroidetes, Bacteroides and Parabacteroides bacteria (P < 0.05). The RFAT group showed an increased abundance of Firmicutes and decreased abundance of Parabacteroides bacteria (P < 0.05). The RSUG group showed an increased abundance of Bacteroidetes and Sutterella bacteria, higher ratio of Bacteroidetes to Firmicutes, and a decreased abundance of Firmicutes (P < 0.05). The PRO group showed an increased abundance of Bacteroidetes, Prevotella, Oscillospira and Sutterella bacteria, and a decreased abundance of Firmicutes (P < 0.05). Compared with the FFAT group, the RFAT group had an increased abundance of Bacteroidetes, higher ratio of Bacteroidetes to Firmicutes, and decreased abundance of Firmicutes and Oscillospira bacteria (P < 0.05).
CONCLUSION Compared with the high-protein diet, the NAFLD-inducing effects of high-fat and high-sugar diets are independent from calories, and may be associated with changed intestinal microbiota.
Collapse
|
38
|
Molecular analysis of the gut microbiome of diabetic rats supplemented with prebiotic, probiotic, and synbiotic foods. Int J Diabetes Dev Ctries 2016. [DOI: 10.1007/s13410-016-0502-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
39
|
Zeliger HI. Predicting disease onset in clinically healthy people. Interdiscip Toxicol 2016; 9:39-54. [PMID: 28652846 PMCID: PMC5458104 DOI: 10.1515/intox-2016-0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 11/17/2022] Open
Abstract
Virtually all human disease is induced by oxidative stress. Oxidative stress, which is caused by toxic environmental exposure, the presence of disease, lifestyle choices, stress, chronic inflammation or combinations of these, is responsible for most disease. Oxidative stress from all sources is additive and it is the total oxidative stress from all sources that induces the onset of most disease. Oxidative stress leads to lipid peroxidation, which in turn produces Malondialdehyde. Serum malondialdehyde level is an additive parameter resulting from all sources of oxidative stress and, therefore, is a reliable indicator of total oxidative stress which can be used to predict the onset of disease in clinically asymptomatic individuals and to suggest the need for treatment that can prevent much human disease.
Collapse
|
40
|
Jung S, Lee YJ, Kim M, Kim M, Kwak JH, Lee JW, Ahn YT, Sim JH, Lee JH. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduced body adiposity and Lp-PLA2 activity in overweight subjects. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
41
|
Balasubramanian H, Patole S. Early probiotics to prevent childhood metabolic syndrome: A systematic review. World J Methodol 2015; 5:157-163. [PMID: 26413489 PMCID: PMC4572029 DOI: 10.5662/wjm.v5.i3.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/05/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To conduct a systematic review of studies on early probiotic supplementation to prevent childhood metabolic syndrome (MS).
METHODS: Using the Cochrane systematic review strategy we searched PubMed, EMBASE, CENTRAL, CINAHL, and the conference proceedings of the Pediatric American Society meetings and trial registries in December 2014. Randomised controlled trials (RCTs) and non RCTs of probiotic supplementation to the mother and/or infant for a minimum duration of 4 wk were selected. Of these, studies that reported on MS or its components (obesity, raised blood pressure, hyperglycemia, dyslipidemia) in children between 2-19 years were to be eligible for inclusion in the review. Risk of bias (ROB) in selected RCTs and quality assessment of non-RCT studies were to be assessed by the Cochrane ROB assessment table and New Castle Ottawa scale.
RESULTS: There were no studies on early probiotic administration for prevention of childhood MS (CMS). Follow up studies of two placebo controlled RCTs (n = 233) reported on the effects of early probiotics on one or more components of MS in children aged 2-19 years. Meta-analysis of those two studies could not be performed due to differences in the patient population, type of outcomes studied and the timing of their assessment. Assessment of childhood metabolic outcomes was not the primary objective of these studies. The first study that assessed the effects of prenatal and postnatal supplementation of Lactobacillus rhamnosus GG on body mass index till 10 years, did not report a significant benefit. In the second study, Lactobacillus paracasei 19 was supplemented to healthy term infants from 4-13 mo. No significant effect on body mass index, body composition or metabolic markers was detected.
CONCLUSION: Current evidence on early probiotic administration to prevent CMS is inadequate. Gaps in knowledge need to be addressed before large RCTs can be planned.
Collapse
|
42
|
Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduces fasting triglycerides and enhances apolipoprotein A-V levels in non-diabetic subjects with hypertriglyceridemia. Atherosclerosis 2015; 241:649-56. [DOI: 10.1016/j.atherosclerosis.2015.06.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
|
43
|
Ahn HY, Kim M, Ahn YT, Sim JH, Choi ID, Lee SH, Lee JH. The triglyceride-lowering effect of supplementation with dual probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032: Reduction of fasting plasma lysophosphatidylcholines in nondiabetic and hypertriglyceridemic subjects. Nutr Metab Cardiovasc Dis 2015; 25:724-733. [PMID: 26044516 DOI: 10.1016/j.numecd.2015.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS This study evaluated the triglyceride (TG)-lowering effects of consuming dual probiotic strains of Lactobacillus curvatus (L. curvatus) HY7601 and Lactobacillus plantarum (L. plantarum) KY1032 on the fasting plasma metabolome. METHODS AND RESULTS A randomized, double-blind, placebo-controlled study was conducted on 92 participants with hypertriglyceridemia but without diabetes. Over a 12-week testing period, the probiotic group consumed 2 g of powder containing 5 × 10(9) colony-forming units (cfu) of L. curvatus HY7601 and 5 × 10(9) cfu of L. plantarum KY1032 each day, whereas the placebo group consumed the same product without probiotics. Fasting plasma metabolomes were profiled using UPLC-LTQ-Orbitrap MS. After 12 weeks of treatment, the probiotic group displayed a 20% reduction (p = 0.001) in serum TGs and 25% increases (p=0.001) in apolipoprotein A-V (apoA-V). At the 12-week follow-up assessment, the following 11 plasma metabolites were significantly reduced in the probiotic group than the placebo group: palmitoleamide, palmitic amide, oleamide, and lysophosphatidyl choline (lysoPC) containing C14:0, C16:1, C16:0, C17:0, C18:3, C18:2, C18:1, and C20:3. In the probiotic group, changes (▵) in TG were negatively correlated with ▵ apoA-V, which was positively correlated with ▵ FFA. In addition, ▵ FFA was strongly and positively correlated with ▵ lysoPCs in the probiotic group but not the placebo group. CONCLUSIONS The triglyceride-lowering effects of probiotic supplementation, partly through elevated apoA-V, in borderline to moderate hypertriglyceridemic subjects showed reductions in plasma metabolites, fatty acid primary amides and lysoPCs (NCT02215694; http://www.clinicaltrials.gov). Clinical trials: NCT02215694; http://www.clinicaltrials.gov.
Collapse
Affiliation(s)
- H Y Ahn
- Interdisciplinary Course of Science for Aging, Yonsei University, Seoul, South Korea
| | - M Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, South Korea
| | - Y-T Ahn
- Korea Yakult Co., Ltd., Yongin, Gyeonggi, South Korea
| | - J-H Sim
- Korea Yakult Co., Ltd., Yongin, Gyeonggi, South Korea
| | - I-D Choi
- Korea Yakult Co., Ltd., Yongin, Gyeonggi, South Korea
| | - S-H Lee
- Department of Family Practice, National Health Insurance Corporation Ilsan Hospital, Goyang, South Korea
| | - J H Lee
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, South Korea; National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, South Korea; Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
44
|
Thomas S, Senthilkumar GP, Sivaraman K, Bobby Z, Paneerselvam S, Harichandrakumar KT. Effect of s-methyl-L-cysteine on oxidative stress, inflammation and insulin resistance in male wistar rats fed with high fructose diet. IRANIAN JOURNAL OF MEDICAL SCIENCES 2015; 40:45-50. [PMID: 25650289 PMCID: PMC4300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/27/2013] [Accepted: 06/09/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND S-methyl cysteine (SMC) is a hydrophilic cysteine-containing compound naturally found in garlic and onion. The purpose of the present study was to investigate the protective effect of SMC on oxidative stress, inflammation and insulin resistance in an experiment of metabolic syndrome. METHODS Male Wistar rats were divided into five groups (6 rats in each group), namely; control, control+S-methyl cysteine (SMC), high fructose diet (HFD), HFD+SMC and HFD+metformin. The 60% fructose used for 8 weeks and SMC in the dose of 100 mg/kg bw/day/rat was used in the study. The fasting glucose, insulin, insulin resistance, and tumor necrosis factor alpha and erythrocyte enzymatic antioxidants were measured. RESULTS Increased levels of plasma glucose, insulin, malondialdehyde, tumor necrosis factor-alpha, and insulin resistance and decreased levels of glutathione, glutathione peroxidase, and catalase were found in rats on a high fructose diet. Oral administration of SMC (100 mg/kg bw/day/rat) for 60 days resulted in significant attenuation of plasma glucose, insulin, tumor necrosis factor-alpha, insulin resistance and improved antioxidant enzyme activities. CONCLUSION Oral treatment of SMC is effective in improving insulin resistance while attenuating metabolic syndrome, inflammation, and oxidative stress in male rats fed with fructose rich diet.
Collapse
Affiliation(s)
- Sithara Thomas
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Kuppuswamy Sivaraman
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sankar Paneerselvam
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Kotten Thazhath Harichandrakumar
- Department of Medical Biometrics and Informatics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
45
|
Provocative issues in heart disease prevention. Can J Cardiol 2014; 30:S401-9. [PMID: 25444498 DOI: 10.1016/j.cjca.2014.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 12/25/2022] Open
Abstract
In this article, new areas of cardiovascular (CV) prevention and rehabilitation research are discussed: high-intensity interval training (HIIT) and new concepts in nutrition. HIIT consists of brief periods of high-intensity exercise interspersed by periods of low-intensity exercise or rest. The optimal mode according our work (15-second exercise intervals at peak power with passive recovery intervals of the same duration) is associated with longer total exercise time, similar time spent near peak oxygen uptake (VO2 peak) VO2 peak, and lesser perceived exertion relative to other protocols that use longer intervals and active recovery periods. Evidence also suggests that compared with moderate-intensity continuous exercise training, HIIT has superior effects on cardiorespiratory function and on the attenuation of multiple cardiac and peripheral abnormalities. With respect to nutrition, a growing body of evidence suggests that the gut microbiota is influenced by lifestyle choices and might play a pivotal role in modulating CV disease development. For example, recent evidence linking processed (but not unprocessed) meats to increased CV risk pointed to the gut microbial metabolite trimethylamine N-oxide as a potential culprit. In addition, altered gut microbiota could also mediate the proinflammatory and cardiometabolic abnormalities associated with excess added free sugar consumption, and in particular high-fructose corn syrup. Substantially more research is required, however, to fully understand how and which alterations in gut flora can prevent or lead to CV disease and other chronic illnesses. We conclude with thoughts about the appropriate role for HIIT in CV training and future research in the role of gut flora-directed interventions in CV prevention.
Collapse
|
46
|
Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME JOURNAL 2014; 9:1-15. [PMID: 24936764 PMCID: PMC4274436 DOI: 10.1038/ismej.2014.99] [Citation(s) in RCA: 532] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 03/15/2014] [Accepted: 05/13/2014] [Indexed: 12/17/2022]
Abstract
Structural disruption of gut microbiota and associated inflammation are considered important etiological factors in high fat diet (HFD)-induced metabolic syndrome (MS). Three candidate probiotic strains, Lactobacillus paracasei CNCM I-4270 (LC), L. rhamnosus I-3690 (LR) and Bifidobacterium animalis subsp. lactis I-2494 (BA), were individually administered to HFD-fed mice (108 cells day−1) for 12 weeks. Each strain attenuated weight gain and macrophage infiltration into epididymal adipose tissue and markedly improved glucose–insulin homeostasis and hepatic steatosis. Weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of fecal bacterial 16S rRNA genes showed that the probiotic strains shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice fed a normal (chow) diet. Redundancy analysis revealed that abundances of 83 operational taxonomic units (OTUs) were altered by probiotics. Forty-nine altered OTUs were significantly correlated with one or more host MS parameters and were designated ‘functionally relevant phylotypes'. Thirteen of the 15 functionally relevant OTUs that were negatively correlated with MS phenotypes were promoted, and 26 of the 34 functionally relevant OTUs that were positively correlated with MS were reduced by at least one of the probiotics, but each strain changed a distinct set of functionally relevant OTUs. LC and LR increased cecal acetate but did not affect circulating lipopolysaccharide-binding protein; in contrast, BA did not increase acetate but significantly decreased adipose and hepatic tumor necrosis factor-α gene expression. These results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice.
Collapse
|
47
|
Selhub EM, Logan AC, Bested AC. Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J Physiol Anthropol 2014; 33:2. [PMID: 24422720 PMCID: PMC3904694 DOI: 10.1186/1880-6805-33-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/18/2013] [Indexed: 02/06/2023] Open
Abstract
The purposeful application of fermentation in food and beverage preparation, as a means to provide palatability, nutritional value, preservative, and medicinal properties, is an ancient practice. Fermented foods and beverages continue to make a significant contribution to the overall patterns of traditional dietary practices. As our knowledge of the human microbiome increases, including its connection to mental health (for example, anxiety and depression), it is becoming increasingly clear that there are untold connections between our resident microbes and many aspects of physiology. Of relevance to this research are new findings concerning the ways in which fermentation alters dietary items pre-consumption, and in turn, the ways in which fermentation-enriched chemicals (for example, lactoferrin, bioactive peptides) and newly formed phytochemicals (for example, unique flavonoids) may act upon our own intestinal microbiota profile. Here, we argue that the consumption of fermented foods may be particularly relevant to the emerging research linking traditional dietary practices and positive mental health. The extent to which traditional dietary items may mitigate inflammation and oxidative stress may be controlled, at least to some degree, by microbiota. It is our contention that properly controlled fermentation may often amplify the specific nutrient and phytochemical content of foods, the ultimate value of which may associated with mental health; furthermore, we also argue that the microbes (for example, Lactobacillus and Bifidobacteria species) associated with fermented foods may also influence brain health via direct and indirect pathways.
Collapse
Affiliation(s)
- Eva M Selhub
- Harvard Medical School and Massachusetts General Hospital, 40 Crescent St., Suite 201, Waltham, MA 02453, USA
| | - Alan C Logan
- CAMNR, 23679 Calabasas Road Suite 542, Calabasas, CA 91302, USA
| | - Alison C Bested
- Complex Chronic Diseases Program, BC Women’s Hospital and Health Centre, B223A-4500 Oak Street, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
48
|
Beneficial effects of Lactobacillus plantarum on glycemia and homocysteine levels in postmenopausal women with metabolic syndrome. Nutrition 2013; 30:939-42. [PMID: 24613434 DOI: 10.1016/j.nut.2013.12.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/23/2013] [Accepted: 12/05/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Metabolic syndrome (MetS) in postmenopausal women is an important risk factor for cardiovascular morbidity, especially stroke and coronary heart disease and mortality. Preventing and treating MetS would be useful in preventing disability and promoting normal aging. Previous human studies have found some beneficial effects of Lactobacillus species on some isolated parameters of MetS. Nevertheless, we are not aware, to date, of any study which has verified the influence of probiotics in patients with MetS. Therefore, the aim of the present study was to evaluate the influence of fermented milk with L. plantarum in the classical parameters related to MetS, as well as in other parameters related to cardiovascular risk in postmenopausal women. METHODS Twenty-four individuals were paired by age, ethnicity, and body mass index in two groups: Non-fermented milk (NFM = 12) 80 mL/d and fermented milk (FM = 12) 80 mL/d. Anthropometric and blood pressure measurements, biochemical, inflammatory, and immunologic biomarkers were measured. RESULTS Total cholesterol and γ-glutamyltranspeptidase had a significant reduction both in NFM (P = 0.043 and P = 0.036, respectively) and FM groups (P = 0.010 and P = 0.018, respectively) after 90 d, whereas low-density lipoprotein cholesterol showed a significant reduction in NFM group (P = 0.002) and trend in the FM group (P = 0.092). Glucose and homocysteine levels showed a significant reduction in the FM group compared with the NFM group (P = 0.037 and P = 0.019, respectively). In relation to inflammatory biomarkers, there was a significant decrease in interleukin-6 both in NFM (P = 0.032) and in FM (P = 0.001) groups. CONCLUSION FM with L. plantarum showed more favorable results than NFM in relation to cardiovascular risk factors in postmenopausal women with MetS.
Collapse
|
49
|
Abstract
Despite skeletal muscle being considered by many as the source of insulin resistance, physiology tells us that the liver is a central and cardinal regulator of glucose homeostasis. This is sometimes underestimated because, in contrast with muscle, investigations of liver function are technically very difficult. Nevertheless, recent experimental and clinical research has demonstrated clearly that, due in part to its anatomic position, the liver is exquisitely sensitive to insulin and other hormonal and neural factors, either by direct intrahepatic mechanisms or indirectly by organ cross-talk with muscle or adipose tissue. Because the liver receives absorbed nutrients, these have a direct impact on liver function, whether via a caloric excess or via the nature of food components (eg, fructose, many lipids, and trans fatty acids). An emerging observation with a possibly great future is the increase in intestinal permeability observed as a consequence of high fat intake or bacterial modifications in microbiota, whereby substances normally not crossing the gut gain access to the liver, where inflammation, oxidative stress, and lipid accumulation leads to fatty liver, a situation observed very early in the development of diabetes. The visceral adipose tissue located nearby is another main source of inflammatory substances and oxidative stress, and also acts on hepatocytes and Kupffer cells, resulting in stimulation of macrophages. Liberation of these substances, in particular triglycerides and inflammation factors, into the circulation leads to ectopic fat deposition and vascular damage. Therefore, the liver is directly involved in the development of the prediabetic cardiometabolic syndrome. Treatments are mainly metformin, and possibly statins and vitamin D. A very promising avenue is treatment of the leaky gut, which appears increasingly to be an important causal factor in hepatic insulin resistance and steatosis.
Collapse
Affiliation(s)
- Nicolas Wiernsperger
- INSERM French Institute of Health and Medical Research, U1060, National Institute of Applied Sciences, Lyon, University of Lyon, Villeurbanne, France
| |
Collapse
|
50
|
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities characterized by central obesity, dyslipidemias, hypertension, high fasting glucose, chronic low-grade inflammation and oxidative stress. This condition has become an increasing problem in our society where about 34 % of adults are diagnosed with MetS. In parallel with the adult situation, a significant number of children present lipid abnormalities and insulin resistance, which can be used as markers of MetS in the pediatric population. Changes in lifestyle including healthy dietary regimens and increased physical activity should be the first lines of therapy to decrease MetS. In this article, we present the most recent information on successful dietary modifications that can reduce the parameters associated with MetS. Successful dietary strategies include energy restriction and weight loss, manipulation of dietary macronutrients--either through restriction of carbohydrates, fat, or enrichment in beneficial fatty acids, incorporation of functional foods and bioactive nutrients, and adherence to dietary and lifestyle patterns such the Mediterranean diet and diet/exercise regimens. Together, the recent findings presented in this review serve as evidence to support the therapeutic treatment of MetS through diet.
Collapse
Affiliation(s)
- Catherine J Andersen
- Department of Nutritional Sciences, University of Connecticut, 3624 Horsebarn Road Ext., Unit 4017, Storrs, CT, 06269-4017, USA
| | | |
Collapse
|