1
|
Fu X, Lin H, Fan X, Zhu Y, Wang C, Chen Z, Tan X, Huang J, Cai Y, Huang Y. The Spectrum, Tendency and Predictive Value of PIK3CA Mutation in Chinese Colorectal Cancer Patients. Front Oncol 2021; 11:595675. [PMID: 33842311 PMCID: PMC8032977 DOI: 10.3389/fonc.2021.595675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Background PIK3CA is a high-frequency mutation gene in colorectal cancer, while its prognostic value remains unclear. This study evaluated the mutation tendency, spectrum, prognosis power and predictive power in cetuximab treatment of PIK3CA in Chinese CRC cohort. Methods The PIK3CA exon 9 and 20 status of 5763 CRC patients was detected with Sanger sequencing and a high-resolution melting test. Clinicopathological characteristics of 5733 patients were analyzed. Kaplan-Meier method and nomogram were used to evaluate the overall survival curve and disease recurrence, respectively. Results Fifty-eight types of mutations in 13.4% (771/5733) of the patients were detected. From 2014 to 2018, the mutation rate of PIK3CA increased from 11.0% to 13.5%. At stage IV, exon 20 mutated patients suffered shorter overall survival time than wild-type patients (multivariate COX regression analysis, HR = 2.72, 95% CIs = 1.47-5.09; p-value = 0.012). At stage III, PIK3CA mutated patients were more likely to relapse (multivariate Logistic regression analysis, exon 9: OR = 2.54, 95% CI = 1.34-4.73, p = 0.003; exon 20: OR = 3.89, 95% CI = 1.66-9.10, p = 0.002). The concordance index of the nomogram for predicting the recurrence risk of stage III patients was 0.685. After cetuximab treatment, the median PFS of PIK3CA exon 9 wild-type patients (n = 9) and mutant patients (n = 5) did not reach a significant difference (3.6 months vs. 2.3 months, Log-rank test, p-value = 0.513). Conclusions We found that PIK3CA mutation was an adverse predictive marker for the overall survival of stage IV patients and recurrence of stage III patients, respectively. Further more, we suggested that PIK3CA exon 9 mutations are not negative predictors of cetuximab treatment in KRAS, NRAS, and BRAF wild-type mCRC patients.
Collapse
Affiliation(s)
- Xinhui Fu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjie Lin
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaxi Zhu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chao Wang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiting Chen
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoli Tan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinglin Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yacheng Cai
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Pirsalehi A, Safaroghli-Azar A, Zali MR, Bashash D. The PI3K/Akt/mTOR signaling pathway in gastric cancer; from oncogenic variations to the possibilities for pharmacologic interventions. Eur J Pharmacol 2021; 898:173983. [PMID: 33647255 DOI: 10.1016/j.ejphar.2021.173983] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
Genetic and epigenetic alterations have been under concentrated investigations for many years in order to unearth the molecules regulating human cancer pathogenesis. However, the identification of a wide range of dysregulated genes and their protein products has raised a question regarding how the results of this large collection of alterations could converge into a formation of one malignancy. The answer may be found in the signaling cascades that regulate the survival and metabolism of the cells. Aberrancies of each participant molecule of such cascades may well result in augmented viability and unlimited proliferation of cancer cells. Among various signaling pathways, the phosphatidylinositol-3-kinase (PI3K) axis has been shown to be activated in about one-third of human cancers. One of the malignancies that is mostly affected by this axis is gastric cancer (GC), one of the most fatal cancers worldwide. In the present review, we aimed to illustrate the significance of the PI3K/Akt/mTOR axis in the pathogenesis of GC and also provided a wide perspective about the application of the inhibitors of this axis in the therapeutic strategies of this malignancy.
Collapse
Affiliation(s)
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pirsalehi
- Department of Internal Medicine, School of Medicine, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Liu X, Wu J, Zhang D, Wang K, Duan X, Meng Z, Zhang X. Network Pharmacology-Based Approach to Investigate the Mechanisms of Hedyotis diffusa Willd. in the Treatment of Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7802639. [PMID: 29853970 PMCID: PMC5954954 DOI: 10.1155/2018/7802639] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hedyotis diffusa Willd. (HDW) is one of the renowned herbs often used in the treatment of gastric cancer (GC). However, its curative mechanism has not been fully elucidated. OBJECTIVE To systematically investigate the mechanisms of HDW in GC. METHODS A network pharmacology approach mainly comprising target prediction, network construction, and module analysis was adopted in this study. RESULTS A total of 353 targets of the 32 bioactive compounds in HDW were obtained. The network analysis showed that CA isoenzymes, p53, PIK3CA, CDK2, P27Kip1, cyclin D1, cyclin B1, cyclin A2, AKT1, BCL2, MAPK1, and VEGFA were identified as key targets of HDW in the treatment of GC. The functional enrichment analysis indicated that HDW probably produced the therapeutic effects against GC by synergistically regulating many biological pathways, such as nucleotide excision repair, apoptosis, cell cycle, PI3K/AKT/mTOR signaling pathway, VEGF signaling pathway, and Ras signaling pathway. CONCLUSIONS This study holistically illuminates the fact that the pharmacological mechanisms of HDW in GC might be strongly associated with its synergic modulation of apoptosis, cell cycle, differentiation, proliferation, migration, invasion, and angiogenesis.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Kaihuan Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiaojiao Duan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
4
|
Kneissl J, Hartmann A, Pfarr N, Erlmeier F, Lorber T, Keller S, Zwingenberger G, Weichert W, Luber B. Influence of the HER receptor ligand system on sensitivity to cetuximab and trastuzumab in gastric cancer cell lines. J Cancer Res Clin Oncol 2016; 143:573-600. [PMID: 27933395 PMCID: PMC5352771 DOI: 10.1007/s00432-016-2308-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022]
Abstract
Purpose Gastric cancer remains a major health concern, and improvement of the therapeutic options is crucial. Treatment with targeted therapeutics such as the EGFR-targeting antibody cetuximab or the HER2-targeting antibody trastuzumab is either ineffective or moderately effective in this disease, respectively. In this study, we analysed the involvement of the HER receptor ligands amphiregulin (AREG), epidermal growth factor (EGF), heparin-binding epidermal growth factor (HB-EGF) and transforming growth factor alpha (TGFα) in the responsiveness of gastric cancer cell lines to cetuximab and trastuzumab. Methods A panel of 11 gastric cancer cell lines was characterized for cetuximab and trastuzumab sensitivity, ligand secretion and expression and activation of the HER receptors using WST-1 cell proliferation assays, ELISAs and Western blot analyses. We further investigated the effects of an exogenous ligand application on the cetuximab and trastuzumab sensitivity. Results We found no correlation between TGFα secretion and the sensitivity to cetuximab or trastuzumab. For AREG, we confirmed previous results indicating that this ligand is a positive predictor of cetuximab sensitivity. Exogenous HB-EGF was effective in rescuing sensitive cell lines from inhibition of cell proliferation by both, cetuximab and trastuzumab. Conclusions Our data indicate that HB-EGF may be a useful marker for the prediction of trastuzumab sensitivity in gastric cancer. Electronic supplementary material The online version of this article (doi:10.1007/s00432-016-2308-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Kneissl
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Klinikum rechts der Isar, Trogerstr. 18, 81675, Munich, Germany
| | - Anja Hartmann
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Klinikum rechts der Isar, Trogerstr. 18, 81675, Munich, Germany
| | - Nicole Pfarr
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Klinikum rechts der Isar, Trogerstr. 18, 81675, Munich, Germany
| | - Franziska Erlmeier
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Klinikum rechts der Isar, Trogerstr. 18, 81675, Munich, Germany
| | - Thomas Lorber
- Institute for Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Simone Keller
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Klinikum rechts der Isar, Trogerstr. 18, 81675, Munich, Germany
| | - Gwen Zwingenberger
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Klinikum rechts der Isar, Trogerstr. 18, 81675, Munich, Germany
| | - Wilko Weichert
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Klinikum rechts der Isar, Trogerstr. 18, 81675, Munich, Germany
| | - Birgit Luber
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Klinikum rechts der Isar, Trogerstr. 18, 81675, Munich, Germany.
| |
Collapse
|
5
|
Ross RL, McPherson HR, Kettlewell L, Shnyder SD, Hurst CD, Alder O, Knowles MA. PIK3CA dependence and sensitivity to therapeutic targeting in urothelial carcinoma. BMC Cancer 2016; 16:553. [PMID: 27465249 PMCID: PMC4964013 DOI: 10.1186/s12885-016-2570-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
Background Many urothelial carcinomas (UC) contain activating PIK3CA mutations. In telomerase-immortalized normal urothelial cells (TERT-NHUC), ectopic expression of mutant PIK3CA induces PI3K pathway activation, cell proliferation and cell migration. However, it is not clear whether advanced UC tumors are PIK3CA-dependent and whether PI3K pathway inhibition is a good therapeutic option in such cases. Methods We used retrovirus-mediated delivery of shRNA to knock down mutant PIK3CA in UC cell lines and assessed effects on pathway activation, cell proliferation, migration and tumorigenicity. The effect of the class I PI3K inhibitor GDC-0941 was assessed in a panel of UC cell lines with a range of known molecular alterations in the PI3K pathway. Results Specific knockdown of PIK3CA inhibited proliferation, migration, anchorage-independent growth and in vivo tumor growth of cells with PIK3CA mutations. Sensitivity to GDC-0941 was dependent on hotspot PIK3CA mutation status. Cells with rare PIK3CA mutations and co-occurring TSC1 or PTEN mutations were less sensitive. Furthermore, downstream PI3K pathway alterations in TSC1 or PTEN or co-occurring AKT1 and RAS gene mutations were associated with GDC-0941 resistance. Conclusions Mutant PIK3CA is a potent oncogenic driver in many UC cell lines and may represent a valuable therapeutic target in advanced bladder cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2570-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R L Ross
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - H R McPherson
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - L Kettlewell
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - S D Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - C D Hurst
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - O Alder
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - M A Knowles
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.
| |
Collapse
|
6
|
Zheng S, Yang C, Lu M, Liu Q, Liu T, Dai F, Gao X, Sheyhidin I, Lu X. PIK3CA promotes proliferation and motility but is unassociated with lymph node metastasis or prognosis in esophageal squamous cell carcinoma. Hum Pathol 2016; 53:121-129. [PMID: 27001433 DOI: 10.1016/j.humpath.2015.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/29/2015] [Accepted: 11/05/2015] [Indexed: 11/23/2022]
Abstract
The PIK3CA mutation has been extensively reported in the setting of cancers; however, the clinicopathological significance of PIK3CA expression has rarely been discussed in esophageal squamous cell carcinoma. In the present study, to confirm the significance of PIK3CA expression in association with metastasis and prognosis, which has been somewhat controversial in esophageal squamous cell carcinoma (ESCC), the relationship between clinicopathological features of ESCC and PIK3CA expression was analyzed using immunohistochemistry with a tissue microarray. Meanwhile, as additional verification and an ethnic control, another independent small cohort of Kazakh ESCC were analyzed by immunohistochemistry. To investigate the pilot role of PIK3CA in ESCC cells, ESCC cell lines ECa109 and EC9706 were transiently transfected with specific siRNA against PIK3CA. The silencing effect was detected by Western blot. Cell proliferation was examined using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay; apoptosis and the cell cycles were analyzed by flow cytometry. Furthermore, the migratory and invasive ability were evaluated by wound healing and transwell invasion assay, respectively. Expression of PIK3CA was significantly higher in ESCC than in paired normal controls and was ethnicity independent; no statistically significant difference was observed between PIK3CA expression and sex, age, depth of invasion, tumor differentiation, lymph node metastasis, or prognosis. Proliferation, migration, and invasion were all markedly reduced after knockout of PIK3CA. Moreover, the cell cycle was arrested at the S phase, and the apoptosis rate was significantly increased, suggesting that PIK3CA plays a key role in promoting the proliferation and motility of ESCC cells.
Collapse
Affiliation(s)
- Shutao Zheng
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China; State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China
| | - Chenchen Yang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China; State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China
| | - Mang Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China; State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China
| | - Qing Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China; State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China
| | - Tao Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China; State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China
| | - Fang Dai
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China; State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China
| | - Xiangpeng Gao
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China; State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China
| | - Ilyar Sheyhidin
- State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China.
| | - Xiaomei Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China; State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054 PR China.
| |
Collapse
|
7
|
Jang SH, Kim KJ, Oh MH, Lee JH, Lee HJ, Cho HD, Han SW, Son MW, Lee MS. Clinicopathological Significance of Elevated PIK3CA Expression in Gastric Cancer. J Gastric Cancer 2016; 16:85-92. [PMID: 27433393 PMCID: PMC4944007 DOI: 10.5230/jgc.2016.16.2.85] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/30/2016] [Accepted: 04/14/2016] [Indexed: 01/03/2023] Open
Abstract
Purpose PIK3CA is often mutated in a variety of malignancies, including colon, gastric, ovary, breast, and brain tumors. We investigated PIK3CA expression in gastric cancer and explored the relationships between the PIK3CA expression level and clinicopathological features as well as survival of the patients. Materials and Methods We examined PIK3CA expression in a tissue microarray of 178 gastric adenocarcinomas by immunohisto-chemistry and reviewed patients' medical records. Results In our study, 112 of the 178 gastric cancer patients displayed positive PIK3CA expression. Overexpression of PIK3CA was correlated with low grade differentiation (P=0.001), frequent lymphatic invasion (P=0.032), and high T stage (P=0.040). Patients with positive PIK3CA staining were more likely to display worse overall survival rate than those with negative PIK3CA staining, as determined by Kaplan-Meier survival analysis with log-rank test (P=0.047) and a univariate analysis using the Cox proportional hazard model (hazard ratio=1.832, P=0.051). Conclusions Elevated PIK3CA expression was significantly correlated with tumor invasiveness, tumor phenotypes, and poor patient survival.
Collapse
Affiliation(s)
- Si-Hyong Jang
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Kyung-Ju Kim
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Mee-Hye Oh
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyun Ju Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyun Deuk Cho
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sun Wook Han
- Department of General Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Myoung Won Son
- Department of General Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Moon Soo Lee
- Department of General Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
8
|
Liang M, Shi B, Liu J, He L, Yi G, Zhou L, Yu G, Zhou X. Downregulation of miR203 induces overexpression of PIK3CA and predicts poor prognosis of gastric cancer patients. DRUG DESIGN DEVELOPMENT AND THERAPY 2015. [PMID: 26213461 PMCID: PMC4509530 DOI: 10.2147/dddt.s85525] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background Despite advances in clinical therapies and technologies, the prognosis for patients with gastric cancer is still poor. The aim of this study is to investigate new predictive markers for prognosis of gastric cancer. Methods In this study, we evaluated the expression pattern of PIK3CA in 107 gastric cancer specimens and their adjacent nontumorous tissues. PIK3CA siRNA was synthesized and transfected into gastric cancer cell lines. Colony formation and MTT assays were employed to analyze the cell proliferation. PIK3CA expression was examined by using immunohistochemical analysis and Western blot assay. Transwell invasion assay was used to detect the invasion capability of the cells. Luciferase activity was examined by using 3′-untranslated region luciferase reporter assays. Results We observed that PIK3CA was significantly upregulated in gastric cancer tissues. High expression level of PIK3CA was detectable in 48 (44.86%) of the gastric cancer specimens, and correlated with poor prognosis. In addition, our study indicated that miR203 inhibits cell proliferation and invasion via directly targeting and suppressing the PIK3CA expression. MiR203 expression is downregulated in gastric cancer tissues. Moreover, low expression level of miR203 predicted poor prognosis of gastric patients and induced overexpression of PIK3CA. Our further study also reported that overexpression of miR203 inhibited phosphorylation of AKT, while cotransfection of PIK3CA reversed the effect of miR203. Conclusion Our study suggested a miR203-PIK3CA-AKT signaling pathway in gastric cancer cells. This signaling pathway might play an important role in gastric cancer genesis and development.
Collapse
Affiliation(s)
- Min Liang
- Department of Oncology, The fifth affiliated hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Boyun Shi
- Department of Oncology, The fifth affiliated hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jifang Liu
- Department of Oncology, The fifth affiliated hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lu He
- Department of radiotherapy, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Gao Yi
- Department of Oncology, The fifth affiliated hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lin Zhou
- Department of Oncology, The fifth affiliated hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Guifang Yu
- Department of Oncology, The fifth affiliated hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xinke Zhou
- Department of Oncology, The fifth affiliated hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Paul-Samojedny M, Pudełko A, Kowalczyk M, Fila-Daniłow A, Suchanek-Raif R, Borkowska P, Kowalski J. Knockdown of AKT3 and PI3KCA by RNA interference changes the expression of the genes that are related to apoptosis and autophagy in T98G glioblastoma multiforme cells. Pharmacol Rep 2015; 67:1115-23. [PMID: 26481529 DOI: 10.1016/j.pharep.2015.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant and invasive human brain tumor and it is characterized by a poor prognosis and short survival time. The PI3K/AKT/PTEN signaling pathway plays a crucial role in GBM development and it is connected with the regulation of apoptosis and autophagy. Akt is involved in various aspects of cancer cell biology such as cell survival, in addition to both apoptosis and autophagy. The current study was undertaken to examine the effect of the siRNAs that target AKT3 and PI3KCA genes on the apoptosis and autophagy of T98G cells. METHODS T98G cells were transfected with AKT3 and/or PI3KCA siRNAs. Alterations in the mRNA expression of apoptosis- and autophagy-related genes were analyzed using QRT-PCR. LC3IIA protein-positive cells were identified using flow cytometry with specific antibodies. RESULTS Our findings demonstrate for the first time that the siRNAs that target AKT3 and PI3KCA change the expression of the genes that are related to apoptosis and autophagy and change the expression of the LC3IIA protein in T98G cells. CONCLUSIONS Thus, there is a high probability that the knockdown of these genes induces apoptosis and autophagy in T98G cells, but further studies are necessary in order to clarify and check whether autophagy induction is a positive phenomenon for the treatment of GBM.
Collapse
Affiliation(s)
- Monika Paul-Samojedny
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.
| | - Adam Pudełko
- Department of Clinical Chemistry and Laboratory Diagnostics in Medical University of Silesia, Katowice, Poland
| | - Małgorzata Kowalczyk
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Anna Fila-Daniłow
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Renata Suchanek-Raif
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Paulina Borkowska
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Jan Kowalski
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
10
|
Jin ZT, Li K, Li M, Ren ZG, Wang FS, Zhu JY, Leng XS, Yu WD. G-protein coupled receptor 34 knockdown impairs the proliferation and migration of HGC-27 gastric cancer cells in vitro. Chin Med J (Engl) 2015; 128:545-549. [PMID: 25673461 PMCID: PMC4836262 DOI: 10.4103/0366-6999.151114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Overexpression of G-protein coupled receptor 34 (GPR34) affects the progression and prognosis of human gastric adenocarcinoma, however, the role of GPR34 in gastric cancer development and progression has not been well-determined. The current study aimed to investigate the effect of GPR34 knockdown on the proliferation, migration, and apoptosis of HGC-27 gastric cancer cells and the underlying mechanisms. METHODS The expression of GPR34 in gastric cancer cell line HGC-27 was detected by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. HGC-27 cells were employed to construct the stable GPR34 knockdown cell model in this study. Real-time RT-PCR and Western blotting were applied to validate the effect of short hairpin RNA (ShRNA) on the expression of GPR34 in HGC-27 gastric cells. The proliferation, migration of these cells were examined by Cell Counting Kit-8 and transwell. We also measured expression profile of PI3K/PDK1/AKT and ERK using Western blotting. RESULTS The ShRNA directed against GPR34 effectively inhibited both endogenous mRNA and protein expression levels of GPR34, and significantly down-regulated the expression of PIK3CB (P < 0.01), PIK3CD (P < 0.01), PDK1 (P < 0.01), phosphorylation of PDK1 (P < 0.01), Akt (P < 0.01), and ERK (P < 0.01). Furthermore, GPR34 knockdown resulted in an obvious reduction in HGC-27 cancer cell proliferation and migration activity (P < 0.01). CONCLUSIONS GPR34 knockdown impairs the proliferation and migration of HGC-27 gastric cancer cells in vitro and provides a potential implication for therapy of gastric cancer.
Collapse
Affiliation(s)
- Zhong-Tian Jin
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Kun Li
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Mei Li
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Zhi-Gang Ren
- Department of General Surgery, Beijing Changping District Hospital, Beijing 102200, China
| | - Fu-Shun Wang
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Ji-Ye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Xi-Sheng Leng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Wei-Dong Yu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
11
|
Paul-Samojedny M, Pudełko A, Suchanek-Raif R, Kowalczyk M, Fila-Daniłow A, Borkowska P, Kowalski J. Knockdown of the AKT3 (PKBγ), PI3KCA, and VEGFR2 genes by RNA interference suppresses glioblastoma multiforme T98G cells invasiveness in vitro. Tumour Biol 2014; 36:3263-77. [PMID: 25501707 DOI: 10.1007/s13277-014-2955-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain malignancy, having a very poor prognosis and is characterized by extensive brain invasion as well as resistance to the therapy. The phosphoinositide 3-kinase (PI3K)/Akt/PTEN signaling pathway is deregulated in GBM. Besides, florid vascularization and aberrantly elevated vascular endothelial growth factor (VEGF) occur very often. The present study was designed to examine the inhibitory effect of AKT3, PI3KCA, and VEGFR2 small interfering RNAs (siRNAs) on GBM cell invasiveness. T98G cells were transfected with AKT3, PI3KCA, and/or VEGFR2 siRNAs. VEGFR2 protein-positive cells were identified by flow cytometry using specific monoclonal anti-VEGFR2 antibodies. Alterations in messenger RNA (mRNA) expression of VEGF, VEGFR2, matrix metalloproteinases (MMPs) (MMP-2, MMP-9, MMP-13, MMP-14), tissue inhibitors of metalloproteinases (TIMPs) (TIMP-1, TIMP-3), c-Fos, c-Jun, hypoxia-inducible factor-1α (HIF-1α), ObRa, and cathepsin D genes were analyzed by qRT-PCR. Cells treated with specific siRNA were also analyzed for invasion using the Matrigel invasion assay. We have found significantly lower mRNA levels of MMPs, cathepsin D, VEGF, VEGFR2, HIF-1α, and c-Fos/c-Jun ratio, as well as significantly higher mRNA level of TIMPs in AKT3 and PI3KCA siRNA transfected cells compared to untransfected cells, while significantly lower mRNA levels of MMPs (MMP-2, MMP-9, MMP-14) and TIMP-1, as well as significantly higher mRNA level of TIMP-3, were shown only in cells transfected with VEGFR2 siRNA. The positive correlation between MMP-13 and ObRa mRNA copy number has been found. Summarizing, transfection of T98G cells with AKT3, PI3KCA, or VEGFR2 siRNAs leads to a significant reduction in cell invasiveness. The siRNA-induced AKT3, PI3KCA, and VEGFR2 mRNA knockdown may offer a novel therapeutic strategy to reduce the invasiveness of GBM cells.
Collapse
Affiliation(s)
- Monika Paul-Samojedny
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8 Street, 41-200, Katowice, Sosnowiec, Poland,
| | | | | | | | | | | | | |
Collapse
|
12
|
Matsuoka T, Yashiro M. The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma. Cancers (Basel) 2014; 6:1441-63. [PMID: 25003395 PMCID: PMC4190549 DOI: 10.3390/cancers6031441] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is one of the key signaling pathways induced by various receptor-tyrosine kinases. Accumulating evidence shows that this pathway is an important promoter of cell growth, metabolism, survival, metastasis, and resistance to chemotherapy. Genetic alterations in the PI3K/Akt/mTOR pathway in gastric carcinoma have often been demonstrated. Many kinds of molecular targeting therapies are currently undergoing clinical testing in patients with solid tumors. However, with the exception of the ErbB2-targeting antibody, targeting agents, including PI3K/Akt/mTOR inhibitors, have not been approved for treatment of patients with gastric carcinoma. This review summarizes the current knowledge on PI3K/Akt/mTOR signaling in the pathogenesis of gastric carcinoma and the possible therapeutic targets for gastric carcinoma. Improved knowledge of the PI3K/Akt/mTOR pathway in gastric carcinoma will be useful in understanding the mechanisms of tumor development and for identifying ideal targets of anticancer therapy for gastric carcinoma.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
| |
Collapse
|
13
|
Lu M, Zheng ST, Liu Q, Liu T, Gao XP, Ilyar∙Sheyhidin, Lu XM. Role of PIK3CA in cell proliferation, migration and apoptosis in human esophageal squamous cell carcinoma cell line Ecal09. Shijie Huaren Xiaohua Zazhi 2014; 22:4893. [DOI: 10.11569/wcjd.v22.i32.4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Huang WS, Wang TB, He Y, Chen YJ, Zhong SL, Tan M. Phosphoinositide-3-kinase, catalytic, alpha polypeptide RNA interference inhibits growth of colon cancer cell SW948. World J Gastroenterol 2012; 18:3458-64. [PMID: 22807617 PMCID: PMC3396200 DOI: 10.3748/wjg.v18.i26.3458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/09/2012] [Accepted: 05/13/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the gene knock-down effect by the phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA)-targeted double-stranded RNA (dsRNA) and its effect on cell proliferation and cycle distribution in SW948.
METHODS: Two PIK3CA-targeted dsRNAs were constructed and transfected into SW948 cells. Transfections were performed using lipofectamineTM 2000. The transfection effectiveness was calculated basing on the rate of fluorescence cell of SW948 at 6 h after transfection. Total messenger RNA was extracted from these cells using the RNeasy kit, and semiquantitative reverse transcription polymerase chain reaction was performed to detect the down-regulation of PIK3CA, AKT1, MYC, and CCND1 gene expression. Cells were harvested, proteins were resolved, and western blot was employed to detect the expression levels of PIK3CA, AKT1, MYC, and CCND1 gene. Cell proliferation was assessed by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay and the inhibition rate was calculated. Soft agar colony formation assay was performed basing on colonies greater than 60 μm in diameter at ×100 magnification. The effect on cell cycle distribution and apoptosis was assessed by flow cytometry. All experiments were performed in triplicate.
RESULTS: Green fluorescence was observed in SW948 cell transfected with plasmid Pgenesil-1, and the transfection effectiveness was about 65%. Forty-eight hours post-transfection, mRNA expression of PIK3CA in SW948 cells was 0.51 ± 0.04 vs 0.49 ± 0.03 vs 0.92 ± 0.01 vs 0.93 ± 0.03 (P = 0.001 ) in Pgenesil-CA1, Pgenesil-CA2, negative and blank group respectively. mRNA expression of AKT1 was 0.50 ± 0.03 vs 0.48 ± 0.01 vs 0.93 ± 0.04 vs 0.92 ± 0.02 (P = 0.000) in Pgenesil-CA1, Pgenesil-CA2, negative and blank group respectively. mRNA expression of MYC was 0.49 ± 0.01 vs 0.50 ± 0.04 vs 0.90 ± 0.02 vs 0.91 ± 0.03 (P = 0.001) in the four groups respectively. mRNA expression of CCND1 was 0.45 ± 0.02 vs 0.51 ± 0.01 vs 0.96 ± 0.03 vs 0.98 ± 0.01 (P = 0.001) in the four groups respectively. The protein level of PIK3CA was 0.53 ± 0.01 vs 0.54 ± 0.02 vs 0.92 ± 0.03 vs 0.91 ± 0.02 (P = 0.001) in Pgenesil-CA1, Pgenesil-CA2, negative and blank group respectively. The protein level of AKT1 in the four groups was 0.49 ± 0.02 vs 0.55 ± 0.03 vs 0.94 ± 0.03 vs 0.95 ± 0.04, P = 0.000). The protein level of MYC in the four groups was 0.51 ± 0.03 vs 0.52 ± 0.04 vs 0.92 ± 0.02 vs 0.95 ± 0.01 (P = 0.000). The protein level of CCND1 in the four groups was 0.54 ± 0.04 vs 0.56 ± 0.03 vs 0.93 ± 0.01 vs 0.93 ± 0.03 (P = 0.000). Both Pgenesil-CA1 and Pgenesil-CA2 plasmids significantly suppressed the growth of SW948 cells when compared with the negative or blank group at 48 h after transfection (29% vs 25% vs 17% vs 14%, P = 0.001), 60 h after transfection (38% vs 34% vs 19% vs 16%, P = 0.001), and 72 h after transfection (53% vs 48% vs 20% vs 17%, P = 0.000). Numbers of colonies in negative, blank, CA1, and CA2 groups were 42 ± 4, 45 ± 5, 8 ± 2, and 10 ± 3, respectively (P = 0.000). There were more than 4.5 times colonies in the blank and negative control groups as there were in the CA1 and CA2 groups. In addition, the colonies in blank and negative control groups were also larger than those in the CA1 and CA2 groups. The percentage of cells in the CA1 and CA2 groups was significantly higher in G0/G1 phase, but lower in S and G2/M phase when compared with the negative and control groups. Moreover, cell apoptosis rates in the CA1 and CA2 groups were 5.11 ± 0.32 and 4.73 ± 0.32, which were significantly higher than those in negative (0.95 ± 0.11, P = 0.000) and blank groups (0.86 ± 0.13, P = 0.001). No significant difference was found between CA1 and CA2 groups in cell cycle distribution and apoptosis.
CONCLUSION: PIK3CA-targeted short hairpin RNAs can block the phosphoinositide 3-kinase-Akt signaling pathway and inhibit cell growth, increase apoptosis, and induce cell cycle arrest in the PIK3CA-mutant colon cancer SW948 cells.
Collapse
|
15
|
Murat CB, Braga PBS, Fortes MAHZ, Bronstein MD, Corrêa-Giannella MLC, Giorgi RR. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas. Braz J Med Biol Res 2012; 45:851-5. [PMID: 22782554 PMCID: PMC3854320 DOI: 10.1590/s0100-879x2012007500115] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 06/28/2012] [Indexed: 01/20/2023] Open
Abstract
The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland.
Collapse
Affiliation(s)
- C B Murat
- Laboratório de Endocrinologia Celular e Molecular (LIM-25), Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|