1
|
Meyer zu Schwabedissen A, Vergarajauregui S, Bertog M, Amann K, Engel FB, Daniel C. Protease-activated receptor 2 deficient mice develop less angiotensin II induced left ventricular hypertrophy but more cardiac fibrosis. PLoS One 2024; 19:e0310095. [PMID: 39637045 PMCID: PMC11620577 DOI: 10.1371/journal.pone.0310095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/25/2024] [Indexed: 12/07/2024] Open
Abstract
AIMS Activation of Protease Activated Receptor 2 (PAR2) has been shown to be involved in regulation of injury-related processes including inflammation, fibrosis and hypertrophy. In this study we will investigate the role of PAR2 in cardiac injury in a mouse model of hypertension using continuous infusion with angiotensin II. METHODS Hypertension was induced in 12 weeks old wildtype (wt, n = 8) and PAR2 deficient mice (n = 9) by continuous infusion with angiotensin II for 4 weeks using osmotic minipumps. At the end, hearts were collected for analysis of left ventricular hypertrophy (LVH), myocardial capillary supply, fibrosis and localization of PAR2 expression using histological, immunohistological and mRNA expression analysis techniques. In addition, rat cardiac fibroblasts were treated with angiotensin II and PAR2 was inhibited by a blocking antibody and the PAR2 inhibitor AZ3451. RESULTS Cardiac PAR2 mRNA expression was downregulated by 40±20% in wt mice treated with AngII compared to untreated controls. Four weeks after AngII treatment, LVH was significantly increased in AngII-treated wt mice compared to similarly treated PAR2-deficient animals as determined by relative heart weight, left ventricular cross-sectional area, and analysis of ventricular lumen area determined on sections. Treatment of wt mice resulted in an approximately 3-fold increase in cardiac expression of FGF23, which was 50% lower in PAR2-deficient animals compared to wt animals and therefore no longer significantly different from expression levels in untreated control mice. In contrast, cardiac interstitial fibrosis was significantly higher in PAR2-deficient mice compared to similar treated wt controls, as assessed by Sirius Red staining (>3-fold) and collagen IV staining (>2-fold). Additional experiments with isolated cardiac fibroblasts showed induction of pro-fibrotic genes when treated with PAR2 inhibitors. CONCLUSION In angiotensin II-induced cardiac injury, PAR2 deficiency has an ambivalent effect, enhancing fibrosis on the one hand, but reducing LVH on the other.
Collapse
Affiliation(s)
- Albrecht Meyer zu Schwabedissen
- Department of Nephropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Silvia Vergarajauregui
- Department of Nephropathology, Institute of Pathology and Department of Cardiology, Experimental Renal and Cardiovascular Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marko Bertog
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix B. Engel
- Department of Nephropathology, Institute of Pathology and Department of Cardiology, Experimental Renal and Cardiovascular Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Xu K, Wang L, Lin M, He G. Update on protease-activated receptor 2 in inflammatory and autoimmune dermatological diseases. Front Immunol 2024; 15:1449126. [PMID: 39364397 PMCID: PMC11446762 DOI: 10.3389/fimmu.2024.1449126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Protease-activated receptor 2 (PAR2) is a cell-surface receptor expressed in various cell types, including keratinocytes, neurons, immune and inflammatory cells. Activation of PAR2, whether via its canonical or biased pathways, triggers a series of signaling cascades that mediate numerous functions. This review aims to highlight the emerging roles and interactions of PAR2 in different skin cells. It specifically summarizes the latest insights into the roles of PAR2 in skin conditions such as atopic dermatitis (AD), psoriasis, vitiligo and melasma. It also considers these roles from the perspective of the cutaneous microenvironment in relation to other inflammatory and autoimmune dermatological disorders. Additionally, the review explores PAR2's involvement in associated comorbidities from both cutaneous and extracutaneous diseases. Therefore, PAR2 may serve as a key target for interactions among various cells within the local skin environment.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Lin
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Muric M, Nikolic M, Todorovic A, Jakovljevic V, Vucicevic K. Comparative Cardioprotective Effectiveness: NOACs vs. Nattokinase-Bridging Basic Research to Clinical Findings. Biomolecules 2024; 14:956. [PMID: 39199344 PMCID: PMC11352257 DOI: 10.3390/biom14080956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
The use of non-vitamin K antagonist oral anticoagulants (NOACs) has brought a significant progress in the management of cardiovascular diseases, considered clinically superior to vitamin K antagonists (VKAs) particularly in the prevention and treatment of thromboembolic events. In addition, numerous advantages such as fixed dosing, lack of laboratory monitoring, and fewer food and drug-to-drug interactions make the use of NOACs superior to VKAs. While NOACs are synthetic drugs prescribed for specific conditions, nattokinase (NK) is a natural enzyme derived from food that has potential health benefits. Various experimental and clinical studies reported the positive effects of NK on the circulatory system, including the thinning of blood and the dissolution of blood clots. This enzyme showed not only fibrinolytic activity due to its ability to degrade fibrin, but also an affinity as a substrate for plasmin. Recent studies have shown that NK has additional cardioprotective effects, such as antihypertensive and anti-atherosclerotic effects. In this narrative review, we presented the cardioprotective properties of two different approaches that go beyond anticoagulation: NOACs and NK. By combining evidence from basic research with clinical findings, we aim to elucidate the comparative cardioprotective efficacy of these interventions and highlight their respective roles in modern cardiovascular care.
Collapse
Affiliation(s)
- Maja Muric
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (V.J.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (V.J.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Andreja Todorovic
- Department of Cardiology, General Hospital Ćuprija, 35230 Ćuprija, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (V.J.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
- Department of Human Pathology, First Moscow State Medical, University IM Sechenov, 119991 Moscow, Russia
| | - Ksenija Vucicevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
4
|
Maeda K, Kuriyama N, Noguchi D, Ito T, Gyoten K, Hayasaki A, Fujii T, Iizawa Y, Murata Y, Tanemura A, Kishiwada M, Mizuno S. Xa inhibitor edoxaban ameliorates hepatic ischemia-reperfusion injury via PAR-2-ERK 1/2 pathway. PLoS One 2024; 19:e0292628. [PMID: 38748746 PMCID: PMC11095713 DOI: 10.1371/journal.pone.0292628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/25/2023] [Indexed: 05/19/2024] Open
Abstract
Hepatic ischemia-reperfusion injury causes liver damage during surgery. In hepatic ischemia-reperfusion injury, the blood coagulation cascade is activated, causing microcirculatory incompetence and cellular injury. Coagulation factor Xa (FXa)- protease-activated receptor (PAR)-2 signaling activates inflammatory reactions and the cytoprotective effect of FXa inhibitor in several organs. However, no studies have elucidated the significance of FXa inhibition on hepatic ischemia-reperfusion injury. The present study elucidated the treatment effect of an FXa inhibitor, edoxaban, on hepatic ischemia-reperfusion injury, focusing on FXa-PAR-2 signaling. A 60 min hepatic partial-warm ischemia-reperfusion injury mouse model and a hypoxia-reoxygenation model of hepatic sinusoidal endothelial cells were used. Ischemia-reperfusion injury mice and hepatic sinusoidal endothelial cells were treated and pretreated, respectively with or without edoxaban. They were incubated during hypoxia/reoxygenation in vitro. Cell signaling was evaluated using the PAR-2 knockdown model. In ischemia-reperfusion injury mice, edoxaban treatment significantly attenuated fibrin deposition in the sinusoids and liver histological damage and resulted in both anti-inflammatory and antiapoptotic effects. Hepatic ischemia-reperfusion injury upregulated PAR-2 generation and enhanced extracellular signal-regulated kinase 1/2 (ERK 1/2) activation; however, edoxaban treatment reduced PAR-2 generation and suppressed ERK 1/2 activation in vivo. In the hypoxia/reoxygenation model of sinusoidal endothelial cells, hypoxia/reoxygenation stress increased FXa generation and induced cytotoxic effects. Edoxaban protected sinusoidal endothelial cells from hypoxia/reoxygenation stress and reduced ERK 1/2 activation. PAR-2 knockdown in the sinusoidal endothelial cells ameliorated hypoxia/reoxygenation stress-induced cytotoxicity and suppressed ERK 1/2 phosphorylation. Thus, edoxaban ameliorated hepatic ischemia-reperfusion injury in mice by protecting against micro-thrombosis in sinusoids and suppressing FXa-PAR-2-induced inflammation in the sinusoidal endothelial cells.
Collapse
Affiliation(s)
- Koki Maeda
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Naohisa Kuriyama
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Daisuke Noguchi
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takahiro Ito
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kazuyuki Gyoten
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Aoi Hayasaki
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takehiro Fujii
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yusuke Iizawa
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiro Murata
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Akihiro Tanemura
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masashi Kishiwada
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shugo Mizuno
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
5
|
Ruf L, Bukowska A, Gardemann A, Goette A. Coagulation Factor Xa Has No Effects on the Expression of PAR1, PAR2, and PAR4 and No Proinflammatory Effects on HL-1 Cells. Cells 2023; 12:2849. [PMID: 38132169 PMCID: PMC10741780 DOI: 10.3390/cells12242849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Atrial fibrillation (AF), characterised by irregular high-frequency contractions of the atria of the heart, is of increasing clinical importance. The reasons are the increasing prevalence and thromboembolic complications caused by AF. So-called atrial remodelling is characterised, among other things, by atrial dilatation and fibrotic remodelling. As a result, AF is self-sustaining and forms a procoagulant state. But hypercoagulation not only appears to be the consequence of AF. Coagulation factors can exert influence on cells via protease-activated receptors (PAR) and thereby the procoagulation state could contribute to the development and maintenance of AF. In this work, the influence of FXa on Heart Like-1 (HL-1) cells, which are murine adult atrial cardiomyocytes (immortalized), was investigated. PAR1, PAR2, and PAR4 expression was detected. After incubations with FXa (5-50 nM; 4-24 h) or PAR1- and PAR2-agonists (20 µM; 4-24 h), no changes occurred in PAR expression or in the inflammatory signalling cascade. There were no time- or concentration-dependent changes in the phosphorylation of the MAP kinases ERK1/2 or the p65 subunit of NF-κB. In addition, there was no change in the mRNA expression of the cell adhesion molecules (ICAM-1, VCAM-1, fibronectin). Thus, FXa has no direct PAR-dependent effects on HL-1 cells. Future studies should investigate the influence of FXa on human cardiomyocytes or on other cardiac cell types like fibroblasts.
Collapse
Affiliation(s)
- Lukas Ruf
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Alicja Bukowska
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Gardemann
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Goette
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital Paderborn, Am Busdorf 2, 33098 Paderborn, Germany
| |
Collapse
|
6
|
Russo V, Falco L, Tessitore V, Mauriello A, Catapano D, Napolitano N, Tariq M, Caturano A, Ciccarelli G, D’Andrea A, Giordano A. Anti-Inflammatory and Anticancer Effects of Anticoagulant Therapy in Patients with Malignancy. Life (Basel) 2023; 13:1888. [PMID: 37763292 PMCID: PMC10532829 DOI: 10.3390/life13091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Optimizing the anticoagulation therapy is of pivotal importance in patients with a malignant tumor, as venous thromboembolism (VTE) has become the second-leading cause of death in this population. Cancer can highly increase the risk of thrombosis and bleeding. Consequently, the management of cancer-associated VTE is complex. In recent years, translational research has intensified, and several studies have highlighted the role of inflammatory cytokines in cancer growth and progression. Simultaneously, the pleiotropic effects of anticoagulants currently recommended for VTE have emerged. In this review, we describe the anti-inflammatory and anticancer effects of both direct oral anticoagulants (DOACs) and low-molecular-weight heparins (LWMHs).
Collapse
Affiliation(s)
- Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Luigi Falco
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
| | - Viviana Tessitore
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
| | - Alfredo Mauriello
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
| | - Dario Catapano
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
| | - Nicola Napolitano
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
| | - Moiz Tariq
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, NA, Italy (A.D.)
| | - Giovanni Ciccarelli
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonello D’Andrea
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, NA, Italy (A.D.)
- Cardiology Unit, Umberto I Hospital, 84014 Nocera Inferiore, SA, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
7
|
Poe A, Martinez Yus M, Wang H, Santhanam L. Lysyl oxidase like-2 in fibrosis and cardiovascular disease. Am J Physiol Cell Physiol 2023; 325:C694-C707. [PMID: 37458436 PMCID: PMC10635644 DOI: 10.1152/ajpcell.00176.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is an important and essential reparative response to injury that, if left uncontrolled, results in the excessive synthesis, deposition, remodeling, and stiffening of the extracellular matrix, which is deleterious to organ function. Thus, the sustained activation of enzymes that catalyze matrix remodeling and cross linking is a fundamental step in the pathology of fibrotic diseases. Recent studies have implicated the amine oxidase lysyl oxidase like-2 (LOXL2) in this process and established significantly elevated expression of LOXL2 as a key component of profibrotic conditions in several organ systems. Understanding the relationship between LOXL2 and fibrosis as well as the mechanisms behind these relationships can offer significant insights for developing novel therapies. Here, we summarize the key findings that demonstrate the link between LOXL2 and fibrosis and inflammation, examine current therapeutics targeting LOXL2 for the treatment of fibrosis, and discuss future directions for experiments and biomedical engineering.
Collapse
Affiliation(s)
- Alan Poe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Marta Martinez Yus
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| | - Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lakshmi Santhanam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
8
|
Wang H, Poe A, Martinez Yus M, Pak L, Nandakumar K, Santhanam L. Lysyl oxidase-like 2 processing by factor Xa modulates its activity and substrate preference. Commun Biol 2023; 6:375. [PMID: 37029269 PMCID: PMC10082071 DOI: 10.1038/s42003-023-04748-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) has been identified as an essential mediator of extracellular matrix (ECM) remodeling in several disease processes including cardiovascular disease. Thus, there is growing interest in understanding the mechanisms by which LOXL2 is regulated in cells and tissue. While LOXL2 occurs both in full length and processed forms in cells and tissue, the precise identity of the proteases that process LOXL2 and the consequences of processing on LOXL2's function remain incompletely understood. Here we show that Factor Xa (FXa) is a protease that processes LOXL2 at Arg-338. Processing by FXa does not affect the enzymatic activity of soluble LOXL2. However, in situ in vascular smooth muscle cells, LOXL2 processing by FXa results in decreased cross-linking activity in the ECM and shifts substrate preference of LOXL2 from type IV collagen to type I collagen. Additionally, processing by FXa increases the interactions between LOXL2 and prototypical LOX, suggesting a potential compensatory mechanism to preserve total LOXs activity in the vascular ECM. FXa expression is prevalent in various organ systems and shares similar roles in fibrotic disease progression as LOXL2. Thus, LOXL2 processing by FXa could have significant implications in pathologies where LOXL2 is involved.
Collapse
Affiliation(s)
- Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Alan Poe
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Marta Martinez Yus
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Lydia Pak
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Kavitha Nandakumar
- Department of Anesthesiology and CCM, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore MD, 21205, Baltimore, MD, USA
| | - Lakshmi Santhanam
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, 3400 N Charles St, Baltimore, MD, 21218, USA.
- Department of Anesthesiology and CCM, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore MD, 21205, Baltimore, MD, USA.
| |
Collapse
|
9
|
Reches G, Blondheim Shraga NR, Carrette F, Malka A, Saleev N, Gubbay Y, Ertracht O, Haviv I, Bradley LM, Levine F, Piran R. Resolving the conflicts around Par2 opposing roles in regeneration by comparing immune-mediated and toxic-induced injuries. Inflamm Regen 2022; 42:52. [PMID: 36447218 PMCID: PMC9706915 DOI: 10.1186/s41232-022-00238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Different factors may lead to hepatitis. Among which are liver inflammation and poisoning. We chose two hepatitis models, typical for these two underlying causes. Thus, we aimed to characterize the role of protease-activated receptor 2 (Par2) in liver regeneration and inflammation to reconcile Par2 conflicting role in many damage models, which sometimes aggravates the induced damage and sometimes alleviates it. METHODS WT and knockout (Par2KO) mice were injected with concanavalin A (ConA) to induce immune-mediated hepatitis or with carbon tetrachloride (CCl4) to elicit direct hepatic damage. To distinguish the immune component from the liver regenerative response, we conducted bone marrow (BM) replacements of WT and Par2KO mice and repeated the damage models. RESULTS ConA injection caused limited damage in Par2KO mice livers, while in the WT mice severe damage followed by leukocyte infiltration was evident. Reciprocal BM replacement of WT and Par2KO showed that WT BM-reconstituted Par2KO mice displayed marked liver damage, while in Par2KO BM-reconstituted WT mice, the tissue was generally protected. In the CCl4 direct damage model, hepatocytes regenerated in WT mice, whereas Par2KO mice failed to recover. Reciprocal BM replacement did not show significant differences in hepatic regeneration. In Par2KO mice, hepatitis was more apparent, while WT recovered regardless of the BM origin. CONCLUSIONS We conclude that Par2 activation in the immune system aggravates hepatitis and that Par2 activation in the damaged tissue promotes liver regeneration. When we incorporate this finding and revisit the literature reports, we reconciled the conflicts surrounding Par2's role in injury, recovery, and inflammation.
Collapse
Affiliation(s)
- Gal Reches
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Netta R. Blondheim Shraga
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Florent Carrette
- grid.479509.60000 0001 0163 8573Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Assaf Malka
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Natalia Saleev
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Yehuda Gubbay
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Offir Ertracht
- grid.415839.2Eliachar Research Laboratory, Galilee Medical Center, Nahariya, Israel
| | - Izhak Haviv
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Linda M. Bradley
- grid.479509.60000 0001 0163 8573Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fred Levine
- grid.479509.60000 0001 0163 8573Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037 USA
| | - Ron Piran
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| |
Collapse
|
10
|
Myocardial interaction of apixaban after experimental acute volume overload. J Int Med Res 2022; 50:3000605221137474. [DOI: 10.1177/03000605221137474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Objective Acute volume overload (AVO) induces early ischemia-like changes in intramyocardial arteries. We investigated whether the Factor Xa (FXa) inhibitor apixaban interacts with the myocardium early after AVO. Methods Fifty-five syngeneic Fisher rats underwent surgical abdominal aortocaval fistula to induce AVO. Among them, 17 rats were treated with apixaban (10 mg/kg/day). The myocardial outcome was studied using histological analysis and by measuring atrial natriuretic peptide (ANP) and matrix metalloprotease 9 (MMP9) gene expression. Results After 3 days, the total number of intramyocardial arteries was significantly increased in the AVO+apixaban (AVO+A) group compared with that in the AVO group (12.0 ± 1.2 and 10.2 ± 1.5, point score units, respectively). In the AVO+A group, there were significantly more edematous nuclei in myocardial arteries in the right and left ventricle compared with that in the AVO group. ANP and MMP9 expression levels continued to increase significantly in the AVO+A group compared with those in the AVO group. Conclusion Apixaban interacts with intramyocardial arteries in the left and right ventricles after AVO and ANP and MMP9 expression levels increased. Thus, the myocardial effect of Factor Xa inhibition needs to be monitored after AVO.
Collapse
|
11
|
Russo V, Fabiani D. Put out the fire: The pleiotropic anti-inflammatory action of non-vitamin K oral anticoagulants. Pharmacol Res 2022; 182:106335. [PMID: 35781059 DOI: 10.1016/j.phrs.2022.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Non-vitamin K antagonist oral anticoagulants (NOACs) should be the preferred anticoagulant strategy for preventing ischemic stroke in patients with atrial fibrillation (AF) at increased thromboembolic risk and for treating deep venous thromboembolism (DVT) in the general population. Beyond their inhibiting action on the activated factor X (FXa) or thrombin (FIIa), NOACs showed some pleiotropic anti-inflammatory effects. The present review aimed to describe the role of FXa and FIIa in the inflammation pathway and the potential anti-inflammatory effects of NOACs.
Collapse
Affiliation(s)
- Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli" - Monaldi Hospital, Naples, Italy.
| | - Dario Fabiani
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli" - Monaldi Hospital, Naples, Italy
| |
Collapse
|
12
|
Shrivastava G, Valenzuela-Leon PC, Chagas AC, Kern O, Botello K, Zhang Y, Martin-Martin I, Oliveira MB, Tirloni L, Calvo E. Alboserpin, the Main Salivary Anticoagulant from the Disease Vector Aedes albopictus, Displays Anti-FXa-PAR Signaling In Vitro and In Vivo. Immunohorizons 2022; 6:373-383. [PMID: 35738824 PMCID: PMC10753553 DOI: 10.4049/immunohorizons.2200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Blood-feeding arthropods secrete potent salivary molecules, which include platelet aggregation inhibitors, vasodilators, and anticoagulants. Among these molecules, Alboserpin, the major salivary anticoagulant from the mosquito vector Aedes albopictus, is a specific inhibitor of the human coagulation factor Xa (FXa). In this study, we investigated the anti-inflammatory properties of Alboserpin, in vitro and in vivo. In vitro, Alboserpin inhibited FXa-induced protease-activated receptor (PAR)-1, PAR-2, PAR-3, VCAM, ICAM, and NF-κB gene expression in primary dermal microvascular endothelial cells. Alboserpin also prevented FXa-stimulated ERK1/2 gene expression and subsequent inflammatory cytokine release (MCP-1, TNF-α, IL-6, IL-8, IL-1β, IL-18). In vivo, Alboserpin reduced paw edema induced by FXa and subsequent release of inflammatory cytokines (CCL2, MCP-1, IL-1α, IL-6, IL-1β). Alboserpin also reduced FXa-induced endothelial permeability in vitro and in vivo. These findings show that Alboserpin is a potent anti-inflammatory molecule, in vivo and in vitro, and may play a significant role in blood feeding.
Collapse
Affiliation(s)
- Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Andrezza Campos Chagas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Olivia Kern
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Karina Botello
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Yixiang Zhang
- Protein Chemistry Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT; and
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Markus Berger Oliveira
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD;
| |
Collapse
|
13
|
Oh H, Park HE, Song MS, Kim H, Baek JH. The Therapeutic Potential of Anticoagulation in Organ Fibrosis. Front Med (Lausanne) 2022; 9:866746. [PMID: 35652066 PMCID: PMC9148959 DOI: 10.3389/fmed.2022.866746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Fibrosis, also known as organ scarring, describes a pathological stiffening of organs or tissues caused by increased synthesis of extracellular matrix (ECM) components. In the past decades, mounting evidence has accumulated showing that the coagulation cascade is directly associated with fibrotic development. Recent findings suggest that, under inflammatory conditions, various cell types (e.g., immune cells) participate in the coagulation process causing pathological outcomes, including fibrosis. These findings highlighted the potential of anticoagulation therapy as a strategy in organ fibrosis. Indeed, preclinical and clinical studies demonstrated that the inhibition of blood coagulation is a potential intervention for the treatment of fibrosis across all major organs (e.g., lung, liver, heart, and kidney). In this review, we aim to summarize our current knowledge on the impact of components of coagulation cascade on fibrosis of various organs and provide an update on the current development of anticoagulation therapy for fibrosis.
Collapse
|
14
|
D’Alessandro E, Scaf B, Munts C, van Hunnik A, Trevelyan CJ, Verheule S, Spronk HMH, Turner NA, ten Cate H, Schotten U, van Nieuwenhoven FA. Coagulation Factor Xa Induces Proinflammatory Responses in Cardiac Fibroblasts via Activation of Protease-Activated Receptor-1. Cells 2021; 10:2958. [PMID: 34831181 PMCID: PMC8616524 DOI: 10.3390/cells10112958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
Coagulation factor (F) Xa induces proinflammatory responses through activation of protease-activated receptors (PARs). However, the effect of FXa on cardiac fibroblasts (CFs) and the contribution of PARs in FXa-induced cellular signalling in CF has not been fully characterised. To answer these questions, human and rat CFs were incubated with FXa (or TRAP-14, PAR-1 agonist). Gene expression of pro-fibrotic and proinflammatory markers was determined by qRT-PCR after 4 and 24 h. Gene silencing of F2R (PAR-1) and F2RL1 (PAR-2) was achieved using siRNA. MCP-1 protein levels were measured by ELISA of FXa-conditioned media at 24 h. Cell proliferation was assessed after 24 h of incubation with FXa ± SCH79797 (PAR-1 antagonist). In rat CFs, FXa induced upregulation of Ccl2 (MCP-1; >30-fold at 4 h in atrial and ventricular CF) and Il6 (IL-6; ±7-fold at 4 h in ventricular CF). Increased MCP-1 protein levels were detected in FXa-conditioned media at 24 h. In human CF, FXa upregulated the gene expression of CCL2 (>3-fold) and IL6 (>4-fold) at 4 h. Silencing of F2R (PAR-1 gene), but not F2RL1 (PAR-2 gene), downregulated this effect. Selective activation of PAR-1 by TRAP-14 increased CCL2 and IL6 gene expression; this was prevented by F2R (PAR-1 gene) knockdown. Moreover, SCH79797 decreased FXa-induced proliferation after 24 h. In conclusion, our study shows that FXa induces overexpression of proinflammatory genes in human CFs via PAR-1, which was found to be the most abundant PARs isoform in this cell type.
Collapse
Affiliation(s)
- Elisa D’Alessandro
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6220 MD Maastricht, The Netherlands; (E.D.); (H.M.H.S.); (H.t.C.)
| | - Billy Scaf
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (B.S.); (C.M.); (A.v.H.); (S.V.); (U.S.)
| | - Chantal Munts
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (B.S.); (C.M.); (A.v.H.); (S.V.); (U.S.)
| | - Arne van Hunnik
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (B.S.); (C.M.); (A.v.H.); (S.V.); (U.S.)
| | - Christopher J. Trevelyan
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (C.J.T.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (B.S.); (C.M.); (A.v.H.); (S.V.); (U.S.)
| | - Henri M. H. Spronk
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6220 MD Maastricht, The Netherlands; (E.D.); (H.M.H.S.); (H.t.C.)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (C.J.T.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Hugo ten Cate
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6220 MD Maastricht, The Netherlands; (E.D.); (H.M.H.S.); (H.t.C.)
- Center for Thrombosis and Haemostasis, Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (B.S.); (C.M.); (A.v.H.); (S.V.); (U.S.)
| | - Frans A. van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (B.S.); (C.M.); (A.v.H.); (S.V.); (U.S.)
| |
Collapse
|
15
|
Rivaroxaban attenuates cardiac hypertrophy by inhibiting protease-activated receptor-2 signaling in renin-overexpressing hypertensive mice. Hypertens Res 2021; 44:1261-1273. [PMID: 34285375 DOI: 10.1038/s41440-021-00700-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/07/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Rivaroxaban (Riv), a direct factor Xa (FXa) inhibitor, exerts anti-inflammatory effects in addition to anticoagulation. However, its role in cardiovascular remodeling is largely unknown. We tested the hypothesis that Riv attenuates the progression of cardiac hypertrophy and fibrosis induced by continuous activation of the renin-angiotensin system (RAS) in renin-overexpressing hypertensive transgenic (Ren-Tg) mice. We treated 12-week-old male Ren-Tg and wild-type (WT) mice with a diet containing Riv (12 mg/kg/day) or a regular diet for 4 weeks. After this, FXa in plasma significantly increased in Ren-Tg mice compared with WT mice, and Riv inhibited this increase. Left ventricular wall thickness (LVWT) and the area of cardiac fibrosis evaluated by Masson's trichrome staining were greater in Ren-Tg mice than in WT mice, and Riv decreased them. Cardiac expression levels of the protease-activated receptor (PAR)-2, tumor necrosis factor-α, transforming growth factor (TGF)-β1, and collagen type 3 α1 (COL3A1) genes were all greater in Ren-Tg mice than in WT mice, and Riv attenuated these increases. To investigate the possible involvement of PAR-2, we treated Ren-Tg mice with a continuous subcutaneous infusion of 10 μg/kg/day of the PAR-2 antagonist FSLLRY for 4 weeks. FSLLRY significantly decreased LVWT and cardiac expression of PAR-2, TGF-β1, and COL3A1. In isolated cardiac fibroblasts (CFs), Riv or FSLLRY pretreatment inhibited the FXa-induced increase in the phosphorylation of extracellular signal-regulated kinases. In addition, Riv or FSLLRY inhibited FXa-stimulated wound closure in CFs. Riv exerts a protective effect against cardiac hypertrophy and fibrosis development induced by continuous activation of the RAS, partly by inhibiting PAR-2.
Collapse
|
16
|
Ahmed IA, Jaffa MA, Moussa M, Hatem D, El-Achkar GA, Al Sayegh R, Karam M, Hamade E, Habib A, Jaffa AA. Plasma Kallikrein as a Modulator of Liver Injury/Remodeling. Front Pharmacol 2021; 12:715111. [PMID: 34566641 PMCID: PMC8458624 DOI: 10.3389/fphar.2021.715111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The occurrence and persistence of hepatic injury which arises from cell death and inflammation result in liver disease. The processes that lead to liver injury progression and resolution are still not fully delineated. The plasma kallikrein-kinin system (PKKS) has been shown to play diverse functions in coagulation, tissue injury, and inflammation, but its role in liver injury has not been defined yet. In this study, we have characterized the role of the PKKS at various stages of liver injury in mice, as well as the direct effects of plasma kallikrein on human hepatocellular carcinoma cell line (HepG2). Histological, immunohistochemical, and gene expression analyses were utilized to assess cell injury on inflammatory and fibrotic factors. Acute liver injury triggered by carbon tetrachloride (CCl4) injection resulted in significant upregulation of the plasma kallikrein gene (Klkb1) and was highly associated with the high mobility group box 1 gene, the marker of cell death (r = 0.75, p < 0.0005, n = 7). In addition, increased protein expression of plasma kallikrein was observed as clusters around necrotic areas. Plasma kallikrein treatment significantly increased the proliferation of CCl4-induced HepG2 cells and induced a significant increase in the gene expression of the thrombin receptor (protease activated receptor-1), interleukin 1 beta, and lectin–galactose binding soluble 3 (galectin-3) (p < 0.05, n = 4). Temporal variations in the stages of liver fibrosis were associated with an increase in the mRNA levels of bradykinin receptors: beta 1 and 2 genes (p < 0.05; n = 3–10). In conclusion, these findings indicate that plasma kallikrein may play diverse roles in liver injury, inflammation, and fibrosis, and suggest that plasma kallikrein may be a target for intervention in the states of liver injury.
Collapse
Affiliation(s)
- Ibrahim A Ahmed
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| | - Miran A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Mayssam Moussa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| | - Duaa Hatem
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,Section of Pharmacology, Department of Bioethics and Safety, Catholic University, Rome, Italy
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| | - Rola Al Sayegh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,INSERM-UMR1149, Centre de Recherche sur l'Inflammation, and Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Universite de Paris, Paris, France
| | - Mia Karam
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Aida Habib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,INSERM-UMR1149, Centre de Recherche sur l'Inflammation, and Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Universite de Paris, Paris, France
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
17
|
Role of rivaroxaban in sunitinib-induced renal injuries via inhibition of oxidative stress-induced apoptosis and inflammation through the tissue nacrosis factor-α induced nuclear factor-κappa B signaling pathway in rats. J Thromb Thrombolysis 2021; 50:361-370. [PMID: 32358665 DOI: 10.1007/s11239-020-02123-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rivaroxaban (RIVA) inhibits factor Xa and exhibits antithrombotic and anti-inflammatory activities by inhibiting several cellular signaling molecules. Sunitinib (SUN) is FDA approved first-line drug for metastatic renal cancers and advanced cancerous states of gastrointestinal tract. Present hypothesis was aimed to examine the nephroprotective potential of RIVA in SUN-induced nephrotoxicity, mediated through the inhibition of oxidative stress-induced apoptosis and inflammation, via the TNF-α/NFk-B signaling pathways. Wistar rats 200-250 g were selected and divided randomely in 5 groups (n = 6): Group 1 kept as normal control; Group 2 as disease control and exposed to SUN 50 mg/kg thrice-weekly upto 21 days; Groups 3 and 4, were treatment groups and administered SUN 50 mg/kg thrice-weekly as of group 2 and treated with RIVA 5 and 10 mg/kg/daily for 21 days, respectively; and Group 5 fed with RIVA alone (10 mg/kg/daily for 21 days). Serum was separated from blood to estimate serum biochemical parameters and kidney tissues were collected to estimate antioxidant enzyme, mRNA and protein expression. SUN exposure significantly elevated levels of creatinine, urea, uric acid, blood urea nitrogen, albumin, and bilirubin, and decreased serum magnesium and iron levels. Malondialdehyde and catalase levels were significantly increased and glutathione and glutathione reductase levels were significantly decreased. Intracellular levels of caspase-3 and TNF-α were significantly increased; RIVA treatment restored the altered levels. In SUN-exposed animals, western blotting revealed significantly elevated NFk-B, IL-17, and MCP-1 expression, and IKBα levels were significantly downregulated; RIVA restored these levels to normal values.RIVA treatment significantly restored the apoptotic and inflammatory parameters in SUN-damaged renal tissues.
Collapse
|
18
|
Hayashi T. [Proteinase-activated Receptor 1 and 2 under Hypoxic Stress]. YAKUGAKU ZASSHI 2021; 141:1195-1204. [PMID: 34602516 DOI: 10.1248/yakushi.21-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients with sleep-disordered breathing exhibit intermittent hypoxia that causes increased oxidative stress, accelerates atherosclerosis, and pulmonary hypertension, resulting in life-threatening arrhythmias and congestive heart failure. Hypoxic stress caused by intermittent hypoxia might be involved in the pathophysiology of many cardiovascular diseases, especially those involving atrial fibrillation, for which anti-coagulant therapy may be recommended. In this study, the inhibition of proteinase-activated receptor (PAR) 1/2 significantly reduced oxidative stress and fibrosis while suppressing the activation of MAPK or Smad pathways and the gene expression of molecules responsible for the pathways in the myocardium, consequently attenuating hypoxia-mediated cardiomyocyte hypertrophy. These findings suggest that the inhibition of PAR 1/2 could be a novel potential treatment option to prevent cardiac remodeling in patients with sleep apnea syndrome and atrial fibrillation or chronic thromboembolic pulmonary hypertension.
Collapse
Affiliation(s)
- Tetsuya Hayashi
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences, Educational Foundation of Osaka Medical and Pharmaceutical University
| |
Collapse
|
19
|
Abstract
Human factor Xa (FXa) is a serine protease of the common coagulation pathway. FXa is known to activate prothrombin to thrombin, which eventually leads to the formation of cross-linked blood clots. While this process is important in maintaining hemostasis, excessive thrombin generation results in a host of thrombotic conditions. FXa has also been linked to inflammation via protease-activated receptors. Together, coagulopathy and inflammation have been implicated in the pathogenesis of viral infections, including the current coronavirus pandemic. Direct FXa inhibitors have been shown to possess anti-inflammatory and antiviral effects, in addition to their established anticoagulant activity. This review summarizes the pharmacological activities of direct FXa inhibitors, their pharmacokinetics, potential drug–drug interactions and adverse effects, and the details of clinical trials involving direct FXa inhibitors in coronavirus disease 2019 (COVID-19) patients.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125-1089, USA.
| |
Collapse
|
20
|
Avet C, Sturino C, Grastilleur S, Gouill CL, Semache M, Gross F, Gendron L, Bennani Y, Mancini JA, Sayegh CE, Bouvier M. The PAR2 inhibitor I-287 selectively targets Gα q and Gα 12/13 signaling and has anti-inflammatory effects. Commun Biol 2020; 3:719. [PMID: 33247181 PMCID: PMC7695697 DOI: 10.1038/s42003-020-01453-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023] Open
Abstract
Protease-activated receptor-2 (PAR2) is involved in inflammatory responses and pain, therefore representing a promising therapeutic target for the treatment of immune-mediated inflammatory diseases. However, as for other GPCRs, PAR2 can activate multiple signaling pathways and those involved in inflammatory responses remain poorly defined. Here, we describe a new selective and potent PAR2 inhibitor (I-287) that shows functional selectivity by acting as a negative allosteric regulator on Gαq and Gα12/13 activity and their downstream effectors, while having no effect on Gi/o signaling and βarrestin2 engagement. Such selective inhibition of only a subset of the pathways engaged by PAR2 was found to be sufficient to block inflammation in vivo. In addition to unraveling the PAR2 signaling pathways involved in the pro-inflammatory response, our study opens the path toward the development of new functionally selective drugs with reduced liabilities that could arise from blocking all the signaling activities controlled by the receptor. Avet et al. characterize I-287, an inhibitor to protease-activated receptor 2 using BRET-assays. They find that I-287 selectively inhibits Gαq and Gα12/13 without affecting the activation of Gi/o or the recruitment of βarrestin2 and that it blocks inflammation in vitro and in vivo.
Collapse
Affiliation(s)
- Charlotte Avet
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada, H3C 1J4
| | - Claudio Sturino
- Vertex Pharmaceuticals (Canada), Inc., Laval, QC, Canada, H7V 4A7.,Paraza Pharma, Inc., Saint-Laurent, QC, Canada, H4S 2E1
| | - Sébastien Grastilleur
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'Excellence en Neurosciences de l'Université de Sherbrooke, Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada, H3C 1J4
| | - Meriem Semache
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada, H3C 1J4.,Domain Therapeutics North America, Saint-Laurent, QC, Canada, H4S 1Z9
| | - Florence Gross
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada, H3C 1J4.,Domain Therapeutics North America, Saint-Laurent, QC, Canada, H4S 1Z9
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'Excellence en Neurosciences de l'Université de Sherbrooke, Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | - Youssef Bennani
- Vertex Pharmaceuticals (Canada), Inc., Laval, QC, Canada, H7V 4A7.,AdMare BioInnovations, Saint-Laurent, QC, Canada, H4S 1Z9
| | - Joseph A Mancini
- Vertex Pharmaceuticals (Canada), Inc., Laval, QC, Canada, H7V 4A7.,Vertex Pharmaceuticals Inc., Boston, MA, 02210, USA
| | - Camil E Sayegh
- Vertex Pharmaceuticals (Canada), Inc., Laval, QC, Canada, H7V 4A7.,Ra Pharmaceuticals, Inc., Cambridge, MA, 02140, USA
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada, H3C 1J4.
| |
Collapse
|
21
|
Aulin J, Hijazi Z, Siegbahn A, Andersson U, Alexander JH, Connolly SJ, Ezekowitz MD, Gersh BJ, Granger CB, Horowitz J, Hylek EM, Lopes RD, Yusuf S, Wallentin L, Oldgren J. Serial measurement of interleukin-6 and risk of mortality in anticoagulated patients with atrial fibrillation: Insights from ARISTOTLE and RE-LY trials. J Thromb Haemost 2020; 18:2287-2295. [PMID: 32510737 DOI: 10.1111/jth.14947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The inflammatory biomarker interleukin-6 (IL-6) is associated with mortality in atrial fibrillation (AF). OBJECTIVE To investigate if repeated IL-6 measurements improve the prognostication for stroke or systemic embolism, major bleeding, and mortality in anticoagulated patients with AF. METHODS IL-6 levels by ELISA were measured at study entry and at 2 months in 4830 patients in the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial with 1.8 years median follow-up. In the Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) trial, IL-6 was measured at study entry, 3, 6, and 12 months in 2559 patients with 2.0 years median follow-up. Associations between a second IL-6 measurement and outcomes, adjusted for baseline IL-6, clinical variables, and other cardiovascular biomarkers, were analyzed by Cox regression. RESULTS Median IL-6 levels were 2.0 ng/L (interquartile range [IQR] 1.30-3.20) and 2.10 ng/L (IQR 1.40-3.40) at the two time-points in ARISTOTLE, and, in RE-LY, 2.5 ng/L (IQR 1.6-4.3), 2.5 ng/L (IQR 1.6-4.2), 2.4 ng/L (IQR 1.6, 3.9), and 2.4 ng/L (IQR 1.5, 3.9), respectively. IL-6 was associated with mortality; hazard ratios per 50% higher IL-6 at 2 or 3 months, respectively, were 1.32 (95% confidence interval, 1.23-1.41; P < .0001) in ARISTOTLE, and 1.11 (1.01-1.22, P = .0290) in RE-LY; with improved C index from 0.74 to 0.76 in ARISTOTLE, but not in the smaller RE-LY cohort. There were no consistent associations with second IL-6 and stroke or systemic embolism, or major bleeding. CONCLUSIONS Persistent systemic inflammatory activity, assessed by repeated IL-6 measurements, is associated with mortality independent of established clinical risk factors and other strong cardiovascular biomarkers in anticoagulated patients with AF.
Collapse
Affiliation(s)
- Julia Aulin
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Ziad Hijazi
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Agneta Siegbahn
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Ulrika Andersson
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - John H Alexander
- Duke Clinical Research Institute, Duke University Medical Center, Duke Health, Durham, NC, USA
| | - Stuart J Connolly
- Population Health Research Institute, McMaster U and Hamilton Health Sciences, Hamilton, ON, Canada
| | | | | | - Christopher B Granger
- Duke Clinical Research Institute, Duke University Medical Center, Duke Health, Durham, NC, USA
| | | | | | - Renato D Lopes
- Duke Clinical Research Institute, Duke University Medical Center, Duke Health, Durham, NC, USA
| | - Salim Yusuf
- Population Health Research Institute, McMaster U and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Jonas Oldgren
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
El-Ghafar OAMA, Helal GK, Abo-Youssef AM. Apixaban exhibits anti-arthritic effects by inhibiting activated factor X-mediated JAK2/STAT3 and MAPK phosphorylation pathways. Inflammopharmacology 2020; 28:1253-1267. [PMID: 32141012 DOI: 10.1007/s10787-020-00693-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Activated factor X (FXa) is strongly linked to various inflammatory events. This study aimed to investigate the effect of FXa on janus kinase2/signal transducers and activators of transcription3 (JAK2/STAT3) and mitogen-activated protein kinase (MAPK) phosphorylation in relation to rheumatoid arthritis (RA). It also extends its scope to explore the possible anti-arthritic effects of apixaban, a selective FXa inhibitor. Rats were allocated into normal control; complete Freund's adjuvant (CFA, 0.4 ml/4 days/12 days); FXa (120 µg/kg/day/3 days) and CFA + FXa groups as well as three treated groups including CFA + apixaban; FXa + apixaban and CFA + FXa + apixaban. Apixaban was administered at a dose of 10 mg/kg/12 h for15 days. By the end of the experimental period, tissue samples were collected for the assessment of phosphorylated (p)-JAK2, STAT3, MAPK, matrixmetalloprotein-1 (MMP-1) and protease-activated receptor 2. Furthermore, Serum interleukin-6 (IL-6), platelet-derived growth factor (PDGF), anti-citrullinated protein antibody (ACPA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), plasma level of FXa and prothrombin time were evaluated. In support, histopathological and macroscopical examinations were performed. FXa activated JAK2, STAT3 and MAPK phosphorylation through activation of PAR 2, PDGF and IL-6 and concomitantly led to a significant elevation in ACPA, MMP-1 and 8-OHdG. Apixaban markedly amended FXa-induced changes. Conclusively, the current study revealed that FXa may have a drastic role in RA progression and pathogenesis at least through stimulation of JAK2/STAT3 and MAPK phosphorylation. Furthermore, apixaban exerted robust arthro-protective effects. These beneficial outcomes could be attributed to its ability to impede JAK2/STAT3 and MAPK activation, as well as to its antioxidant property.
Collapse
Affiliation(s)
| | - Gouda Kamel Helal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, 3 Cairo-Belbeis Desert Rd, Second Al Salam, Cairo, Egypt
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt.
| |
Collapse
|
23
|
Guo X, Kolpakov MA, Hooshdaran B, Schappell W, Wang T, Eguchi S, Elliott KJ, Tilley DG, Rao AK, Andrade-Gordon P, Bunce M, Madhu C, Houser SR, Sabri A. Cardiac Expression of Factor X Mediates Cardiac Hypertrophy and Fibrosis in Pressure Overload. ACTA ACUST UNITED AC 2020; 5:69-83. [PMID: 32043021 PMCID: PMC7000872 DOI: 10.1016/j.jacbts.2019.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022]
Abstract
Factor X expression was increased in the heart following pressure overload and in isolated cardiac myocytes and fibroblasts. Rivaroxaban treatment at doses that do not affect thrombin generation, blood coagulation or cardiac hemostasis attenuated cardiac inflammation, hypertrophy, and fibrosis caused by pressure overload and improved cardiac diastolic function. Activated coagulation factor X induced PAR-1/-2–mediated elongated cardiomyocyte hypertrophy and PAR1-mediated cardiac fibroblast proliferation, migration and differentiation. Activated coagulation factor X derived from a cardiac source may represent an important physiologic and pathophysiologic activator of PAR-1/PAR-2. Non-anticoagulation dosage of rivaroxaban could provide an effective therapy to attenuate early phases of heart failure development. Activated factor X is a key component of the coagulation cascade, but whether it directly regulates pathological cardiac remodeling is unclear. In mice subjected to pressure overload stress, cardiac factor X mRNA expression and activity increased concurrently with cardiac hypertrophy, fibrosis, inflammation and diastolic dysfunction, and responses blocked with a low coagulation-independent dose of rivaroxaban. In vitro, neurohormone stressors increased activated factor X expression in both cardiac myocytes and fibroblasts, resulting in activated factor X-mediated activation of protease-activated receptors and pro-hypertrophic and -fibrotic responses, respectively. Thus, inhibition of cardiac-expressed activated factor X could provide an effective therapy for the prevention of adverse cardiac remodeling in hypertensive patients.
Collapse
Affiliation(s)
- Xinji Guo
- Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Mikhail A Kolpakov
- Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Bahman Hooshdaran
- Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - William Schappell
- Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Tao Wang
- Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Katherine J Elliott
- Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Douglas G Tilley
- Center of Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - A Koneti Rao
- Sol Sherry Thrombosis Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | - Steven R Houser
- Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Abdelkarim Sabri
- Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Activated clotting factor X mediates mitochondrial alterations and inflammatory responses via protease-activated receptor signaling in alveolar epithelial cells. Eur J Pharmacol 2019; 869:172875. [PMID: 31877279 DOI: 10.1016/j.ejphar.2019.172875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
There is growing evidence for the contribution of the activated coagulation factor X (FXa) in the development of chronic inflammatory lung diseases. Therefore, we aimed to investigate effects of exogenous FXa on mitochondrial and metabolic function as well as the induction of inflammatory molecules in type II alveolar epithelial cells. Effects of FXa on epithelial cells were investigated in A549 cell line. Activation of extracellular signal-regulated kinase (ERK) and induction of inflammatory molecules were examined by immunoblot and gene expression analysis. Mitochondrial function was assessed by the measurement of oxygen consumption during maximal oxidative phosphorylation and quantitative determination of cardiolipin oxidation. Apoptosis was tested using a caspase 3 antibody. Metabolic activity and lactate dehydrogenase assay were applied for the detection of cellular viability. FXa activated ERK1/2 and induced an increase in the expression of pro-inflammatory cytokines, which was prevented by an inhibitor of FXa, edoxaban, or an inhibitor of protease-activated receptor 1, vorapaxar. Exposure to FXa caused mitochondrial alteration with restricted capacity for ATP generation, which was effectively prevented by edoxaban, vorapaxar and GB83 (inhibitor of protease-activated receptor 2). Of note, exposure to FXa did not initiate apoptosis in epithelial cells. FXa-dependent pro-inflammatory state and impairment of mitochondria did not reach the level of significance in lung epithelial cells. However, these effects might limit regenerative potency of lung epithelial cells, particular under clinical circumstances where lung injury causes exposure to clotting factors.
Collapse
|
25
|
Zhang L, Yaron JR, Tafoya AM, Wallace SE, Kilbourne J, Haydel S, Rege K, McFadden G, Lucas AR. A Virus-Derived Immune Modulating Serpin Accelerates Wound Closure with Improved Collagen Remodeling. J Clin Med 2019; 8:jcm8101626. [PMID: 31590323 PMCID: PMC6832452 DOI: 10.3390/jcm8101626] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023] Open
Abstract
Numerous treatments have been developed to promote wound healing based on current understandings of the healing process. Hemorrhaging, clotting, and associated inflammation regulate early wound healing. We investigated treatment with a virus-derived immune modulating serine protease inhibitor (SERPIN), Serp-1, which inhibits thrombolytic proteases and inflammation, in a mouse excisional wound model. Saline or recombinant Serp-1 were applied directly to wounds as single doses of 1 μg or 2 µg or as two 1 µg boluses. A chitosan-collagen hydrogel was also tested for Serp-1 delivery. Wound size was measured daily for 15 days and scarring assessed by Masson’s trichrome, Herovici’s staining, and immune cell dynamics and angiogenesis by immunohistochemistry. Serp-1 treatment significantly accelerated wound healing, but was blocked by urokinase-type plasminogen activator (uPAR) antibody. Repeated dosing at a lower concentration was more effective than single high-dose serpin. A single application of Serp-1-loaded chitosan-collagen hydrogel was as effective as repeated aqueous Serp-1 dosing. Serp-1 treatment of wounds increased arginase-1-expressing M2-polarized macrophage counts and periwound angiogenesis in the wound bed. Collagen staining also demonstrated that Serp-1 improves collagen maturation and organization at the wound site. Serp-1 has potential as a safe and effective immune modulating treatment that targets thrombolytic proteases, accelerating healing and reducing scar in deep cutaneous wounds.
Collapse
Affiliation(s)
- Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Jordan R Yaron
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Amanda M Tafoya
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Sarah E Wallace
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Jacquelyn Kilbourne
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Shelley Haydel
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA.
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Alexandra R Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
26
|
Liu J, Nishida M, Inui H, Chang J, Zhu Y, Kanno K, Matsuda H, Sairyo M, Okada T, Nakaoka H, Ohama T, Masuda D, Koseki M, Yamashita S, Sakata Y. Rivaroxaban Suppresses the Progression of Ischemic Cardiomyopathy in a Murine Model of Diet-Induced Myocardial Infarction. J Atheroscler Thromb 2019; 26:915-930. [PMID: 30867376 PMCID: PMC6800390 DOI: 10.5551/jat.48405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
AIM A direct oral anti-coagulant, FXa inhibitor, has been applied to the clinical treatment of myocardial infarction (MI). Experimental studies in mice indicated that FXa inhibitors reduced atherosclerosis and prevented cardiac dysfunction after coronary ligation. These studies suggested that protease-activated receptor (PAR) 2, a major receptor of activated FX, may play an important role in atherosclerosis and cardiac remodeling. METHODS The effects of a FXa inhibitor, rivaroxaban, were investigated in a new murine model of ischemic cardiomyopathy (ICM) using SR-BI KO/ApoeR61h/h mice (Hypo E mice) that developed MI by high-fat diet loading. RESULTS Hypo E mice were fed rivaroxaban-containing (n=49) or control chow diets (n=126) after the induction of MI. The survival curve of the rivaroxaban-treated group 2 weeks after the induction of MI was improved significantly as compared with the non-treatment group (survival rate: 75.5% vs. 47.4%, respectively, p=0.0012). Echocardiography and the expression of BNP showed that rivaroxaban attenuated heart failure. Histological analyses revealed that rivaroxaban reduced aortic atherosclerosis and coronary occlusion, and markedly attenuated cardiac fibrosis. Rivaroxaban treatment decreased cardiac PAR2 levels and pro-inflammatory genes. In vitro, rivaroxaban application demonstrated the increase of cell viability against hypoxia in cardiac myocytes and the reduction of hypoxia-induced inflammation and fibrosis-related molecules in cardiac fibroblasts. The effects of the PAR2 antagonist against hypoxia-induced inflammation were comparable to rivaroxaban in cardiac fibroblasts. CONCLUSIONS Rivaroxaban treatment just after MI in Hypo E mice prevented the progression of ICM by attenuating cardiac remodeling, partially through the suppression of the PAR2-mediated inflammatory pathway.
Collapse
Affiliation(s)
- Jingyi Liu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Health and Counseling Center, Osaka University, Toyonaka, Osaka, Japan
| | - Hiroyasu Inui
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jiuyang Chang
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yinghong Zhu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Kanno
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hibiki Matsuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masami Sairyo
- Department of Cardiology, Kawanishi City Hospital, Kawanishi, Hyogo, Japan
| | - Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hajime Nakaoka
- Department of Cardiology, Kakogawa Central City Hospital, Kakogawa, Hyogo, Japan
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | | | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shizuya Yamashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Rinku General Medical Center, Izumisano, Osaka, Japan
- Department of Community Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
27
|
Ma D, Peng L. Vitamin D and pulmonary fibrosis: a review of molecular mechanisms. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3171-3178. [PMID: 31934161 PMCID: PMC6949840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 02/18/2019] [Indexed: 06/10/2023]
Abstract
Pulmonary fibrosis is a serious interstitial disease characterized by initial diffuse alveolar inflammation, fibroblast proliferation, ECM accumulation, and the destruction of normal pulmonary tissues, whose etiology remains unknown and therapeutic options remain limited. The prevalence of Vitamin D deficiency is increasing and has been linked to pulmonary fibrosis. In recent years, many studies focused on the mechanistic pathway of Vitamin D in the prevention of fibrosis. This review highlights the current evidence on the molecular mechanisms of Vitamin D in pulmonary fibrosis. We want to provide new clues to the clinical management of pulmonary fibrosis.
Collapse
Affiliation(s)
- Dandan Ma
- Department of Critical-Care Medicine, Affiliated Jining First People’s HospitalShandong, China
| | - Lipan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250000, Shandong, China
| |
Collapse
|
28
|
Owens EP, Vesey DA, Kassianos AJ, Healy H, Hoy WE, Gobe GC. Biomarkers and the role of mast cells as facilitators of inflammation and fibrosis in chronic kidney disease. Transl Androl Urol 2019; 8:S175-S183. [PMID: 31236335 DOI: 10.21037/tau.2018.11.03] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic kidney disease (CKD) is a clinical syndrome with many adverse sequelae and is currently a major global health and economic burden. Regardless of aetiology, inflammation and fibrosis are common manifestations of CKD. Unfortunately, the underlying pathophysiological mechanisms are poorly understood, and robust prognostic and early diagnostic biomarkers of CKD are lacking. One immune cell population that has received little attention in the context of CKD is mast cells (MCs). This mini review will examine the role of MCs as facilitators of kidney inflammation and fibrosis, propose a mechanistic structure for MCs in CKD, and give consideration to biomarkers specific for MC activation that can be deployed clinically. MCs are derived from haematopoietic stem cells. They are characterised by electron-dense granules in the cytoplasm, filled with preformed mediators. MCs can synthesise a range of bio-active compounds. Activation of MCs modulates an innate immune and adaptive effector response. Increased MC counts have been observed in animal models of kidney disease and a range of kidney diseases in humans where MC presence has been linked to biomarkers of kidney function and tissue damage. To further implicate MCs in CKD, several chemokines, cytokines and proteases released by MCs have been observed in their own right in various kidney diseases and linked to progressive CKD. One compound released by MCs that is of particular interest is the MC-specific protease tryptase. This protease is capable of activating the G-protein coupled receptor (GPCR) protease activated receptor-2 (PAR-2). PAR-2 is widely expressed throughout the kidney and highly expressed in the tubular epithelial cells where its activation induces robust inflammatory and fibrotic responses. Novel prognostic and diagnostic biomarkers of CKD are needed. MC-specific proteases [tryptase, chymase and carboxypeptidase A3 (CPA3)] are easily detectable in the blood but questionably in the urine. This review aims to promote these as prognostic and diagnostic biomarkers in the context of CKD.
Collapse
Affiliation(s)
- Evan P Owens
- NHMRC Chronic Kidney Disease Centre of Research Excellence, University of Queensland, Brisbane, Australia.,Kidney Disease Research Collaborative, University of Queensland and Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia
| | - David A Vesey
- Kidney Disease Research Collaborative, University of Queensland and Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia
| | - Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Helen Healy
- NHMRC Chronic Kidney Disease Centre of Research Excellence, University of Queensland, Brisbane, Australia.,Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Wendy E Hoy
- NHMRC Chronic Kidney Disease Centre of Research Excellence, University of Queensland, Brisbane, Australia.,Centre for Chronic Disease, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Glenda C Gobe
- NHMRC Chronic Kidney Disease Centre of Research Excellence, University of Queensland, Brisbane, Australia.,Kidney Disease Research Collaborative, University of Queensland and Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia.,Centre for Chronic Disease, Faculty of Medicine, University of Queensland, Brisbane, Australia.,School of Biomedical Science, University of Queensland, Brisbane, Australia
| |
Collapse
|
29
|
Papadaki S, Tselepis AD. Nonhemostatic Activities of Factor Xa: Are There Pleiotropic Effects of Anti-FXa Direct Oral Anticoagulants? Angiology 2019; 70:896-907. [PMID: 31010298 DOI: 10.1177/0003319719840861] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Factor Xa (FXa) is the key serine protease of the coagulation cascade as it is the point of convergence of the intrinsic and extrinsic pathways, leading to the formation of thrombin. Factor Xa is an established target of anticoagulation therapy, due to its central role in coagulation. Over the past years, several direct oral anticoagulants (DOACs) targeting FXa have been developed. Rivaroxaban, apixaban, and edoxaban are used in clinical practice for prevention and treatment of thrombotic diseases. Increasing evidence suggests that FXa exerts nonhemostatic cellular effects that are mediated mainly through protease-activated receptors-1 and -2 and are involved in pathophysiological conditions, such as atherosclerosis, inflammation, and fibrosis. Direct inhibition of FXa by DOACs could be beneficial in these conditions. This is a narrative review that focuses on the cellular effects of FXa in various cell types and conditions, as well as on the possible pleiotropic effects of FXa-targeting DOACs.
Collapse
Affiliation(s)
- Styliani Papadaki
- 1 Department of Chemistry, Atherothrombosis Research Centre/Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
| | - Alexandros D Tselepis
- 1 Department of Chemistry, Atherothrombosis Research Centre/Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
30
|
Tsujino Y, Sakamoto T, Kinoshita K, Nakatani Y, Yamaguchi Y, Kataoka N, Nishida K, Kinugawa K. Edoxaban suppresses the progression of atrial fibrosis and atrial fibrillation in a canine congestive heart failure model. Heart Vessels 2019; 34:1381-1388. [DOI: 10.1007/s00380-019-01377-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
|
31
|
Mahmoud NI, Messiha BAS, Abo-Saif AA, Abdel-Bakky MS. Inhibition of activated factor X; a new pathway in ameliorating carbon tetrachloride-induced liver fibrosis in rats. J Biochem Mol Toxicol 2019; 33:e22287. [PMID: 30719803 DOI: 10.1002/jbt.22287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/13/2018] [Accepted: 12/21/2018] [Indexed: 11/10/2022]
Abstract
Activated factor X has a central role in the coagulation activation and also contributes to chronic inflammation and tissue fibrosis. In this study, rivaroxaban, a direct factor X inhibitor, attenuates liver fibrosis induced by carbon tetrachloride (CCl4 ). Male rats were randomly allocated into three groups: a control group, CCl 4 fibrotic group, and CCl 4 +rivaroxaban (5 mg/kg) group. Liver fibrosis was induced by subcutaneous injection of CCl 4 twice a week for 6 weeks. Rivaroxaban significantly restored the biochemical parameter including inflammatory and fibrosis markers with histopathological evidence using routine and Masson trichrome staining. It reduced also the expression of tissue factor, fibrin, transforming growth factor and α-smooth muscle actin in the liver tissues. This concludes that rivaroxaban attenuates liver injury caused by CCl 4 , at least in part by inhibiting coagulation and proinflammatory activation. In conclusion, rivaroxaban may be used for the management of liver fibrosis.
Collapse
Affiliation(s)
- Nesreen Ishak Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | | | - Ali Ahmed Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
32
|
Ma Y, Zhou Y, Wu F, Ji W, Zhang J, Wang X. The Bidirectional Interactions Between Inflammation and Coagulation in Fracture Hematoma. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:46-54. [PMID: 30129875 DOI: 10.1089/ten.teb.2018.0157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IMPACT STATEMENT The review leads to better understanding of the interrelation between inflammation mediators and coagulation factors in the early fracture hematoma, and their influences on hematoma formation in the beginning of fracture healing. Furthermore, development of therapies aimed at simultaneous modulation of both coagulation factors and inflammation factors that affect hematoma structure, rather than specific factors, may be most promising.
Collapse
Affiliation(s)
- Yaping Ma
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,2 Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JCMR-ZMU & URMC), Zunyi Medical University, Zunyi, China
| | - Yinghong Zhou
- 3 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Fujun Wu
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenjun Ji
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Zhang
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Wang
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,2 Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JCMR-ZMU & URMC), Zunyi Medical University, Zunyi, China.,3 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
33
|
Chung CC, Lin YK, Chen YC, Kao YH, Yeh YH, Chen YJ. Factor Xa inhibition by rivaroxaban regulates fibrogenesis in human atrial fibroblasts with modulation of nitric oxide synthesis and calcium homeostasis. J Mol Cell Cardiol 2018; 123:128-138. [PMID: 30213724 DOI: 10.1016/j.yjmcc.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/19/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rivaroxaban, a widely used factor Xa inhibitor in reducing stroke in atrial fibrillation (AF) patients has multiple biological effects with activation of protease-activated receptor (PAR) signaling. Atrial fibrosis plays a critical role in the pathophysiology of AF. In this study, we evaluated whether rivaroxaban regulates atrial fibroblast activity and its underlying mechanisms. METHODS AND RESULTS Migration, proliferation analyses, nitric oxide (NO) production assay, calcium fluorescence imaging, and western blots were conducted in human atrial fibroblasts with or without rivaroxaban (100 nmol/L or 300 nmol/L) and co-administration of L-NAME (L-NG-nitro arginine methyl ester, 100 μmol/L), EGTA (Ethylene glycol tetra-acetic acid, 1 mmol/L), thrombin (0.5 U/mL), PAR1 agonist peptide (TFLLR-NH2, 100 μmol/L), PAR1 inhibitor (SCH79797, 0.5 μmol/L) and PAR2 inhibitor (GB83, 10 μmol/L). Atrial fibrosis was examined in isoproterenol (100 mg/kg, subcutaneous injection)-treated rats with or without rivaroxaban (10 mg/kg/day orally for 14 consecutive days). Rivaroxaban reduced the migration, pro-collagen type I production, and proliferation of atrial fibroblasts. Rivaroxaban decreased phosphorylated endothelial NO synthase (eNOS) (Thr 495, an inhibitory phosphorylated site of eNOS), and calcium (Ca2+) entry, and increased NO production. Moreover, L-NAME blocked the effects of rivaroxaban on fibroblast collagen and NO production. In the presence of EGTA, the migratory capability was similarly decreased in atrial fibroblasts with and without treatment with rivaroxaban (100 nmol/L), which suggests that rivaroxaban decreases migratory capability of atrial fibroblasts by inhibiting Ca2+ entry. Additionally, rivaroxaban significantly attenuated the effects of thrombin, and TFLLR-NH2 on migratory, proliferative, and pro-collagen type I production capability in atrial fibroblasts. SCH79797 or GB83 decreased pro-collagen type I production, migration, and proliferation capability in fibroblasts, but combined SCH79797 or GB83 with and without rivaroxaban had similar fibroblast activity. Moreover, rivaroxaban significantly decreased atrial fibrosis in isoproterenol-treated rats. CONCLUSIONS Rivaroxaban (100-300 nmol/L) regulates atrial fibroblast activity and atrial fibrosis by increasing NO production and decreasing Ca2+ entry through inhibition of PAR signaling.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Jen Chen
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Factor Xa inhibition by rivaroxaban attenuates cardiac remodeling due to intermittent hypoxia. J Pharmacol Sci 2018; 137:274-282. [PMID: 30055890 DOI: 10.1016/j.jphs.2018.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022] Open
Abstract
Patients with obstructive sleep apnea (OSA) have a high prevalence of atrial fibrillation (AF). Rivaroxaban, a coagulation factor Xa inhibitor, has recently been reported to show pleiotropic effects. This study investigated the influence of rivaroxaban on cardiac remodeling caused by intermittent hypoxia (IH). Male C57BL/6J mice were exposed to IH (repeated cycles of 5% oxygen for 1.5 min followed by 21% oxygen for 5 min) for 28 days with/without rivaroxaban (12 mg/kg/day) or FSLLRY, a protease-activated receptor (PAR)-2 antagonist (10 μg/kg/day). IH caused endothelial cell degeneration in the small arteries of the right atrial myocardium and increased the level of %fibrosis and 4-hydroxy-2-nonenal protein adducts in the left ventricular myocardium. IH also increased the expression of PAR-2 as well as the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and nuclear factor-kappa B (NF-κB) were increased in human cardiac microvascular endothelial cells. However, rivaroxaban and FSLLRY significantly suppressed these changes. These findings demonstrate that rivaroxaban attenuates both atrial and ventricular remodeling induced by IH through the prevention of oxidative stress and fibrosis by suppressing the activation of ERK and NF-κB pathways via PAR-2. Treatment with rivaroxaban could potentially become a novel therapeutic strategy for cardiac remodeling in patients with OSA and AF.
Collapse
|
35
|
Horinouchi Y, Ikeda Y, Fukushima K, Imanishi M, Hamano H, Izawa-Ishizawa Y, Zamami Y, Takechi K, Miyamoto L, Fujino H, Ishizawa K, Tsuchiya K, Tamaki T. Renoprotective effects of a factor Xa inhibitor: fusion of basic research and a database analysis. Sci Rep 2018; 8:10858. [PMID: 30022146 PMCID: PMC6052035 DOI: 10.1038/s41598-018-29008-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/04/2018] [Indexed: 01/25/2023] Open
Abstract
Renal tubulointerstitial injury, an inflammation-associated condition, is a major cause of chronic kidney disease (CKD). Levels of activated factor X (FXa), a blood coagulation factor, are increased in various inflammatory diseases. Therefore, we investigated the protective effects of an FXa inhibitor against renal tubulointerstitial injury using unilateral ureteral obstruction (UUO) mice (a renal tubulointerstitial fibrosis model) and the Food and Drug Administration Adverse Events Reporting System (FAERS) database. The renal expression levels of FX and the FXa receptors protease-activated receptor (PAR)-1 and PAR-2 were significantly higher in UUO mice than in sham-operated mice. UUO-induced tubulointerstitial fibrosis and extracellular matrix expression were suppressed in UUO mice treated with the FXa inhibitor edoxaban. Additionally, edoxaban attenuated UUO-induced macrophage infiltration and inflammatory molecule upregulation. In an analysis of the FAERS database, there were significantly fewer reports of tubulointerstitial nephritis for patients treated with FXa inhibitors than for patients not treated with inhibitors. These results suggest that FXa inhibitors exert protective effects against CKD by inhibiting tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Hirofumi Hamano
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
36
|
Zhang Y, Feng J, Fu H, Liu C, Yu Z, Sun Y, She X, Li P, Zhao C, Liu Y, Liu T, Liu Q, Liu Q, Li G, Wu M. Coagulation Factor X Regulated by CASC2c Recruited Macrophages and Induced M2 Polarization in Glioblastoma Multiforme. Front Immunol 2018; 9:1557. [PMID: 30034397 PMCID: PMC6043648 DOI: 10.3389/fimmu.2018.01557] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) constitute a major component of inflammatory cells in the glioblastoma multiforme (GBM) tumor microenvironment. TAMs have been implicated in GBM angiogenesis, invasion, local tumor recurrence, and immunosuppression. Coagulation factor X (FX) is a vitamin K-dependent plasma protein that plays a role in the regulation of blood coagulation. In this study, we first found that FX was highly expressed and positively correlated with TAM density in human GBM. FX exhibited a potent chemotactic capacity to recruit macrophages and promoted macrophages toward M2 subtype polarization, accelerating GBM growth. FX bound to extracellular signal-related kinase (ERK)1/2 and inhibited p-ERK1/2 in GBM cells. FX was secreted in the tumor microenvironment and increased the phosphorylation and activation of ERK1/2 and AKT in macrophages, which may have been responsible for the M2 subtype macrophage polarization. Moreover, although the lncRNA CASC2c has been verified to function as a miR-101 competing endogenous RNA (ceRNA) to promote miR-101 target genes in GBM cells, we first confirmed that CASC2c did not function as a miR-338-3p ceRNA to promote FX expression, and that FX was a target gene of miR-338-3p. CASC2c interacted with and reciprocally repressed miR-338-3p. Both CASC2c and miR-388-3p bound to FX and commonly inhibited its expression and secretion. CASC2c repressed M2 subtype macrophage polarization. Taken together, our findings revealed a novel mechanism highlighting CASC2c and FX as potential therapeutic targets to improve GBM patients by altering the GBM microenvironment.
Collapse
Affiliation(s)
- Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jianbo Feng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Haijuan Fu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Changhong Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhibin Yu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Xiaoling She
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Chunhua Zhao
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yang Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Tao Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Qiang Liu
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qing Liu
- The Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
37
|
Signaling Crosstalk of TGF-β/ALK5 and PAR2/PAR1: A Complex Regulatory Network Controlling Fibrosis and Cancer. Int J Mol Sci 2018; 19:ijms19061568. [PMID: 29795022 PMCID: PMC6032192 DOI: 10.3390/ijms19061568] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Both signaling by transforming growth factor-β (TGF-β) and agonists of the G Protein-coupled receptors proteinase-activated receptor-1 (PAR1) and -2 (PAR2) have been linked to tissue fibrosis and cancer. Intriguingly, TGF-β and PAR signaling either converge on the regulation of certain matrix genes overexpressed in these pathologies or display mutual regulation of their signaling components, which is mediated in part through sphingosine kinases and sphingosine-1-phosphate and indicative of an intimate signaling crosstalk between the two pathways. In the first part of this review, we summarize the various regulatory interactions that have been discovered so far according to the organ/tissue in which they were described. In the second part, we highlight the types of signaling crosstalk between TGF-β on the one hand and PAR2/PAR1 on the other hand. Both ligand–receptor systems interact at various levels and by several mechanisms including mutual regulation of ligand–ligand, ligand–receptor, and receptor–receptor at the transcriptional, post-transcriptional, and receptor transactivation levels. These mutual interactions between PAR2/PAR1 and TGF-β signaling components eventually result in feed-forward loops/vicious cycles of matrix deposition and malignant traits that exacerbate fibrosis and oncogenesis, respectively. Given the crucial role of PAR2 and PAR1 in controlling TGF-β receptor activation, signaling, TGF-β synthesis and bioactivation, combining PAR inhibitors with TGF-β blocking agents may turn out to be more efficient than targeting TGF-β alone in alleviating unwanted TGF-β-dependent responses but retaining the beneficial ones.
Collapse
|
38
|
Dhar A, Sadiq F, Anstee QM, Levene AP, Goldin RD, Thursz MR. Thrombin and factor Xa link the coagulation system with liver fibrosis. BMC Gastroenterol 2018; 18:60. [PMID: 29739329 PMCID: PMC5941658 DOI: 10.1186/s12876-018-0789-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Background Thrombin activates hepatic stellate cells via protease-activated receptor-1. The role of Factor Xa (FXa) in hepatic fibrosis has not been elucidated. We aimed to evaluate the impact of FXa and thrombin in vitro on stellate cells and their respective inhibition in vivo using a rodent model of hepatic fibrosis. Methods HSC-LX2 cells were incubated with FXa and/or thrombin in cell culture, stained for αSMA and relative gene expression and gel contraction calculated. C57BL/6 J mice were administered thioacetamide (TAA) for 8 weeks with Rivaroxaban (n = 15) or Dabigatran (n = 15). Control animals received TAA alone (n = 15). Fibrosis was scored and quantified using digital image analysis and hepatic tissue hydroxyproline estimated. Results Stellate cells treated with FXa and thrombin demonstrated upregulation of procollagen, TGF-beta, αSMA and significant cell contraction (43.48%+/− 4.12) compared to culturing with FXa or thrombin alone (26.90%+/− 8.90, p = 0.02; 13.1%+/− 9.84, p < 0.001). Mean fibrosis score, percentage area of fibrosis and hepatic hydroxyproline content (2.46 vs 4.08, p = 0.008; 2.02% vs 3.76%, p = 0.012; 276.0 vs 651.3, p = 0.0001) were significantly reduced in mice treated with the FXa inhibitor compared to control mice. FXa inhibition was significantly more effective than thrombin inhibition in reducing percentage area of fibrosis and hepatic hydroxyproline content (2.02% vs 3.70%,p = 0.031; 276.0 vs 413.1,p = 0.001). Conclusions FXa promotes stellate cell contractility and activation. Early inhibition of coagulation using a FXa inhibitor significantly reduces TAA induced murine liver fibrosis and may be a viable treatment for liver fibrosis in patients.
Collapse
Affiliation(s)
- Ameet Dhar
- Department of Surgery and Cancer, Imperial College London, St Mary's Hospital Campus, London, W2 1NY, UK
| | - Fouzia Sadiq
- Department of Surgery and Cancer, Imperial College London, St Mary's Hospital Campus, London, W2 1NY, UK.
| | - Quentin M Anstee
- Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Adam P Levene
- Department of Histopathology, Imperial College London, St Mary's Hospital Campus, London, W2 1NY, UK
| | - Robert D Goldin
- Department of Histopathology, Imperial College London, St Mary's Hospital Campus, London, W2 1NY, UK
| | - Mark R Thursz
- Department of Surgery and Cancer, Imperial College London, St Mary's Hospital Campus, London, W2 1NY, UK
| |
Collapse
|
39
|
Esmon C, Turpie A. Venous and arterial thrombosis – pathogenesis and the rationale for anticoagulation. Thromb Haemost 2017; 105:586-96. [DOI: 10.1160/th10-10-0683] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/27/2010] [Indexed: 01/31/2023]
Abstract
SummaryThromboembolic disorders are major causes of morbidity and mortality. It is well-recognised that the pathogenesis is different for arterial and venous thrombosis; however, both involve coagulation activation. Anticoagulants are used for the prevention and treatment of a wide variety of thromboembolic and related conditions. Agents with anti-inflammatory properties in addition to anticoagulation may be particularly beneficial. Traditional anticoagulants, although effective, are associated with certain limitations. Understanding the pathological processes associated with thrombosis and the rational target for anticoagulation is essential, not only for the development of safer and more effective agents, but also for better clinical management of patients who require anticoagulation therapy. In recent years, new oral agents that target single enzymes of the coagulation cascade have been developed – some of those are in advanced stages of clinical development. Based on scientific rationale, both factor Xa and thrombin are viable targets for effective anticoagulation.
Collapse
|
40
|
Jiang Y, Yau MK, Kok WM, Lim J, Wu KC, Liu L, Hill TA, Suen JY, Fairlie DP. Biased Signaling by Agonists of Protease Activated Receptor 2. ACS Chem Biol 2017; 12:1217-1226. [PMID: 28169521 DOI: 10.1021/acschembio.6b01088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protease activated receptor 2 (PAR2) is associated with metabolism, obesity, inflammatory, respiratory and gastrointestinal disorders, pain, cancer, and other diseases. The extracellular N-terminus of PAR2 is a common target for multiple proteases, which cleave it at different sites to generate different N-termini that activate different PAR2-mediated intracellular signaling pathways. There are no synthetic PAR2 ligands that reproduce the same signaling profiles and potencies as proteases. Structure-activity relationships here for 26 compounds spanned a signaling bias over 3 log units, culminating in three small ligands as biased agonist tools for interrogating PAR2 functions. DF253 (2f-LAAAAI-NH2) triggered PAR2-mediated calcium release (EC50 2 μM) but not ERK1/2 phosphorylation (EC50 > 100 μM) in CHO cells transfected with hPAR2. AY77 (Isox-Cha-Chg-NH2) was a more potent calcium-biased agonist (EC50 40 nM, Ca2+; EC50 2 μM, ERK1/2), while its analogue AY254 (Isox-Cha-Chg-A-R-NH2) was an ERK-biased agonist (EC50 2 nM, ERK1/2; EC50 80 nM, Ca2+). Signaling bias led to different functional responses in human colorectal carcinoma cells (HT29). AY254, but not AY77 or DF253, attenuated cytokine-induced caspase 3/8 activation, promoted scratch-wound healing, and induced IL-8 secretion, all via PAR2-ERK1/2 signaling. Different ligand components were responsible for different PAR2 signaling and functions, clues that can potentially lead to drugs that modulate different pathway-selective cellular and physiological responses.
Collapse
Affiliation(s)
- Yuhong Jiang
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mei-Kwan Yau
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - W. Mei Kok
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kai-Chen Wu
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ligong Liu
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jacky Y. Suen
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Centre for Inflammation and
Disease Research and Australian Research Council Centre of Excellence
in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
41
|
Complex formation with pentraxin-2 regulates factor X plasma levels and macrophage interactions. Blood 2017; 129:2443-2454. [DOI: 10.1182/blood-2016-06-724351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/11/2017] [Indexed: 12/17/2022] Open
Abstract
Key Points
We have identified PTX2 as a novel partner for FX in the circulation, and their plasma levels are interdependent. FX and PTX2 cooperate with SR-AI to prevent their uptake by macrophages.
Collapse
|
42
|
FVIIa prevents the progressive hemorrhaging of a brain contusion by protecting microvessels via formation of the TF–FVIIa–FXa complex. Neuroscience 2017; 348:114-125. [DOI: 10.1016/j.neuroscience.2017.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/20/2017] [Accepted: 02/12/2017] [Indexed: 11/20/2022]
|
43
|
Lin C, Borensztajn K, Spek CA. Targeting coagulation factor receptors - protease-activated receptors in idiopathic pulmonary fibrosis. J Thromb Haemost 2017; 15:597-607. [PMID: 28079978 DOI: 10.1111/jth.13623] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with a 5-year mortality rate of > 50% and unknown etiology. Treatment options remain limited and, currently, only two drugs are available, i.e. nintedanib and pirfenidone. However, both of these antifibrotic agents only slow down the progression of the disease, and do not remarkably prolong the survival of IPF patients. Hence, the discovery of new therapeutic targets for IPF is crucial. Studies exploring the mechanisms that are involved in IPF have identified several possible targets for therapeutic interventions. Among these, blood coagulation factor receptors, i.e. protease-activated receptors (PARs), are key candidates, as these receptors mediate the cellular effects of coagulation factors and play central roles in influencing inflammatory and fibrotic responses. In this review, we will focus on the controversial role of the coagulation cascade in the pathogenesis of IPF. In the light of novel data, we will attempt to reconciliate the apparently conflicting data and discuss the possibility of pharmacologic targeting of PARs for the treatment of fibroproliferative diseases.
Collapse
Affiliation(s)
- C Lin
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - K Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Département Hospitalo-universtaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - C A Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
44
|
Waasdorp M, Duitman J, Spek CA. Plasmin reduces fibronectin deposition by mesangial cells in a protease-activated receptor-1 independent manner. Biochem Biophys Rep 2017; 10:152-156. [PMID: 29114573 PMCID: PMC5637235 DOI: 10.1016/j.bbrep.2017.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
Background Protease-activated receptor-1 (PAR-1) potentiates diabetic nephropathy (DN) as evident from reduced kidney injury in diabetic PAR-1 deficient mice. Although thrombin is the prototypical PAR-1 agonist, anticoagulant treatment does not limit DN in experimental animal models suggesting that thrombin is not the endogenous PAR-1 agonist driving DN. Objectives To identify the endogenous PAR-1 agonist potentiating diabetes-induced nephropathy. Methods Unbiased protease expression profiling in glomeruli from human kidneys with DN was performed using publically available microarray data. The identified prime candidate PAR-1 agonist was subsequently analysed for PAR-1-dependent induction of fibrosis in vitro. Results Of the 553 proteases expressed in the human genome, 247 qualified as potential PAR-1 agonists of which 71 were significantly expressed above background in diabetic glomeruli. The recently identified PAR-1 agonist plasmin(ogen), together with its physiological activator tissue plasminogen activator, were among the highest expressed proteases. Plasmin did however not induce mesangial proliferation and/or fibronectin deposition in vitro. In a PAR-1 independent manner, plasmin even reduced fibronectin deposition. Conclusion Expression profiling identified plasmin as potential endogenous PAR-1 agonist driving DN. Instead of inducing fibronectin expression, plasmin however reduced mesangial fibronectin deposition in vitro. Therefore we conclude that plasmin may not be the endogenous PAR-1 agonist potentiating DN.
Plasmin is highly expressed in kidneys of diabetic nephropathy patients. Plasmin limits fibronectin deposition by mesangial cells. Plasmin-dependent PAR-1 activation does not drive diabetic nephropathy.
Collapse
Affiliation(s)
- Maaike Waasdorp
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - JanWillem Duitman
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands.,INSERM, UMR1152, Medical School Xavier Bichat, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), LabEx Inflamex, Paris, France
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
45
|
Ebrahimi S, Rezaei S, Seiri P, Ryzhikov M, Hashemy SI, Hassanian SM. Factor Xa Signaling Contributes to the Pathogenesis of Inflammatory Diseases. J Cell Physiol 2016; 232:1966-1970. [PMID: 27925197 DOI: 10.1002/jcp.25714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 02/01/2023]
Abstract
The coagulation protease Factor Xa (FXa) triggers a variety of signaling pathways through activation of protease-activated receptors (PARs) and non-PAR receptors. FXa-mediated signaling is strongly implicated in the pathogenesis of several inflammatory diseases including fibrosis, cardiovascular diseases, and cancer. Thus, targeting of FXa can have great clinical significance in terms of the treatment of these disorders. This review summarizes the current knowledge about the mechanism of FXa signaling in cellular and animal systems under (patho) physiological conditions for a better understanding and hence a better management of FXa-induced disorders. J. Cell. Physiol. 232: 1966-1970, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Rezaei
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Seiri
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, Saint Louis, Missouri
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Xue S, Zhang Q, Liu J, Wang PS, Chen G. Diagnosis and treatment of portal vein thrombosis after splenectomy and gastroesophageal devascularization. Shijie Huaren Xiaohua Zazhi 2016; 24:4063-4069. [DOI: 10.11569/wcjd.v24.i29.4063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Splenectomy and gastroesophageal devascularization is the most common clinical treatment for upper gastrointestinal bleeding in patients with portal hypertension. Its advantages include exact treatment and little impact on liver function. However, due to the postoperative high blood coagulation state and hemodynamic changes, it greatly increases the incidence of portal vein thrombosis (PVT), which causes serious complications. Ultrasound, CT and MRI are main methods for the diagnosis of PVT. After diagnosis, using anticoagulation, intervention and surgery can achieve effective control and treatment. PVT mostly occurs perioperatively and therapeutic effects are therefore limited, so perioperative PVT prevention is particularly important. It is recommended that anticoagulation drugs be given preoperatively to prevent PVT formation, injury to the vascular endothelium of the portal vein system be avoided intraoperatively to reduce the formation of spleen vein stump and stabilize postoperative portal vein blood flow dynamics, and ultrasound be performed postoperatively to achieve early diagnosis and treatment.
Collapse
|
47
|
Lin C, von der Thüsen J, Isermann B, Weiler H, van der Poll T, Borensztajn K, Spek CA. High endogenous activated protein C levels attenuates bleomycin-induced pulmonary fibrosis. J Cell Mol Med 2016; 20:2029-2035. [PMID: 27295971 PMCID: PMC5082406 DOI: 10.1111/jcmm.12891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 01/13/2023] Open
Abstract
Coagulation activation accompanied by reduced anticoagulant activity is a key characteristic of patients with idiopathic pulmonary fibrosis (IPF). Although the importance of coagulation activation in IPF is well studied, the potential relevance of endogenous anticoagulant activity in IPF progression remains elusive. We assess the importance of the endogenous anticoagulant protein C pathway on disease progression during bleomycin‐induced pulmonary fibrosis. Wild‐type mice and mice with high endogenous activated protein C APC levels (APChigh) were subjected to bleomycin‐induced pulmonary fibrosis. Fibrosis was assesses by hydroxyproline and histochemical analysis. Macrophage recruitment was assessed immunohistochemically. In vitro, macrophage migration was analysed by transwell migration assays. Fourteen days after bleomycin instillation, APChigh mice developed pulmonary fibrosis to a similar degree as wild‐type mice. Interestingly, Aschcroft scores as well as lung hydroxyproline levels were significantly lower in APChigh mice than in wild‐type mice on day 28. The reduction in fibrosis in APChigh mice was accompanied by reduced macrophage numbers in their lungs and subsequent in vitro experiments showed that APC inhibits thrombin‐dependent macrophage migration. Our data suggest that high endogenous APC levels inhibit the progression of bleomycin‐induced pulmonary fibrosis and that APC modifies pulmonary fibrosis by limiting thrombin‐dependent macrophage recruitment.
Collapse
Affiliation(s)
- Cong Lin
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan von der Thüsen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Berend Isermann
- Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Hartmut Weiler
- Department of Physiology, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Keren Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,Département Hospitalo-universtaire FIRE (Fibrosis Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Chris A Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Hoffman M, Chang JY, Ezban M, Monroe DM. An activated factor VII variant with enhanced tissue factor-independent activity speeds wound healing in a mouse hemophilia B model. J Thromb Haemost 2016; 14:1249-54. [PMID: 26952654 DOI: 10.1111/jth.13311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/23/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED Essentials Disorders of hemostasis can lead to delayed and defective wound healing. In hemophilia B (HB) mice, 7 days of Factor (F)IX or VIIa are needed to normalize wound healing. One dose of a highly active FVIIa variant (DVQ) restored normal wound closure time in HB mice. Coagulation factors with enhanced activity may acquire biological effects not due to hemostasis. SUMMARY Introduction We have previously reported that hemophilia B (HB) mice have delayed healing of cutaneous wounds and alterations in wound histology. Administration of a single dose of either factor IX or recombinant activated FVII (rFVIIa) (NovoSeven) prior to wounding did not improve wound closure time or histology. The FVIIa analog DVQ (V158D, E296V and M298Q mutations) was designed to have higher tissue factor-independent activity than rVIIa. We hypothesized that a single dose of DVQ would be more effective in restoring wound healing in HB mice. Methods Cutaneous punch wounds were made on the backs of HB and wild-type mice, and the time to wound closure was monitored. HB mice were treated with a dose of rFVIIa (10 mg kg(-1) ) or DVQ (1 mg kg(-1) ) that corrected the tail bleeding time. Skin samples were taken at various time points after wounding, fixed, and stained, and the histology was examined. Results As previously reported, wound closure times in HB mice given one dose of rFVIIa were not improved over those in untreated HB mice. Surprisingly, healing times in HB mice treated with an equally hemostatic dose of DVQ were normalized to that in wild-type mice. However, DVQ did not correct all histologic abnormalities in HB mice. Conclusions As the doses of DVQ and rFVIIa were chosen to support comparable levels of hemostasis, our data suggest that the improved healing seen with DVQ is not solely attributable to its hemostatic activity. It is possible that the improved wound healing arises through the effect of DVQ on cell signaling mechanisms.
Collapse
Affiliation(s)
- M Hoffman
- Department of Pathology, Duke University and Durham Veterans Affairs Medical Centers, Durham, NC, USA
- Division of Hematology/Oncology, Department of Medicine, The University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - J-Y Chang
- Division of Hematology/Oncology, Department of Medicine, The University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - M Ezban
- Pharmacology, Novo Nordisk A/S, Måløv, Denmark
| | - D M Monroe
- Division of Hematology/Oncology, Department of Medicine, The University of North Carolina Medical Center, Chapel Hill, NC, USA
| |
Collapse
|
49
|
Abstract
OPINION STATEMENT The risk of thrombosis in patients with chronic liver disease is increasingly recognized. As patients with cirrhosis develop indications for anticoagulation therapy (e.g., venous thromboembolism, portal vein thrombosis, or atrial fibrillation), providers are left to make difficult decisions when selecting therapeutics with little evidence to rely on. Current practice supports the use of low molecular weight heparin or vitamin K antagonists in select patients with cirrhosis requiring anticoagulation. While traditional anticoagulants may be safe and effective in select patients with compensated cirrhosis, the use of direct oral anticoagulants (DOAC) is more controversial. DOAC are desirable as they do not require routine monitoring and can be taken orally. Unfortunately, patients with chronic liver disease were excluded from clinical trials that demonstrated efficacy and safety when compared to traditional anticoagulation. Data are now emerging that support the use of DOAC in well-compensated cirrhosis patients. However, further study is needed with all (traditional and DOAC) anticoagulation medications in patients with cirrhosis to better ensure safety and further understand pharmacologic properties in this challenging population.
Collapse
Affiliation(s)
- Nicolas M Intagliata
- Division of Gastroenterology and Hepatology, Center for Coagulation in Liver Disease, University of Virginia Medical Center, PO Box 800708, Charlottesville, VA, USA.
| | - Hillary Maitland
- Division of Hematology, University of Virginia Medical Center, Charlottesville, VA, USA
| | - Stephen H Caldwell
- Division of Gastroenterology and Hepatology, Center for Coagulation in Liver Disease, University of Virginia Medical Center, PO Box 800708, Charlottesville, VA, USA
| |
Collapse
|
50
|
Cerini F, Vilaseca M, Lafoz E, García-Irigoyen O, García-Calderó H, Tripathi DM, Avila M, Reverter JC, Bosch J, Gracia-Sancho J, García-Pagán JC. Enoxaparin reduces hepatic vascular resistance and portal pressure in cirrhotic rats. J Hepatol 2016; 64:834-42. [PMID: 26686269 DOI: 10.1016/j.jhep.2015.12.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Increased hepatic vascular resistance due to fibrosis and elevated hepatic vascular tone is the primary factor in the development of portal hypertension. Heparin may decrease fibrosis by inhibiting intrahepatic microthrombosis and thrombin-mediated hepatic stellate cell activation. In addition, heparin enhances eNOS activity, which may reduce hepatic vascular tone. Our study aimed at evaluating the effects of acute, short-, long-term and preventive enoxaparin administration on hepatic and systemic hemodynamics, liver fibrosis and nitric oxide availability in cirrhotic rats. METHODS Enoxaparin (1.8 mg/kg subcutaneously), or its vehicle, was administered to CCl4-cirrhotic rats 24h and 1h before the study (acute), daily for 1 week (short-term) or daily for 3 weeks (long-term) and to thioacetamide-cirrhotic rats daily for 3 weeks with/without thioacetamide (preventive/long-term, respectively). Mean arterial pressure, portal pressure, portal blood flow, hepatic vascular resistance and molecular/cellular mechanisms were evaluated. RESULTS No significant changes in hemodynamic parameters were observed in acute administration. However, one-week, three-week and preventive treatments significantly decreased portal pressure mainly due to a decrease in hepatic vascular resistance without significant changes in mean arterial pressure. These findings were associated with significant reductions in liver fibrosis, hepatic stellate cell activation, and desmin expression. Moreover, a reduction in fibrin deposition was observed in enoxaparin-treated rats, suggesting reduced intrahepatic microthrombosis. CONCLUSION Enoxaparin reduces portal pressure in cirrhotic rats by improving the structural component of increased liver resistance. These findings describe the potentially beneficial effects of enoxaparin beyond the treatment/prevention of portal vein thrombosis in cirrhosis, which deserve further investigation.
Collapse
Affiliation(s)
- Federica Cerini
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Barcelona, Spain
| | - Marina Vilaseca
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Erica Lafoz
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Oihane García-Irigoyen
- Centro de Investigación Médica Aplicada (CIMA), Division of Hepatology and Gene Therapy, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Héctor García-Calderó
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Dinesh M Tripathi
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Matias Avila
- Centro de Investigación Médica Aplicada (CIMA), Division of Hepatology and Gene Therapy, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Juan Carlos Reverter
- Hemotherapy and Hemostasis Department, Hospital Clínic, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jaime Bosch
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Juan Carlos García-Pagán
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| |
Collapse
|