1
|
Zhou X, Guo L, Yang Z, Xu H, Zhang Z, Zhang X. Impact of Chondroitin Sulfate Proteoglycan 4 Pseudogene 12 Genetic Variants on Colorectal Cancer Risk: A Case-Control Study. DNA Cell Biol 2024; 43:596-604. [PMID: 39421940 DOI: 10.1089/dna.2024.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
This study aims to investigate the correlation between the chondroitin sulfate proteoglycan 4 pseudogene 12 (CSPG4P12) polymorphism and the risk of colorectal cancer (CRC). This case-control study involved 850 patients with CRC and 850 health controls. The genotypes of CSPG4P12 (rs2880765, rs6496932, and rs8040855) were determined by the TaqMan-MGB probe method. Logistic regression model was employed to evaluate the association of CSPG4P12 single-nucleotide polymorphisms (SNPs) with the risk of CRC by calculating the odds ratio (OR) and 95% confidence interval (CI). The CSPG4P12 exhibited lower expression in CRC tissues. Our data showed that the rs6496932 variant increased CRC risk (CA vs. CC: p = 0.006; CA + AA vs. CC: p = 0.005). In contrast, the rs8040855 variant reduced the risk of CRC (CG vs. CC: p < 0.001; CG + GG vs. CC: p < 0.001). Stratification by gender and age revealed that the rs8040855 variant decreased CRC risk; however, the rs6496932 variant increased CRC risk among males (CA vs. CC: p = 0.024; CA + AA vs. CC: p = 0.014) and younger individuals (CA vs. CC: p = 0.004; CA + AA vs. CC: p = 0.010). When stratified by smoking and drinking status, the rs8040855 variant decreased CRC risk among nonsmokers (CG vs. CC: p < 0.001; CG + GG vs. CC: p < 0.001) and nondrinkers (CA vs. CC: p = 0.002; CA + AA vs. CC: p = 0.004). The rs6496932 variant increased CRC risk among nonsmokers (CA vs. CC: p = 0.016; CA + AA vs. CC: p = 0.036) and nondrinkers (CG vs. CC: p < 0.001; CG + GG vs. CC: p < 0.001). Haplotype analysis showed that the CSPG4P12 Trs2880765Crs6496932Grs8040855 haplotype reduced the risk of CRC compared with the reference haplotype (CSPG4P12 Ars2880765Crs6496932Crs8040855) (OR = 0.46, 95% CI = 0.26-0.82, p = 0.049). These findings highlight the potential of these genetic variants as biomarkers for CRC susceptibility, offering insights into personalized prevention strategies.
Collapse
Affiliation(s)
- Xianlei Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, China
| | - Liwen Guo
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Zhenbang Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hongxue Xu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, China
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
2
|
Karimi B, Mokhtari K, Rozbahani H, Peymani M, Nabavi N, Entezari M, Rashidi M, Taheriazam A, Ghaedi K, Hashemi M. Pathological roles of miRNAs and pseudogene-derived lncRNAs in human cancers, and their comparison as prognosis/diagnosis biomarkers. Pathol Res Pract 2024; 253:155014. [PMID: 38128189 DOI: 10.1016/j.prp.2023.155014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
This review examines and compares the diagnostic and prognostic capabilities of miRNAs and lncRNAs derived from pseudogenes in cancer patients. Additionally, it delves into their roles in cancer pathogenesis. Both miRNAs and pseudogene-derived lncRNAs have undergone thorough investigation as remarkably sensitive and specific cancer biomarkers, offering significant potential for cancer detection and monitoring. . Extensive research is essential to gain a complete understanding of the precise roles these non-coding RNAs play in cancer, allowing the development of novel targeted therapies and biomarkers for improved cancer detection and treatment approaches.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khatere Mokhtari
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Rozbahani
- Department of Psychology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Psychology, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Barbagallo C, Stella M, Ferrara C, Caponnetto A, Battaglia R, Barbagallo D, Di Pietro C, Ragusa M. RNA-RNA competitive interactions: a molecular civil war ruling cell physiology and diseases. EXPLORATION OF MEDICINE 2023:504-540. [DOI: 10.37349/emed.2023.00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
The idea that proteins are the main determining factors in the functioning of cells and organisms, and their dysfunctions are the first cause of pathologies, has been predominant in biology and biomedicine until recently. This protein-centered view was too simplistic and failed to explain the physiological and pathological complexity of the cell. About 80% of the human genome is dynamically and pervasively transcribed, mostly as non-protein-coding RNAs (ncRNAs), which competitively interact with each other and with coding RNAs generating a complex RNA network regulating RNA processing, stability, and translation and, accordingly, fine-tuning the gene expression of the cells. Qualitative and quantitative dysregulations of RNA-RNA interaction networks are strongly involved in the onset and progression of many pathologies, including cancers and degenerative diseases. This review will summarize the RNA species involved in the competitive endogenous RNA network, their mechanisms of action, and involvement in pathological phenotypes. Moreover, it will give an overview of the most advanced experimental and computational methods to dissect and rebuild RNA networks.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Angela Caponnetto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalia Battaglia
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
Huang J, Wang H, Xu Y, Li C, Lv X, Han X, Chen X, Chen Y, Yu Z. The Role of CTNNA1 in Malignancies: An Updated Review. J Cancer 2023; 14:219-230. [PMID: 36741258 PMCID: PMC9891874 DOI: 10.7150/jca.79236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
Catenin alpha 1 (CTNNA1), encoding α-catenin, is involved in several physiological activities, such as adherens junction synthesis and signal transduction. Recent studies have suggested additional functions for CTNNA1 malignancies. This review systematically summarizes the varying functions of CTNNA1 in different tumors and briefly describes the diverse pathways and mechanisms involved in different types of tumors. CTNNA1 is abnormally expressed in leukemia and solid tumor such as cancers of digestive system, genitourinary system and breast, and it's related to the occurrence, development, and prognosis of tumors. In addition, the possible physiological processes involving CTNNA1, such as methylation, miRNA interference, or regulatory axes, similar to those of CDH1, SETD2, and hsa-miR-30d-5p/GJA1 are also summarized here. The precise mechanism of CTNNA1 in most cancers remains uncertain; hence, additional pre-clinical studies of CTNNA1 are warranted for potential early tumor diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Jinhua Huang
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.,College of Medicine, Shantou University, Shantou, 515041, Guangdong, China
| | - Huihui Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230023, China
| | - Yuting Xu
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.,College of Medicine, Shantou University, Shantou, 515041, Guangdong, China
| | - Chunhua Li
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Xinyue Lv
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Xintong Han
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Xiaochun Chen
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Yu Chen
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Zhiying Yu
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.,✉ Corresponding author: Zhiying Yu, Shenzhen Second People's Hospital, 3002 Sungang West Road, Shenzhen, Guangdong, China, 518035. Tel: 0755-83366388; Fax: +86 83366388-3048; E-mail:
| |
Collapse
|
5
|
Nsengimana B, Khan FA, Awan UA, Wang D, Fang N, Wei W, Zhang W, Ji S. Pseudogenes and Liquid Phase Separation in Epigenetic Expression. Front Oncol 2022; 12:912282. [PMID: 35875144 PMCID: PMC9305658 DOI: 10.3389/fonc.2022.912282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudogenes have been considered as non-functional genes. However, peptides and long non-coding RNAs produced by pseudogenes are expressed in different tumors. Moreover, the dysregulation of pseudogenes is associated with cancer, and their expressions are higher in tumors compared to normal tissues. Recent studies show that pseudogenes can influence the liquid phase condensates formation. Liquid phase separation involves regulating different epigenetic stages, including transcription, chromatin organization, 3D DNA structure, splicing, and post-transcription modifications like m6A. Several membrane-less organelles, formed through the liquid phase separate, are also involved in the epigenetic regulation, and their defects are associated with cancer development. However, the association between pseudogenes and liquid phase separation remains unrevealed. The current study sought to investigate the relationship between pseudogenes and liquid phase separation in cancer development, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Life Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Usman Ayub Awan
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Pakistan
| | - Dandan Wang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Na Fang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wenqiang Wei
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| | - Weijuan Zhang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| |
Collapse
|
6
|
Akhbari MH, Zafari Z, Sheykhhasan M. Competing Endogenous RNAs (ceRNAs) in Colorectal Cancer: A Review. Expert Rev Mol Med 2022; 24:e27. [PMID: 35748050 DOI: 10.1017/erm.2022.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is a common type of cancer and the second leading cause of cancer-related deaths worldwide. Competing endogenous RNAs (ceRNAs) that contain microRNA response elements (MREs) are involved in CRC progression. They can compete with microRNAs (miRNAs) via their MREs, which can combine non-coding and coding RNAs via complex ceRNA networks. This molecular interaction has the potential to affect a wide variety of biological processes, and many cancers can occur as a result of an imbalanced ceRNA network. Recent research indicates that numerous dysregulated RNAs in CRC may function as ceRNAs, regulating multiple biological functions of the tumour, including proliferation, apoptosis, metastasis, invasion and migration. In this review, we discuss the role of protein-coding and non-coding RNAs, such as long non-coding RNAs, circular RNAs and pseudogenes, in the occurrence of ceRNA networks in CRC, and their function in cancer-related pathways, such as Wnt/β-catenin, mitogen-activated protein kinase and transforming growth factor-β signalling pathways. Additionally, we discuss validated ceRNAs associated with CRC biological functions and their potential role as novel prognostic and diagnostic biomarkers. Examining the role of ceRNAs in CRC sheds new light on cancer treatment and pathogenesis.
Collapse
Affiliation(s)
| | - Zahra Zafari
- Department of Biology, Shahed University, Tehran, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| |
Collapse
|
7
|
Chong H, Fang S, Yang D, Tan C, Wei J, Chang SH, Fan H, Yao H, Qin A, Shao H, Zhang Y, Leng J, Su D, Wang C, Li H. Toxicity assessments and transcriptional effects of monofunctionalized Pt(II) complex under dark and light irradiation condition in Caenorhabditis elegans. J Inorg Biochem 2022; 230:111720. [DOI: 10.1016/j.jinorgbio.2022.111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
|
8
|
Huang C, Zhao J, Zhu Z. Prognostic Nomogram of Prognosis-Related Genes and Clinicopathological Characteristics to Predict the 5-Year Survival Rate of Colon Cancer Patients. Front Surg 2021; 8:681721. [PMID: 34222322 PMCID: PMC8242155 DOI: 10.3389/fsurg.2021.681721] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Background: The Cancer Genome Atlas (TCGA) has established a genome-wide gene expression profile, increasing our understanding of the impact of tumor heredity on clinical outcomes. The aim of this study was to construct a nomogram using data from the TCGA regarding prognosis-related genes and clinicopathological characteristics to predict the 5-years survival rate of colon cancer (CC) patients. Methods: Kaplan-Meier and Cox regression analyses were used to identify genes associated with the 5-years survival rate of CC patients. Cox regression was used to analyze the relationship between the clinicopathological features and prognostic genes and overall survival rates in patients with CC and to identify independent risk factors for the prognosis of CC patients. A nomogram for predicting the 5-years survival rate of CC patients was constructed by R software. Results: A total of eight genes (KCNJ14, CILP2, ATP6V1G2, GABRD, RIMKLB, SIX2, PLEKHA8P1, and MPP2) related to the 5-years survival of rate CC patients were identified. Age, stage, and PLEKHA8P1 were independent risk factors for the 5-years survival rate in patients with CC. The accuracy, sensitivity and specificity of the nomogram model constructed by age, TNM staging, and PLEKHA8P1 for predicting the 5-years survival of rate CC patients were 83.3, 83.97, and 85.79%, respectively. Conclusion: The nomogram can correctly predict the 5-year survival rate of patients with CC, thus aiding the individualized decision-making process for patients with CC.
Collapse
Affiliation(s)
| | | | - Zhengming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Ciomborowska-Basheer J, Staszak K, Kubiak MR, Makałowska I. Not So Dead Genes-Retrocopies as Regulators of Their Disease-Related Progenitors and Hosts. Cells 2021; 10:cells10040912. [PMID: 33921034 PMCID: PMC8071448 DOI: 10.3390/cells10040912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Retroposition is RNA-based gene duplication leading to the creation of single exon nonfunctional copies. Nevertheless, over time, many of these duplicates acquire transcriptional capabilities. In human in most cases, these so-called retrogenes do not code for proteins but function as regulatory long noncoding RNAs (lncRNAs). The mechanisms by which they can regulate other genes include microRNA sponging, modulation of alternative splicing, epigenetic regulation and competition for stabilizing factors, among others. Here, we summarize recent findings related to lncRNAs originating from retrocopies that are involved in human diseases such as cancer and neurodegenerative, mental or cardiovascular disorders. Special attention is given to retrocopies that regulate their progenitors or host genes. Presented evidence from the literature and our bioinformatics analyses demonstrates that these retrocopies, often described as unimportant pseudogenes, are significant players in the cell’s molecular machinery.
Collapse
|
10
|
Brex D, Barbagallo C, Mirabella F, Caponnetto A, Battaglia R, Barbagallo D, Caltabiano R, Broggi G, Memeo L, Di Pietro C, Purrello M, Ragusa M. LINC00483 Has a Potential Tumor-Suppressor Role in Colorectal Cancer Through Multiple Molecular Axes. Front Oncol 2021; 10:614455. [PMID: 33552987 PMCID: PMC7855711 DOI: 10.3389/fonc.2020.614455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the most heterogeneous class of non-protein-coding RNAs involved in a broad spectrum of molecular mechanisms controlling genome function, including the generation of complex networks of RNA-RNA competitive interactions. Accordingly, their dysregulation contributes to the onset of many tumors, including colorectal cancer (CRC). Through a combination of in silico approaches (statistical screening of expression datasets) and in vitro analyses (enforced expression, artificial inhibition, or activation of pathways), we identified LINC00483 as a potential tumor suppressor lncRNA in CRC. LINC00483 was downregulated in CRC biopsies and metastases and its decreased levels were associated with severe clinical features. Inhibition of the MAPK pathway and cell cycle arrest by starvation induced an upregulation of LINC00483, while the epithelial to mesenchymal transition activation by TGFβ-1 and IL-6 caused its down-modulation. Moreover, enforced expression of LINC00483 provoked a slowing down of cell migration rate without affecting cell proliferation. Since LINC00483 was predominantly cytoplasmic, we hypothesized a “miRNA sponge” role for it. Accordingly, we computationally reconstructed the LINC00483/miRNA/mRNA axes and evaluated the expression of mRNAs in different experimental conditions inducing LINC00483 alteration. By this approach, we identified a set of mRNAs sharing the miRNA response elements with LINC00483 and modulated in accordance with it. Moreover, we found that LINC00483 is potentially under negative control of transcription factor HNF4α. In conclusion, we propose that LINC00483 is a tumor suppressor in CRC that, through an RNA-RNA network, may control cell migration and participate in proliferation signaling.
Collapse
Affiliation(s)
- Duilia Brex
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Federica Mirabella
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| |
Collapse
|
11
|
Cancer, Retrogenes, and Evolution. Life (Basel) 2021; 11:life11010072. [PMID: 33478113 PMCID: PMC7835786 DOI: 10.3390/life11010072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
This review summarizes the knowledge about retrogenes in the context of cancer and evolution. The retroposition, in which the processed mRNA from parental genes undergoes reverse transcription and the resulting cDNA is integrated back into the genome, results in additional copies of existing genes. Despite the initial misconception, retroposition-derived copies can become functional, and due to their role in the molecular evolution of genomes, they have been named the “seeds of evolution”. It is convincing that retrogenes, as important elements involved in the evolution of species, also take part in the evolution of neoplastic tumors at the cell and species levels. The occurrence of specific “resistance mechanisms” to neoplastic transformation in some species has been noted. This phenomenon has been related to additional gene copies, including retrogenes. In addition, the role of retrogenes in the evolution of tumors has been described. Retrogene expression correlates with the occurrence of specific cancer subtypes, their stages, and their response to therapy. Phylogenetic insights into retrogenes show that most cancer-related retrocopies arose in the lineage of primates, and the number of identified cancer-related retrogenes demonstrates that these duplicates are quite important players in human carcinogenesis.
Collapse
|
12
|
Abstract
Pseudogenes are commonly labeled as "junk DNA" given their perceived nonfunctional status. However, the advent of large-scale genomics projects prompted a revisit of pseudogene biology, highlighting their key functional and regulatory roles in numerous diseases, including cancers. Integrative analyses of cancer data have shown that pseudogenes can be transcribed and even translated, and that pseudogenic DNA, RNA, and proteins can interfere with the activity and function of key protein coding genes, acting as regulators of oncogenes and tumor suppressors. Capitalizing on the available clinical research, we are able to get an insight into the spread and variety of pseudogene biomarker and therapeutic potential. In this chapter, we describe pseudogenes that fulfill their role as diagnostic or prognostic biomarkers, both as unique elements and in collaboration with other genes or pseudogenes. We also report that the majority of prognostic pseudogenes are overexpressed and exert an oncogenic role in colorectal, liver, lung, and gastric cancers. Finally, we highlight a number of pseudogenes that can establish future therapeutic avenues.
Collapse
|
13
|
Chi Q, Xu H, Song D, Wang Z, Wang Z, Ma G. α-E-Catenin (CTNNA1) Inhibits Cell Proliferation, Invasion and EMT of Bladder Cancer. Cancer Manag Res 2020; 12:12747-12758. [PMID: 33364826 PMCID: PMC7751797 DOI: 10.2147/cmar.s259269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Aim Bladder cancer (BLCA) is an urogenital system tumor with a high morbidity. We aimed to explore the function and potential mechanism of α-E-catenin (CTNNA1) in BLCA. Methods The CTNNA1 expression in BLCA tissues was detected using qRT-PCR and immunohistochemistry. QRT-PCR and Western blot were performed to measure the CTNNA1 expression in BLCA cell lines. CTNNA1 expression was up-regulated in T24 and UMUC-2 cells by CTNNA1 overexpression plasmid transfection. Cell proliferation, apoptosis, migration and invasion were respectively assessed by CCK-8 assay, flow cytometry, wound healing assay and transwell assay. The expression levels of epithelial–mesenchymal transition (EMT)-related factors were tested by qRT-PCR and Western blot. BLCA nude mice models were constructed to explore the effects of CTNNA1 on BLCA in vivo. Gene set enrichment analysis (GSEA) was proceeded to identify the CTNNA1-related pathways in BLCA. Results The expressions of CTNNA1 were down-regulated in BLCA tissues and cell lines, and its low expression indicated poor prognosis of BLCA patients. CTNNA1 inhibited cell proliferation, migration, invasion and EMT and promoted cell apoptosis in BLCA cells. CTNNA1 enhanced E-cadherin expression and suppressed N-cadherin, snail, MMP2 and MMP9 expressions in BLCA cells, which suggested that CTNNA1 repressed EMT in BLCA cells. Moreover, CTNNA1 could inhibit tumor growth in vivo. CTNNA1 was positively associated with P53 and apoptosis pathways in BLCA cells. Conclusion CTNNA1 inhibited cell proliferation, migration, invasion and EMT and promoted cell apoptosis in BLCA via activating P53 and apoptosis pathways. CTNNA1 might be a novel target in BLCA therapy.
Collapse
Affiliation(s)
- Qiang Chi
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Hui Xu
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Dianbin Song
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Zhiyong Wang
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Zemin Wang
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Guang Ma
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| |
Collapse
|
14
|
Long non-coding RNA CCAT1 promotes colorectal cancer progression by regulating miR-181a-5p expression. Aging (Albany NY) 2020; 12:8301-8320. [PMID: 32380476 PMCID: PMC7244037 DOI: 10.18632/aging.103139] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/31/2020] [Indexed: 01/30/2023]
Abstract
The vital roles of long noncoding RNAs (lncRNAs) have been implicated in growing number of studies in tumor development. LncRNA CCAT1 has been recognized as associated with tumor development, yet its relation with colorectal cancer (CRC) remains elusive. Our study aimed at elucidating the function and mechanisms of long non-coding RNA CCAT1 in CRC. From a lncRNA profile dataset of 38 pairs of matched tumor-control colon tissues from colorectal patients housed in The Cancer Genome Atlas (TCGA), we detected 10 upregulated and 10 down-regulated lncRNAs in CRC. Fifty cases of CRC patients were enrolled to analyze the correlation between the expression of CCAT1 and clinical pathology. The inverse correlation of expression and target relationship between CCAT1 and miR-181a-5p were verified using qRT-PCR and dual-luciferase reporter gene assay. Cell viability, colony formation ability, aggression and apoptosis were determined by MTT assay, colony formation assay, Transwell and wound healing assays and flow cytometry analysis. Furthermore, Xenograft model was used to show that knockdown of CCAT1 inhibits tumor growth in vivo. The expression of lncRNA CCAT1 was significantly upregulated in CRC tissues. The CCAT1 expression was positively associated with cancer stage (American Joint Committee on Cancer stage, P<0.05). CCAT1 promoted cell proliferation, growth and mobility by targeting miR-181a-5p and the silence of CCAT1 increased the cell apoptosis. Same effect was observed in an in vivo xenograft model, which the tumor size and pro-tumor proteins were significantly diminished by knocking down of CCAT1.
Collapse
|
15
|
González-Mariscal L, Miranda J, Gallego-Gutiérrez H, Cano-Cortina M, Amaya E. Relationship between apical junction proteins, gene expression and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183278. [PMID: 32240623 DOI: 10.1016/j.bbamem.2020.183278] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The apical junctional complex (AJC) is a cell-cell adhesion system present at the upper portion of the lateral membrane of epithelial cells integrated by the tight junction (TJ) and the adherens junction (AJ). This complex is crucial to initiate and stabilize cell-cell adhesion, to regulate the paracellular transit of ions and molecules and to maintain cell polarity. Moreover, we now consider the AJC as a hub of signal transduction that regulates cell-cell adhesion, gene transcription and cell proliferation and differentiation. The molecular components of the AJC are multiple and diverse and depending on the cellular context some of the proteins in this complex act as tumor suppressors or as promoters of cell transformation, migration and metastasis outgrowth. Here, we describe these new roles played by TJ and AJ proteins and their potential use in cancer diagnostics and as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Helios Gallego-Gutiérrez
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Misael Cano-Cortina
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Elida Amaya
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
16
|
Lou W, Ding B, Fu P. Pseudogene-Derived lncRNAs and Their miRNA Sponging Mechanism in Human Cancer. Front Cell Dev Biol 2020; 8:85. [PMID: 32185172 PMCID: PMC7058547 DOI: 10.3389/fcell.2020.00085] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudogenes, abundant in the human genome, are traditionally considered as non-functional “junk genes.” However, recent studies have revealed that pseudogenes act as key regulators at DNA, RNA or protein level in diverse human disorders (including cancer), among which pseudogene-derived long non-coding RNA (lncRNA) transcripts are extensively investigated and has been reported to be frequently dysregulated in various types of human cancer. Growing evidence demonstrates that pseudogene-derived lncRNAs play important roles in cancer initiation and progression by serving as competing endogenous RNAs (ceRNAs) through competitively binding to shared microRNAs (miRNAs), thus affecting both their cognate genes and unrelated genes. Herein, we retrospect those current findings about expression, functions and potential ceRNA mechanisms of pseudogene-derived lncRNAs in human cancer, which may provide us with some crucial clues in developing potential targets for cancer therapy in the future.
Collapse
Affiliation(s)
- Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Galamb O, Barták BK, Kalmár A, Nagy ZB, Szigeti KA, Tulassay Z, Igaz P, Molnár B. Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World J Gastroenterol 2019; 25:5026-5048. [PMID: 31558855 PMCID: PMC6747286 DOI: 10.3748/wjg.v25.i34.5026] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are members of the non-protein coding RNA family longer than 200 nucleotides. They participate in the regulation of gene and protein expression influencing apoptosis, cell proliferation and immune responses, thereby playing a critical role in the development and progression of various cancers, including colorectal cancer (CRC). As CRC is one of the most frequently diagnosed malignancies worldwide with high mortality, its screening and early detection are crucial, so the identification of disease-specific biomarkers is necessary. LncRNAs are promising candidates as they are involved in carcinogenesis, and certain lncRNAs (e.g., CCAT1, CRNDE, CRCAL1-4) show altered expression in adenomas, making them potential early diagnostic markers. In addition to being useful as tissue-specific markers, analysis of circulating lncRNAs (e.g., CCAT1, CCAT2, BLACAT1, CRNDE, NEAT1, UCA1) in peripheral blood offers the possibility to establish minimally invasive, liquid biopsy-based diagnostic tests. This review article aims to describe the origin, structure, and functions of lncRNAs and to discuss their contribution to CRC development. Moreover, our purpose is to summarise lncRNAs showing altered expression levels during tumor formation in both colon tissue and plasma/serum samples and to demonstrate their clinical implications as diagnostic or prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| | - Barbara K Barták
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Alexandra Kalmár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| | - Zsófia B Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Krisztina A Szigeti
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| | - Peter Igaz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| |
Collapse
|
18
|
Calloni R, Bonatto D. Characteristics of the competition among RNAs for the binding of shared miRNAs. Eur J Cell Biol 2019; 98:94-102. [PMID: 31053368 DOI: 10.1016/j.ejcb.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Competing endogenous RNAs (ceRNAs) are RNAs that share common miRNA binding sites and compete with each other for the miRNA association at these sites. The observation of this phenomenon in the cells altered the view of the miRNA target RNAs from molecules that are passively controlled by miRNAs to molecules that also modulate the miRNAs activity. In this review, we build a general profile of ceRNAS characteristics in order to facilitate ceRNAs identification by researchers. The information summarized here contains an actualized list of previously reported ceRNAs and classes of RNAs that can participate in this type of interaction, the expression behavior and characteristics of ceRNAs and miRNAs in the context of competition, the influence of the shared MREs/miRNAs numbers and the miRNA binding strength on the competition, reports on competition between RNAs in different subcellular localizations and the concept that ceRNAs may form a huge regulatory network in the cell.
Collapse
Affiliation(s)
- Raquel Calloni
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Diego Bonatto
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
19
|
Kovalenko TF, Patrushev LI. Pseudogenes as Functionally Significant Elements of the Genome. BIOCHEMISTRY (MOSCOW) 2018; 83:1332-1349. [PMID: 30482145 DOI: 10.1134/s0006297918110044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudogene is a gene copy that has lost its original function. For a long time, pseudogenes have been considered as "junk DNA" that inevitably arises as a result of ongoing evolutionary process. However, experimental data obtained during recent years indicate this understanding of the nature of pseudogenes is not entirely correct, and many pseudogenes perform important genetic functions. In the review, we have addressed classification of pseudogenes, methods of their detection in the genome, and the problem of their evolutionary conservatism and prevalence among species belonging to different taxonomic groups in the light of modern data. The mechanisms of gene expression regulation by pseudogenes and the role of pseudogenes in pathogenesis of various human diseases are discussed.
Collapse
Affiliation(s)
- T F Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
20
|
Chen B, Wang C, Zhang J, Zhou Y, Hu W, Guo T. New insights into long noncoding RNAs and pseudogenes in prognosis of renal cell carcinoma. Cancer Cell Int 2018; 18:157. [PMID: 30337839 PMCID: PMC6180637 DOI: 10.1186/s12935-018-0652-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Background Increasing evidence suggests a critical role for long noncoding RNAs (LncRNAs) and pseudogenes in cancer. Renal cell carcinoma (RCC), the most common primary renal neoplasm, is highly aggressive and difficult to treat because of its resistance to chemotherapy and radiotherapy. Despite many identified LncRNAs and pseudogenes, few have been clearly elucidated. Methods This study provides new insights into LncRNAs and pseudogenes in the prognosis of RCC. We searched an online database to interrogate alterations and clinical data on cBioPortal. We analysed LncRNA and pseudogene signatures to predict the prognosis of RCC based on a Cox model. We also found potential serum biomarkers of RCC and validated them in 32 RCC patients, as well as healthy controls. Results Alterations were found in 2553 LncRNAs and 8901 pseudogenes and occurred in up to 23% of all cases. Among these, 27 LncRNAs and 45 pseudogenes were closely related to prognosis. We also identified signatures of LncRNAs and pseudogenes that can predict overall survival and recurrence of RCC. We then validated the relative levels of these LncRNAs and pseudogenes in the serum of 32 patients. Six of these, including LINC00520, PIK3CD-AS1, LINC01559, CEACAM22P, MSL3P1 and TREML3P, could be non-invasive biomarkers of RCC. Finally, we selected PIK3CD-AS1 to determine its role in RCC and found that upregulation of PIK3CD-AS1 was closely associated with higher tumour stage and metastasis. Conclusions These signatures of LncRNAs and pseudogenes can predict overall survival and recurrence of RCC. LINC00520, PIK3CD-AS1, LINC01559, CEACAM22P, MSL3P1 and TREML3P could be non-invasive biomarkers of RCC. These data suggest the important roles of LncRNAs and pseudogenes in RCC, and therefore provides us new insights into the prognosis of RCC. Electronic supplementary material The online version of this article (10.1186/s12935-018-0652-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212000 Jiangsu People's Republic of China
| | - Chengyue Wang
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212000 Jiangsu People's Republic of China
| | - Jin Zhang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu People's Republic of China
| | - Yang Zhou
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212000 Jiangsu People's Republic of China
| | - Wei Hu
- 3Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001 Hunan People's Republic of China
| | - Tao Guo
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212000 Jiangsu People's Republic of China
| |
Collapse
|
21
|
Wang Z, Ren B, Huang J, Yin R, Jiang F, Zhang Q. LncRNA DUXAP10 modulates cell proliferation in esophageal squamous cell carcinoma through epigenetically silencing p21. Cancer Biol Ther 2018; 19:998-1005. [PMID: 30215547 DOI: 10.1080/15384047.2018.1470723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Esophageal Squamous Cell Carcinoma (ESCC) belongs to malignant tumor of human digestive system. It has greatly threatened human health both mentally and physically. Long non-coding RNAs have been discovered to be special molecular regulators in various cancers, including ESCC. LncRNA DUXAP10 is a newfound RNA, which is able to improve the progression of cancers 1-3 . In this study, DUXAP10 was certified to be upregulated in ESCC tissues and cells. Besides, it was positively correlated with short survival time. Moreover, down-expression of DUXAP10 contributed to decreased cell proliferation and metastasis. Silenced DUXAP10 led to increased apoptosis rate and stagnation of cell cycle. Results of mechanism experiments suggested that DUXAP10 motivated ESCC progression through recruiting enhancer of zeste homolog 2 (EZH2) to the promoter of p21. Our findings suggested that the pseudogene-derived from lncRNA DUXAP10 drove the biological progression of ESCC. DUXAP10 was likely to be a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Zhongqiu Wang
- a Department of Thoracic Surgery , Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province. No.42 , Baiziting Road, Xuanwu District, 210009, Nanjing , Jiangsu Province , PR China
| | - Binhui Ren
- a Department of Thoracic Surgery , Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province. No.42 , Baiziting Road, Xuanwu District, 210009, Nanjing , Jiangsu Province , PR China
| | - Jianfeng Huang
- a Department of Thoracic Surgery , Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province. No.42 , Baiziting Road, Xuanwu District, 210009, Nanjing , Jiangsu Province , PR China
| | - Rong Yin
- a Department of Thoracic Surgery , Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province. No.42 , Baiziting Road, Xuanwu District, 210009, Nanjing , Jiangsu Province , PR China
| | - Feng Jiang
- a Department of Thoracic Surgery , Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province. No.42 , Baiziting Road, Xuanwu District, 210009, Nanjing , Jiangsu Province , PR China
| | - Qin Zhang
- a Department of Thoracic Surgery , Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province. No.42 , Baiziting Road, Xuanwu District, 210009, Nanjing , Jiangsu Province , PR China
| |
Collapse
|
22
|
Role of Pseudogenes in Tumorigenesis. Cancers (Basel) 2018; 10:cancers10080256. [PMID: 30071685 PMCID: PMC6115995 DOI: 10.3390/cancers10080256] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Functional genomics has provided evidence that the human genome transcribes a large number of non-coding genes in addition to protein-coding genes, including microRNAs and long non-coding RNAs (lncRNAs). Among the group of lncRNAs are pseudogenes that have not been paid attention in the past, compared to other members of lncRNAs. However, increasing evidence points the important role of pseudogenes in diverse cellular functions, and dysregulation of pseudogenes are often associated with various human diseases including cancer. Like other types of lncRNAs, pseudogenes can also function as master regulators for gene expression and thus, they can play a critical role in various aspects of tumorigenesis. In this review we discuss the latest developments in pseudogene research, focusing on how pseudogenes impact tumorigenesis through different gene regulation mechanisms. Given the high sequence homology with the corresponding parent genes, we also discuss challenges for pseudogene research.
Collapse
|
23
|
Noncoding RNA:RNA Regulatory Networks in Cancer. Int J Mol Sci 2018; 19:ijms19051310. [PMID: 29702599 PMCID: PMC5983611 DOI: 10.3390/ijms19051310] [Citation(s) in RCA: 824] [Impact Index Per Article: 117.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023] Open
Abstract
Noncoding RNAs (ncRNAs) constitute the majority of the human transcribed genome. This largest class of RNA transcripts plays diverse roles in a multitude of cellular processes, and has been implicated in many pathological conditions, especially cancer. The different subclasses of ncRNAs include microRNAs, a class of short ncRNAs; and a variety of long ncRNAs (lncRNAs), such as lincRNAs, antisense RNAs, pseudogenes, and circular RNAs. Many studies have demonstrated the involvement of these ncRNAs in competitive regulatory interactions, known as competing endogenous RNA (ceRNA) networks, whereby lncRNAs can act as microRNA decoys to modulate gene expression. These interactions are often interconnected, thus aberrant expression of any network component could derail the complex regulatory circuitry, culminating in cancer development and progression. Recent integrative analyses have provided evidence that new computational platforms and experimental approaches can be harnessed together to distinguish key ceRNA interactions in specific cancers, which could facilitate the identification of robust biomarkers and therapeutic targets, and hence, more effective cancer therapies and better patient outcome and survival.
Collapse
|
24
|
Förster S, Hehlgans S, Rödel F, Otto B, Cordes N. Differential effects of α-catenin on the invasion and radiochemosensitivity of human colorectal cancer cells. Int J Oncol 2018; 52:1117-1128. [PMID: 29484367 PMCID: PMC5843400 DOI: 10.3892/ijo.2018.4279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/31/2018] [Indexed: 11/26/2022] Open
Abstract
Driven by genetic and epigenetic alterations, progression, therapy resistance and metastasis are frequent events in colorectal cancer (CRC). Although often speculated, the function of cell-cell contact for radiochemosensitivity, particularly associated with E-cadherin/catenin complex, warrants further clarification. In this study, we investigated the role of the E-cadherin/catenin complex proteins under more physiological three-dimensional (3D) cell culture conditions in a panel of CRC cell lines. In contrast to floating spheroids and growth in the laminin-rich matrix, collagen type 1 induced the formation of two distinct growth phenotypes, i.e., cell groups and single cells, in 5 out of the 8 CRC cell lines. Further characterization of these subpopulations revealed that, intriguingly, cell-cell contact proteins are important for invasion, but negligible for radiochemosensitivity, proliferation and adhesion. Despite the generation of genomic and transcriptomic data, we were unable to elucidate the mechanisms through which α-catenin affects collagen type 1 invasion. In a retrospective analysis of patients with rectal carcinoma, a low α-catenin expression trended with overall survival, as well as locoregional and distant control. Our results suggest that the E-cadherin/catenin complex proteins forming cell-cell contacts are mainly involved in the invasion, rather than the radiochemosensitivity of 3D grown CRC cells. Further studies are warranted in order to provide a better understanding of the molecular mechanisms controlling cell-cell adhesion in the context of radiochemoresistance.
Collapse
Affiliation(s)
- Sarah Förster
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, 01328 Dresden, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University of Frankfurt, 60590 Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University of Frankfurt, 60590 Frankfurt, Germany
| | | | - Nils Cordes
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, 01328 Dresden, Germany
| |
Collapse
|
25
|
Li Y, Zhao L, Zhang Y, Guan L, Zhang H, Zhou H, Gao T, Miao P, Sun M. Downregulation of the long non-coding RNA XLOC_010588 inhibits the invasion and migration of colorectal cancer. Oncol Rep 2018; 39:1619-1630. [PMID: 29436686 PMCID: PMC5868398 DOI: 10.3892/or.2018.6260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as major players in many biological and pathological processes; however, investigation into the function of lncRNAs in the development and progression of cancer is in its infancy. Therefore, clarification of the mechanism by which cancer-related lncRNAs function is of critical importance in research on tumorigenesis. It has been demonstrated that the lncRNA XLOC_010588 is expressed at a low level in cervical cancer, and that this has significant impact on the proliferation of cervical cancer cells. However, the expression pattern and functional roles of XLOC_010588 in colorectal cancer (CRC) remain unclear. In the present study, it was demonstrated that the expression of XLOC_010588 was significantly higher in CRC tissues when compared with that in adjacent normal tissues, and that XLOC_010588 was closely associated with metastasis and poor prognosis, thus indicating that XLOC_010588 may function as an oncogene. Additionally, downregulation of XLOC_010588 expression markedly inhibited the invasion and migration of CRC cells. Furthermore, it was demonstrated that XLOC_010588 may regulate the progression of CRC via the epithelial-mesenchymal transition (EMT) pathway. Notably, downregulation of XLOC_010588 inhibited the invasion and migration of CRC cells by regulating genes associated with EMT. Our findings revealed that XLOC_010588 may be considered as a novel potential diagnostic biomarker in CRC.
Collapse
Affiliation(s)
- Yue Li
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yining Zhang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Guan
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Huijing Zhang
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Huan Zhou
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tong Gao
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Peng Miao
- Department of Anal and Intestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
26
|
Shuwen H, Qing Z, Yan Z, Xi Y. Competitive endogenous RNA in colorectal cancer: A systematic review. Gene 2017; 645:157-162. [PMID: 29273554 DOI: 10.1016/j.gene.2017.12.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Abstract
Colorectal cancer is one of the most common malignant tumours. Competitive endogenous RNA (ceRNA) networks have been hypothesized, in which various RNAs regulate each other's expression using microRNA response elements (MREs). Recent evidence has highlighted the crucial regulatory roles of ceRNA networks in colorectal cancer. In this review, we summarize the present research methods as well as the currently known ceRNA competitors and targets in colorectal cancer. In addition, we discuss the significance of ceRNA and shortcomings of current studies of colorectal cancer.
Collapse
Affiliation(s)
- Han Shuwen
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
| | - Zhou Qing
- Department of Critical Care Medicine, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
| | - Zheng Yan
- Department of Pathology, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
| | - Yang Xi
- Department of Intervention and Radiotherapy, Huzhou Central Hospital, Huzhou, Zhejiang Province, China.
| |
Collapse
|
27
|
Luo J, Qu J, Wu DK, Lu ZL, Sun YS, Qu Q. Long non-coding RNAs: a rising biotarget in colorectal cancer. Oncotarget 2017; 8:22187-22202. [PMID: 28108736 PMCID: PMC5400657 DOI: 10.18632/oncotarget.14728] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal cancer, with a high incidence and high mortality. Long non-coding RNAs (lncRNAs) are involved in the development, invasion and metastasis, early diagnosis, prognosis, the chemoresistance and radioresistance of CRC through interference with mRNA activity, directly combining with proteins to regulate their activity or alter their localization, influencing downstream gene expression by inhibiting RNA polymerase and regulating gene expression as competing endogenous RNAs. Recent progress in next generation sequencing and transcriptome analysis has revealed that tissue and cancer-type specific lncRNAs could be useful prognostic markers. Here, the CRC-associated lncRNAs from recent studies until October 2016 are reviewed and multiple studies that have confirmed CRC-associated lncRNAs are summarized. This review may be helpful in understanding the overall relationships between the lncRNAs involved in CRC.
Collapse
Affiliation(s)
- Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, P. R. China
| | - Dong-Kai Wu
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Zhi-Li Lu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Yue-Sheng Sun
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, P. R. China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
28
|
Lian Y, Xu Y, Xiao C, Xia R, Gong H, Yang P, Chen T, Wu D, Cai Z, Zhang J, Wang K. The pseudogene derived from long non-coding RNA DUXAP10 promotes colorectal cancer cell growth through epigenetically silencing of p21 and PTEN. Sci Rep 2017; 7:7312. [PMID: 28779166 PMCID: PMC5544748 DOI: 10.1038/s41598-017-07954-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/03/2017] [Indexed: 12/24/2022] Open
Abstract
Recently, substantial evidence has demonstrated that pseudogene derived lncRNAs are crucial regulators of cancer development and progression. DUXAP10,a pseudogene derived long non-coding RNA(lncRNA), is overexpression in colorectal cancer (CRC), but its expression pattern, biological function and underlying mechanism in CRC is still undetermined. In this study, we observed that DUXAP10 was up-regulated in CRC tissues which was positively correlated with advanced pathological stages, larger tumor sizes and lymph node metastasis. Additionally, knockdown of DUXAP10 inhibited cell proliferation, induced cell apoptosis and increase the number of G0/G1 cells significantly in the HCT116 and SW480 cell lines. Moreover, DUXAP10 silencing inhibited tumor growth in vivo. Further mechanism study showed that, by binding to histone demethylase lysine-specific demethylase 1 (LSD1), DUXAP10 promote CRC cell growth and reduced cell apoptosis through silencing the expression of p21 and phosphatase and tensin homolog (PTEN) tumor suppressor. Our findings suggested that the pseudogene-derived from lncRNA DUXAP10 promotes the biological progression of CRC and is likely to be a potential therapeutic target for CRC intervention.
Collapse
Affiliation(s)
- Yifan Lian
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.,Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Chuanxing Xiao
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Rui Xia
- Department of Laboratory, Nanjing Chest Hospital, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Huangbo Gong
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Peng Yang
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Tao Chen
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Dongdong Wu
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Zeling Cai
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Jianping Zhang
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Tang L, Chen HY, Hao NB, Tang B, Guo H, Yong X, Dong H, Yang SM. microRNA inhibitors: Natural and artificial sequestration of microRNA. Cancer Lett 2017; 407:139-147. [PMID: 28602827 DOI: 10.1016/j.canlet.2017.05.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNAs) is post-transcriptional regulator of mRNA. However, the prevalence and activity of miRNA are regulated by other regulators. miRNA inhibitors are natural or artificial RNA transcripts that sequestrate miRNAs and decrease or even eliminate miRNA activity. Competing endogenous RNAs (ceRNAs) are natural and intracellular miRNA inhibitors that compete to bind to shared miRNA recognition elements (MREs) to decrease microRNA availability and relieve the repression of target RNAs. In recent years, studies have revealed that ceRNA crosstalk is involved in many pathophysiological processes and adds a new dimension to miRNA regulation. Artificial miRNA inhibitors are RNA transcripts that are synthesized via chemical and genetic methods. Artificial miRNA inhibitors can be used in miRNA loss-of-function research and gene therapies for certain diseases. In this review, we summarize the recent advances in the two different types of miRNA inhibitors.
Collapse
Affiliation(s)
- Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hong-Yan Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ning-Bo Hao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hong Guo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
30
|
Li LJ, Zhao W, Tao SS, Leng RX, Fan YG, Pan HF, Ye DQ. Competitive endogenous RNA network: potential implication for systemic lupus erythematosus. Expert Opin Ther Targets 2017; 21:639-648. [DOI: 10.1080/14728222.2017.1319938] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|