1
|
Ma S, Wang X, Lin PP, Lei L. Circulating Tumor Cell Detection for Therapeutic and Prognostic Roles in Breast Cancer. Cancer Med 2025; 14:e70902. [PMID: 40437761 PMCID: PMC12119910 DOI: 10.1002/cam4.70902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are pivotal liquid biopsy (LB) biomarkers for breast cancer (BC), offering non-invasive insights into tumor progression and metastasis. Despite their clinical promise, CTC detection remains technically challenging due to their extreme rarity in peripheral blood. METHODS This review systematically evaluates CTC detection methodologies, including immunoaffinity-based approaches and biophysical techniques, which exhibit inherent trade-offs in sensitivity, specificity, and compatibility with downstream analyses. Furthermore, post-isolation molecular characterization methods spanning genomic, transcriptomic, and proteomic analyses are also critically assessed. KEY FINDINGS CTC molecular profiling holds significant clinical relevance, enabling early diagnosis, prognostic stratification, and real-time monitoring of therapeutic response. Baseline CTC counts or quantitative/phenotypic changes during treatment inform therapeutic decision-making, predict drug resistance, and correlate with recurrence risk and metastatic progression. CONCLUSION Multimodal analysis integrating CTC morphology, surface markers, and molecular alterations advances precision therapy. However, standardization of detection platforms and clinical validation of CTC-guided protocols remain essential.
Collapse
Affiliation(s)
- Saiying Ma
- Zhejiang Chinese Medical UniversityHangzhouChina
| | | | | | - Lei Lei
- Zhejiang Cancer HospitalHangzhouChina
| |
Collapse
|
2
|
Kane MA, Birmingham KG, Yeoman B, Patel N, Sperinde H, Molley TG, Beri P, Tuler J, Kumar A, Klein S, Zare S, Wallace A, Katira P, Engler AJ. Adhesion strength of tumor cells predicts metastatic disease in vivo. Cell Rep 2025; 44:115359. [PMID: 40049163 PMCID: PMC12014391 DOI: 10.1016/j.celrep.2025.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/26/2024] [Accepted: 02/06/2025] [Indexed: 03/29/2025] Open
Abstract
Although only a fraction of tumor cells contribute to metastatic disease, no prognostic biomarkers currently exist to identify these cells. We show that a physical marker-adhesion strength-predicts metastatic potential in a mouse breast cancer model and that it may stratify human disease. Cells disseminating from murine mammary tumors are weakly adherent, and, when pre-sorted by adhesion, primary tumors created from strongly adherent cells exhibit fewer lung metastases than weakly adherent cells do. We demonstrate that admixed cancer lines can be separated by label-free adhesive signatures. When applied to murine metastatic tumors, adhesion retrospectively predicts metastatic disease with 100% specificity, 85% sensitivity, and area under the curve (AUC) of 0.94. Cells from human reduction mammoplasties have a higher adhesion strength versus resected human tumors, which may also be stratified between invasive and more indolent cancers. Thus, highly metastatic cells may have a distinct physical phenotype that may be a predictive marker of clinical outcomes.
Collapse
Affiliation(s)
- Madison A Kane
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | | | - Benjamin Yeoman
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Neal Patel
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - Hayley Sperinde
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Thomas G Molley
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Pranjali Beri
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - Jeremy Tuler
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Aditya Kumar
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - Sarah Klein
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - Somaye Zare
- Department of Pathology, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - Anne Wallace
- Department of Surgery, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA; Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Adam J Engler
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Department of Pathology, UC San Diego, La Jolla, CA 92093, USA; Department of Surgery, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Bergmann L, Afflerbach AK, Yuan T, Pantel K, Smit DJ. Lessons (to be) learned from liquid biopsies: assessment of circulating cells and cell-free DNA in cancer and pregnancy-acquired microchimerism. Semin Immunopathol 2025; 47:14. [PMID: 39893314 PMCID: PMC11787191 DOI: 10.1007/s00281-025-01042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Tumors constantly shed cancer cells that are considered the mediators of metastasis via the blood stream. Analysis of circulating cells and circulating cell-free DNA (cfDNA) in liquid biopsies, mostly taken from peripheral blood, have emerged as powerful biomarkers in oncology, as they enable the detection of genomic aberrations. Similarly, liquid biopsies taken from pregnant women serve as prenatal screening test for an abnormal number of chromosomes in the fetus, e.g., via the analysis of microchimeric fetal cells and cfDNA circulating in maternal blood. Liquid biopsies are minimally invasive and, consequently, associated with reduced risks for the patients. However, different challenges arise in oncology and pregnancy-acquired liquid biopsies with regard to the analyte concentration and biological (background) noise among other factors. In this review, we highlight the unique biological properties of circulating tumor cells (CTC), summarize the various techniques that have been developed for the enrichment, detection and analysis of CTCs as well as for analysis of genetic and epigenetic aberrations in cfDNA and highlight the range of possible clinical applications. Lastly, the potential, but also the challenges of liquid biopsies in oncology as well as their translational value for the analysis of pregnancy-acquired microchimerism are discussed.
Collapse
Affiliation(s)
- Lina Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Ann-Kristin Afflerbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Tingjie Yuan
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
4
|
Rusnáková DŠ, Aziri R, Dubovan P, Jurík M, Mego M, Pinďák D. Detection, significance and potential utility of circulating tumor cells in clinical practice in breast cancer (Review). Oncol Lett 2025; 29:10. [PMID: 39492933 PMCID: PMC11526295 DOI: 10.3892/ol.2024.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 11/05/2024] Open
Abstract
Although advances in diagnostic techniques, new therapeutic strategies and personalization of breast cancer (BC) care have improved the survival for a number of patients, BC remains a major cause of morbidity and mortality for women. The study of circulating tumor cells (CTCs) has significant potential in translational oncology since these cells represent promising biomarkers throughout the entire course of BC in patients. CTCs also have notable prognostic value in early BC as well as metastatic BC. Based on current knowledge, it seems that the dynamics of CTCs that change during therapy reflect therapy response, and CTCs could serve as a tool for risk stratification and real-time monitoring of treatment in patients with BC. The question of how to use this information in everyday clinical practice and how this information can guide or change therapy to affect the clinical outcome of patients with BC remains unanswered. The present review aims to discuss current completed and ongoing trials that have been designed to demonstrate the clinical significance of CTCs, offer insights into treatment efficacy and assess CTC utility, facilitating their implementation in the routine management of patients with BC.
Collapse
Affiliation(s)
- Dominika Šmičková Rusnáková
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Ramadan Aziri
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Peter Dubovan
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Miroslav Jurík
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Michal Mego
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Daniel Pinďák
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| |
Collapse
|
5
|
Kotsifaki A, Maroulaki S, Armakolas A. Exploring the Immunological Profile in Breast Cancer: Recent Advances in Diagnosis and Prognosis through Circulating Tumor Cells. Int J Mol Sci 2024; 25:4832. [PMID: 38732051 PMCID: PMC11084220 DOI: 10.3390/ijms25094832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This review offers a comprehensive exploration of the intricate immunological landscape of breast cancer (BC), focusing on recent advances in diagnosis and prognosis through the analysis of circulating tumor cells (CTCs). Positioned within the broader context of BC research, it underscores the pivotal role of the immune system in shaping the disease's progression. The primary objective of this investigation is to synthesize current knowledge on the immunological aspects of BC, with a particular emphasis on the diagnostic and prognostic potential offered by CTCs. This review adopts a thorough examination of the relevant literature, incorporating recent breakthroughs in the field. The methodology section succinctly outlines the approach, with a specific focus on CTC analysis and its implications for BC diagnosis and prognosis. Through this review, insights into the dynamic interplay between the immune system and BC are highlighted, with a specific emphasis on the role of CTCs in advancing diagnostic methodologies and refining prognostic assessments. Furthermore, this review presents objective and substantiated results, contributing to a deeper understanding of the immunological complexity in BC. In conclusion, this investigation underscores the significance of exploring the immunological profile of BC patients, providing valuable insights into novel advances in diagnosis and prognosis through the utilization of CTCs. The objective presentation of findings emphasizes the crucial role of the immune system in BC dynamics, thereby opening avenues for enhanced clinical management strategies.
Collapse
Affiliation(s)
| | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (S.M.)
| |
Collapse
|
6
|
Sisodiya S, Kasherwal V, Khan A, Roy B, Goel A, Kumar S, Arif N, Tanwar P, Hussain S. Liquid Biopsies: Emerging role and clinical applications in solid tumours. Transl Oncol 2023; 35:101716. [PMID: 37327582 PMCID: PMC10285278 DOI: 10.1016/j.tranon.2023.101716] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Late detection and lack of precision diagnostics are the major challenges in cancer prevention and management. Biomarker discovery in specific cancers, especially at the pre-invasive stage, is vital for early diagnosis, positive treatment response, and good disease prognosis. Traditional diagnostic measures require invasive procedures such as tissue excision using a needle, an endoscope, and/or surgical resection which can be unsafe, expensive, and painful. Additionally, the presence of comorbid conditions in individuals might render them ineligible for undertaking a tissue biopsy, and in some cases, it is difficult to access tumours depending on the site of occurrence. In this context, liquid biopsies are being explored for their clinical significance in solid malignancies management. These non-invasive or minimally invasive methods are being developed primarily for identification of biomarkers for early diagnosis and targeted therapeutics. In this review, we have summarised the use and importance of liquid biopsy as significant tool in diagnosis, prognosis prediction, and therapeutic development. We have also discussed the challenges that are encountered and future perspective.
Collapse
Affiliation(s)
- Sandeep Sisodiya
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India; Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Vishakha Kasherwal
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Asiya Khan
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Anjana Goel
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kumar
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Nazneen Arif
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Showket Hussain
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India.
| |
Collapse
|
7
|
Wang Q, Šabanović B, Awada A, Reina C, Aicher A, Tang J, Heeschen C. Single-cell omics: a new perspective for early detection of pancreatic cancer? Eur J Cancer 2023; 190:112940. [PMID: 37413845 DOI: 10.1016/j.ejca.2023.112940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023]
Abstract
Pancreatic cancer is one of the most lethal cancers, mostly due to late diagnosis and limited treatment options. Early detection of pancreatic cancer in high-risk populations bears the potential to greatly improve outcomes, but current screening approaches remain of limited value despite recent technological advances. This review explores the possible advantages of liquid biopsies for this application, particularly focusing on circulating tumour cells (CTCs) and their subsequent single-cell omics analysis. Originating from both primary and metastatic tumour sites, CTCs provide important information for diagnosis, prognosis and tailoring of treatment strategies. Notably, CTCs have even been detected in the blood of subjects with pancreatic precursor lesions, suggesting their suitability as a non-invasive tool for the early detection of malignant transformation in the pancreas. As intact cells, CTCs offer comprehensive genomic, transcriptomic, epigenetic and proteomic information that can be explored using rapidly developing techniques for analysing individual cells at the molecular level. Studying CTCs during serial sampling and at single-cell resolution will help to dissect tumour heterogeneity for individual patients and among different patients, providing new insights into cancer evolution during disease progression and in response to treatment. Using CTCs for non-invasive tracking of cancer features, including stemness, metastatic potential and expression of immune targets, provides important and readily accessible molecular insights. Finally, the emerging technology of ex vivo culturing of CTCs could create new opportunities to study the functionality of individual cancers at any stage and develop personalised and more effective treatment approaches for this lethal disease.
Collapse
Affiliation(s)
- Qi Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Azhar Awada
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy; Molecular Biotechnology Center, University of Turin (UniTO), Turin, Italy
| | - Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jiajia Tang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China; South Chongqing Road 227, Shanghai, China.
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy; South Chongqing Road 227, Shanghai, China.
| |
Collapse
|
8
|
Poellmann MJ, Bu J, Liu S, Wang AZ, Seyedin SN, Chandrasekharan C, Hong H, Kim Y, Caster JM, Hong S. Nanotechnology and machine learning enable circulating tumor cells as a reliable biomarker for radiotherapy responses of gastrointestinal cancer patients. Biosens Bioelectron 2023; 226:115117. [PMID: 36753988 PMCID: PMC10034717 DOI: 10.1016/j.bios.2023.115117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
A highly sensitive, circulating tumor cell (CTC)-based liquid biopsy was used to monitor gastrointestinal cancer patients during treatment to determine if CTC abundance was predictive of disease recurrence. The approach used a combination of biomimetic cell rolling on recombinant E-selectin and dendrimer-mediated multivalent immunocapture at the nanoscale to purify CTCs from peripheral blood mononuclear cells. Due to the exceptionally high numbers of CTCs captured, a machine learning algorithm approach was developed to efficiently and reliably quantify abundance of immunocytochemically-labeled cells. A convolutional neural network and logistic regression model achieved 82.9% true-positive identification of CTCs with a false positive rate below 0.1% on a validation set. The approach was then used to quantify CTC abundance in peripheral blood samples from 27 subjects before, during, and following treatments. Samples drawn from the patients either prior to receiving radiotherapy or early in chemotherapy had a median 50 CTC ml-1 whole blood (range 0.6-541.6). We found that the CTC counts drawn 3 months post treatment were predictive of disease progression (p = .045). This approach to quantifying CTC abundance may be a clinically impactful in the timely determination of gastrointestinal cancer progression or response to treatment.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA; Capio Biosciences, Inc., Madison, WI, 53719, USA and Capio Biosciences Korea, Incheon, 21983 South Korea
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA; Capio Biosciences, Inc., Madison, WI, 53719, USA and Capio Biosciences Korea, Incheon, 21983 South Korea; Department of Biological Engineering, Inha University, Incheon, 22212, South Korea
| | - Stanley Liu
- Capio Biosciences, Inc., Madison, WI, 53719, USA and Capio Biosciences Korea, Incheon, 21983 South Korea
| | - Andrew Z Wang
- Capio Biosciences, Inc., Madison, WI, 53719, USA and Capio Biosciences Korea, Incheon, 21983 South Korea; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steven N Seyedin
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
| | | | - Heejoo Hong
- Department of Clinical Pharmacology & Therapeutics, Asan Medical Center, University of Ulsan, Seoul, 05505, South Korea
| | - YoungSoo Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Joseph M Caster
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA; Capio Biosciences, Inc., Madison, WI, 53719, USA and Capio Biosciences Korea, Incheon, 21983 South Korea; Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea; Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, WI, 53705, USA; Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
9
|
Vidlarova M, Rehulkova A, Stejskal P, Prokopova A, Slavik H, Hajduch M, Srovnal J. Recent Advances in Methods for Circulating Tumor Cell Detection. Int J Mol Sci 2023; 24:3902. [PMID: 36835311 PMCID: PMC9959336 DOI: 10.3390/ijms24043902] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Circulating tumor cells (CTCs) are released from primary tumors and transported through the body via blood or lymphatic vessels before settling to form micrometastases under suitable conditions. Accordingly, several studies have identified CTCs as a negative prognostic factor for survival in many types of cancer. CTCs also reflect the current heterogeneity and genetic and biological state of tumors; so, their study can provide valuable insights into tumor progression, cell senescence, and cancer dormancy. Diverse methods with differing specificity, utility, costs, and sensitivity have been developed for isolating and characterizing CTCs. Additionally, novel techniques with the potential to overcome the limitations of existing ones are being developed. This primary literature review describes the current and emerging methods for enriching, detecting, isolating, and characterizing CTCs.
Collapse
Affiliation(s)
- Monika Vidlarova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Alona Rehulkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Pavel Stejskal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Andrea Prokopova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
| | - Hanus Slavik
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 67000 Strasbourg, France
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
10
|
CTC-5: A novel digital pathology approach to characterise circulating tumour cell biodiversity. Heliyon 2023; 9:e13044. [PMID: 36747925 PMCID: PMC9898658 DOI: 10.1016/j.heliyon.2023.e13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Metastatic progression and tumor evolution complicates the clinical management of cancer patients. Circulating tumor cell (CTC) characterization is a growing discipline that aims to elucidate tumor metastasis and evolution processes. CTCs offer the clinical potential to monitor cancer patients for therapy response, disease relapse, and screen 'at risk' groups for the onset of malignancy. However, such clinical utility is currently limited to breast, prostate, and colorectal cancer patients. Further understanding of the basic CTC biology of other malignancies is required to progress them towards clinical utility. Unfortunately, such basic clinical research is often limited by restrictive characterization methods and high-cost barrier to entry for CTC isolation and imaging infrastructure. As experimental clinical results on applications of CTC are accumulating, it is becoming clear that a two-tier system of CTC isolation and characterization is required. The first tier is to facilitate basic research into CTC characterization. This basic research then informs a second tier specialised in clinical prognostic and diagnostic testing. This study presented in this manuscript describes the development and application of a low-cost, CTC isolation and characterization pipeline; CTC-5. This approach uses an established 'isolation by size' approach (ScreenCell Cyto) and combines histochemical morphology stains and multiparametric immunofluorescence on the same isolated CTCs. This enables capture and characterization of CTCs independent of biomarker-based pre-selection and accommodates both single CTCs and clusters of CTCs. Additionally, the developed open-source software is provided to facilitate the synchronization of microscopy data from multiple sources (https://github.com/CTC5/). This enables high parameter histochemical and immunofluorescent analysis of CTCs with existing microscopy infrastructure without investment in CTC specific imaging hardware. Our approach confirmed by the number of successful tests represents a potential major advance towards highly accessible low-cost technology aiming at the basic research tier of CTC isolation and characterization. The biomarker independent approach facilitates closing the gap between malignancies with poorly, and well-defined CTC phenotypes. As is currently the case for some of the most commonly occurring breast, prostate and colorectal cancers, such advances will ultimately benefit the patient, as early detection of relapse or onset of malignancy strongly correlates with their prognosis.
Collapse
|
11
|
Cai M, He H, Hong S, Weng J. Synergistic diagnostic value of circulating tumor cells and tumor markers CEA/CA19-9 in colorectal cancer. Scand J Gastroenterol 2023; 58:54-60. [PMID: 35968572 DOI: 10.1080/00365521.2022.2106152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Circulation tumor cells (CTCs) play a crucial role in cancer spread and have a strong correlation with cancer progression. Previous works of research have shown that the number of CTCs can be used to predict the recurrence of colorectal cancer (CRC). METHODS In this study, we used the Cyttel method to isolate and detect CTCs, and analyzed their correlation with carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) levels. RESULTS We found that the amount and positive (CTC number ≥2 in 3.2 mL peripheral blood) rate of CTCs were higher in peripheral blood (PB) of patients in stage III/IV than that of patients in stage I/II, suggesting the number of CTCs in CRC patients may have a higher correlation with metastasis. Furthermore, the number of CTCs was correlated to CEA and CA19-9 levels in individuals with all stages of CRC, and all of them predicted a worse prognosis and higher recurrence rate. Notably, triple positive (CTCs ≥ 2, CEA ≥ 5 ng/mL, CA19-9 ≥ 37 U/mL in PB) leads to the worst outcome indicated by overall survival and recurrence rate. CONCLUSION Taken together, this study first revealed that a triple combination of CTCs, which were detected by the Cyttel method but not other approaches, CEA and CA19-9 is a promising prognostic marker on the recurrence of colorectal cancer and overall survival in clinic practice.
Collapse
Affiliation(s)
- Mingzhi Cai
- Department of General Surgery, ZhangZhou Affiliated Hospital of FuJian Medical University, Fujian, China
| | - Huiduan He
- Department of Pathology, ZhangZhou Affiliated Hospital of FuJian Medical University, Fujian, China
| | - Shaojun Hong
- Department of Pathology, ZhangZhou Affiliated Hospital of FuJian Medical University, Fujian, China
| | - Jianming Weng
- Department of Pathology, ZhangZhou Affiliated Hospital of FuJian Medical University, Fujian, China
| |
Collapse
|
12
|
Ma G, Yang D, Li Y, Li M, Li J, Fu J, Peng Z. Combined measurement of circulating tumor cell counts and serum tumor marker levels enhances the screening efficiency for malignant versus benign pulmonary nodules. Thorac Cancer 2022; 13:3393-3401. [PMID: 36284506 PMCID: PMC9715841 DOI: 10.1111/1759-7714.14702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The high false-positive rate for pulmonary nodules (PNs) from using low-dose computed tomography (LDCT) screening can lead to overuse of invasive procedures, overtreatment, and patient anxiety. Therefore, it is very important to develop new diagnostic methods. METHODS A negative enrichment-fluorescence in situ hybridization (NE-FISH) approach was used to detect circulating tumor cells (CTCs) in patients with PNs. We evaluated whether or not the combination of CTC counts with serum tumor marker levels (CEA, CA 125, CYFRA 21-1, SCC) could improve the diagnostic ability for distinguishing patients with malignant pulmonary nodules (MPNs) from those with benign pulmonary nodules (BPNs). Moreover, the potential clinical application of this combination for the diagnosis of solitary pulmonary nodules (SPNs) with a diameter ≤2 cm was also investigated. RESULTS The combination of CTC counts and tumor marker levels had a sensitivity of 80.12% and the area under the receiver operating characteristics curve (AUCROC ) of 0.853 (95% confidence interval [CI]: 0.800-0.897, p < 0.001) for the differential diagnosis of PNs. For early cancer stages, the sensitivity was 75.38% (AUCROC = 0.780, 95% CI: 0.713-0.838, p < 0.001). In addition, for SPNs within 2 cm the combination of CTC counts and tumor marker levels was still the most valuable diagnostic tool with a sensitivity of 78.95% and AUCROC of 0.888. CONCLUSION The combination of CTC counts and serum tumor marker levels is helpful for improving the diagnosis of PNs, especially in the early stages of cancer and for SPNs within 2 cm.
Collapse
Affiliation(s)
- Guojun Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina,Department of Thoracic SurgeryLiaocheng People's HospitalLiaochengChina
| | - Dawei Yang
- Zhong Yuan Academy of Biological MedicineLiaocheng People's HospitalLiaochengChina
| | - Yang Li
- Zhong Yuan Academy of Biological MedicineLiaocheng People's HospitalLiaochengChina
| | - Meng Li
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jingtao Li
- Department of Thoracic SurgeryLiaocheng People's HospitalLiaochengChina
| | - Jianhua Fu
- Department of Thoracic SurgeryLiaocheng People's HospitalLiaochengChina
| | - Zhongmin Peng
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
13
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|
14
|
Mjahed RB, Astaras C, Roth A, Koessler T. Where Are We Now and Where Might We Be Headed in Understanding and Managing Brain Metastases in Colorectal Cancer Patients? Curr Treat Options Oncol 2022; 23:980-1000. [PMID: 35482170 PMCID: PMC9174111 DOI: 10.1007/s11864-022-00982-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 02/01/2023]
Abstract
OPINION STATEMENT Compared to liver and lung metastases, brain metastases (BMs) from colorectal cancer (CRC) are rare and remain poorly investigated despite the anticipated rise in their incidence. CRC patients bearing BM have a dismal prognosis with a median survival of 3-6 months, significantly lower than that of patients with BM from other primary tumors, and of those with metastatic CRC manifesting extracranially. While liver and lung metastases from CRC have more codified treatment strategies, there is no consensus regarding the treatment of BM in CRC, and their management follows the approaches of BM from other solid tumors. Therapeutic strategies are driven by the number and localisation of the lesion, consisting in local treatments such as surgery, stereotactic radiosurgery, or whole-brain radiotherapy. Novel treatment modalities are slowly finding their way into this shy unconsented armatorium including immunotherapy, monoclonal antibodies, tyrosine kinase inhibitors, or a combination of those, among others.This article reviews the pioneering strategies aiming at understanding, diagnosing, and managing this disease, and discusses future directions, challenges, and potential innovations in each of these domains. HIGHLIGHTS • With the increasing survival in CRC, brain and other rare/late-onset metastases are rising. • Distal colon/rectal primary location, long-standing progressive lung metastases, and longer survival are risk factors for BM development in CRC. • Late diagnosis and lack of consensus treatment strategies make BM-CRC diagnosis very dismal. • Liquid biopsies using circulating tumor cells might offer excellent opportunities in the early diagnosis of BM-CRC and the search for therapeutic options. • Multi-modality treatment including surgical metastatic resection, postoperative SRS with/without WBRT, and chemotherapy is the best current treatment option. • Recent mid-sized clinical trials, case reports, and preclinical models show the potential of unconventional therapeutic approaches as monoclonal antibodies, targeted therapies, and immunotherapy. Graphical abstract.
Collapse
Affiliation(s)
- Ribal Bou Mjahed
- Department of Oncology, University hospital of Geneva (HUG), Geneva, Switzerland.
- Département de médecine interne - CHUV, Rue du Bugnon 21, CH-1011, Lausanne, Switzerland.
| | - Christoforos Astaras
- Department of Oncology, University hospital of Geneva (HUG), Geneva, Switzerland
| | - Arnaud Roth
- Department of Oncology, University hospital of Geneva (HUG), Geneva, Switzerland
| | - Thibaud Koessler
- Department of Oncology, University hospital of Geneva (HUG), Geneva, Switzerland
| |
Collapse
|
15
|
Detection and Characterization of Estrogen Receptor α Expression of Circulating Tumor Cells as a Prognostic Marker. Cancers (Basel) 2022; 14:cancers14112621. [PMID: 35681601 PMCID: PMC9179654 DOI: 10.3390/cancers14112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
CTCs have increasingly been used as a liquid biopsy analyte to obtain real-time information on the tumor through minimally invasive blood analyses. CTCs allow for the identification of proteins relevant for targeted therapies. Here, we evaluated the expression of estrogen receptors (ER) in CTCs of patients with metastatic breast cancer. From sixty metastatic breast cancer patients who had ER-positive primary tumors (range of 1−70% immunostaining) at initial cancer diagnosis, 109 longitudinal blood samples were prospectively collected and analyzed using the CellSearch System in combination with the ERα monoclonal murine ER-119.3 antibody. Prolonged cell permeabilization was found to be required for proper staining of nuclear ER in vitro. Thirty-one cases were found to be CTC-positive; an increased number of CTCs during endocrine and chemotherapy was correlated with disease progression, whereas a decrease or stable amount of CTC number (<5) during treatment was correlated with a better clinical outcome. Survival analyses further indicate a positive association of CTC-status with progression-free survival (HR, 66.17; 95%CI, 3.66−195.96; p = 0.0045) and overall survival (HR, 6.21; 95%CI, 2.66−14.47; p < 0.0001). Only one-third of CTC-positive breast cancer patients, who were initially diagnosed with ER-positive primary tumors, harbored ER-positive CTCs at the time of metastasis, and even in those patients, both ER-positive and ER-negative CTCs were found. CTC-positivity was correlated with a shorter relapse-free survival. Remarkably, ER-negative CTCs were frequent despite initial ER-positive status of the primary tumor, suggesting a switch of ER phenotype or selection of minor ER-negative clones as a potential mechanism of escape from ER-targeting therapy.
Collapse
|
16
|
Liquid Biopsy: A Family of Possible Diagnostic Tools. Diagnostics (Basel) 2021; 11:diagnostics11081391. [PMID: 34441325 PMCID: PMC8394215 DOI: 10.3390/diagnostics11081391] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/26/2023] Open
Abstract
Liquid biopsies could be considered an excellent diagnostic tool, in different physiological or pathological conditions. The possibility of using liquid biopsies for non-invasive clinical purposes is quite an old idea: indeed many years ago it was already being used in the field of non-invasive prenatal tests (NIPT) for autosomal fetal aneuploidy evaluation. In 1997 Lo et al. had identified fetal DNA in maternal plasma and serum, showing that about 10–15% of cfDNA in maternal plasma is derived from the placenta, and biologic fluid represents an important and non-invasive technique to evaluate state diseases and possible therapies. Nowadays, several body fluids, such as blood, urine, saliva and other patient samples, could be used as liquid biopsy for clinical non-invasive evaluation. These fluids contain numerous and various biomarkers and could be used for the evaluation of pathological and non-pathological conditions. In this review we will analyze the different types of liquid biopsy, their potential role in clinical diagnosis and the functional involvement of extracellular vesicles in these fluids as carriers.
Collapse
|
17
|
Hendricks A, Dall K, Brandt B, Geisen R, Röder C, Schafmayer C, Becker T, Hinz S, Sebens S. Longitudinal Analysis of Circulating Tumor Cells in Colorectal Cancer Patients by a Cytological and Molecular Approach: Feasibility and Clinical Application. Front Oncol 2021; 11:646885. [PMID: 34262858 PMCID: PMC8273730 DOI: 10.3389/fonc.2021.646885] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Liquid biopsies allowing for individualized risk stratification of cancer patients have become of high significance in individualized cancer diagnostics and treatment. The detection of circulating tumor cells (CTC) has proven to be highly relevant in risk prediction, e.g., in colorectal cancer (CRC) patients. In this study, we investigate the clinical relevance of longitudinal CTC detection over a course of follow-up after surgical resection of the tumor and correlate these findings with clinico-pathological characteristics. Methods In total, 49 patients with histologically proven colorectal carcinoma were recruited for this prospective study. Blood samples were analyzed for CTC presence by two methods: first by marker-dependent immunofluorescence staining combined with automated microscopy with the NYONE® cell imager and additionally, indirectly, by semi-quantitative Cytokeratin-20 (CK20) RT-qPCR. CTC quantification data were compared and correlated with the clinico-pathological parameters. Results Detection of CTC over a post-operative time course was feasible with both applied methods. In patients who were pre-operatively negative for CTCs with the NYONE® method or below the cut-off for relative CK20 mRNA expression after analysis by PCR, a statistically significant rise in the immediate post-operative CTC detection could be demonstrated. Further, in the cohort analyzed by PCR, we detected a lower CTC load in patients who were adjuvantly treated with chemotherapy compared to patients in the follow-up subgroup. This finding was contrary to the same patient subset analyzed with the NYONE® for CTC detection. Conclusion Our study investigates the occurrence of CTC in CRC patients after surgical resection of the primary tumor and during postoperative follow-up. The resection of the tumor has an impact on the CTC quantity and the longitudinal CTC analysis supports the significance of CTC as a prognostic biomarker. Future investigations with an even more extended follow-up period and larger patient cohorts will have to validate our results and may help to define an optimal longitudinal sampling scheme for liquid biopsies in the post-operative monitoring of cancer patients to enable tailored therapy concepts for precision medicine.
Collapse
Affiliation(s)
- Alexander Hendricks
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Katharina Dall
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Burkhard Brandt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | | | - Christian Röder
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus, Kiel, Kiel, Germany
| | - Clemens Schafmayer
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Thomas Becker
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Sebastian Hinz
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus, Kiel, Kiel, Germany
| |
Collapse
|
18
|
Patelli G, Vaghi C, Tosi F, Mauri G, Amatu A, Massihnia D, Ghezzi S, Bonazzina E, Bencardino K, Cerea G, Siena S, Sartore-Bianchi A. Liquid Biopsy for Prognosis and Treatment in Metastatic Colorectal Cancer: Circulating Tumor Cells vs Circulating Tumor DNA. Target Oncol 2021; 16:309-324. [PMID: 33738696 PMCID: PMC8105246 DOI: 10.1007/s11523-021-00795-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Liquid biopsy recently gained widespread attention as a noninvasive alternative/complementary technique to tissue biopsy in patients with cancer. As technological advances have improved both feasibility and turnaround time, liquid biopsy has expanded tumor molecular analysis with acknowledgement of both spatial and temporal heterogeneity, overcoming many limitations of traditional tissue biopsy. Because of its diagnostic, prognostic, and predictive value, liquid biopsy has been extensively studied also in metastatic colorectal cancer. Indeed, as personalized medicine establishes its role in cancer treatment, genetic biomarkers unveiling the emergence of early resistance are needed. Among the wide variety of tumor analytes amenable to collection, circulating DNA and circulating tumor cells are the most adopted approaches, and both carry clinical relevance in colorectal cancer. However, few studies focused on comparing feasibility between these two approaches. In this review, we discuss the potential implications of liquid biopsy in metastatic colorectal cancer, assessing the advantages and drawbacks of circulating DNA and circulating tumor cells, and highlighting the most relevant trials for clinical practice.
Collapse
Affiliation(s)
- Giorgio Patelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Caterina Vaghi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Federica Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Gianluca Mauri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Daniela Massihnia
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Silvia Ghezzi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Erica Bonazzina
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Katia Bencardino
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy.
| |
Collapse
|
19
|
Memarpour S, Khalili-Tanha G, Ghannad AA, Razavi MS, Joudi M, Joodi M, Ferns GA, Hassanian SM, Khazaei M, Avan A. The Clinical Application of Circulating Tumor Cells and DNAs as Prognostic and Predictive Biomarkers in Gastrointestinal Cancer. Curr Cancer Drug Targets 2021; 21:676-688. [PMID: 33719973 DOI: 10.2174/1568009621666210311090531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/21/2020] [Accepted: 01/31/2021] [Indexed: 11/22/2022]
Abstract
Gastrointestinal (GI) cancer is one of the most common cancers globally. Genetic and epigenetic mechanisms are involved in its pathogenesis. The conventional methods for diagnosis and screening for GI cancers are often invasive and have other limitations. In the era of personalized medicine, a novel non-invasive approach called liquid biopsy has been introduced for the detection and management of GI cancers, which focuses on the analysis of circulating tumor cells (CTCs) and circulating cell-free tumor DNA (ctDNA). Several studies have shown that this new approach allows for an improved understanding of GI tumor biology and will lead to an improvement in clinical management. The aim of the current review is to explore the clinical applications of CTCs and ctDNA in patients with GI cancer.
Collapse
Affiliation(s)
- Sara Memarpour
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Awa Alizadeh Ghannad
- Department of biological sciences, California state University, Sacramento, California. United States
| | - Masoud Sharifian Razavi
- Department of Gastroenterology, Ghaem Medical Center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Mona Joudi
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Marjan Joodi
- Sarvar Children's Hospital, Endoscopic and Minimally Invasive Surgery Research Center, Mashhad. Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH. United Kingdom
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Majid Khazaei
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
20
|
A Direct Comparison between the Lateral Magnetophoretic Microseparator and AdnaTest for Isolating Prostate Circulating Tumor Cells. MICROMACHINES 2020; 11:mi11090870. [PMID: 32961814 PMCID: PMC7570110 DOI: 10.3390/mi11090870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022]
Abstract
Circulating tumor cells (CTCs) are important biomarkers for the diagnosis, prognosis, and treatment of cancer. However, because of their extreme rarity, a more precise technique for isolating CTCs is required to gain deeper insight into the characteristics of cancer. This study compares the performance of a lateral magnetophoretic microseparator (“CTC-μChip”), as a representative microfluidic device, and AdnaTest ProstateCancer (Qiagen), as a commercially available specialized method, for isolating CTCs from the blood of patients with prostate cancer. The enumeration and genetic analysis results of CTCs isolated via the two methods were compared under identical conditions. In the CTC enumeration experiment, the number of CTCs isolated by the CTC-μChip averaged 17.67 CTCs/mL, compared to 1.56 CTCs/mL by the AdnaTest. The number of contaminating white blood cells (WBCs) and the CTC purity with the CTC-μChip averaged 772.22 WBCs/mL and 3.91%, respectively, whereas those with the AdnaTest averaged 67.34 WBCs/mL and 1.98%, respectively. Through genetic analysis, using a cancer-specific gene panel (AR (androgen receptor), AR-V7 (A\androgen receptor variant-7), PSMA (prostate specific membrane antigen), KRT19 (cytokeratin-19), CD45 (PTPRC, Protein tyrosine phosphatase, receptor type, C)) with reverse transcription droplet digital PCR, three genes (AR, AR-V7, and PSMA) were more highly expressed in cells isolated by the CTC-μChip, while KRT19 and CD45 were similarly detected using both methods. Consequently, this study showed that the CTC-μChip can be used to isolate CTCs more reliably than AdnaTest ProstateCancer, as a specialized method for gene analysis of prostate CTCs, as well as more sensitively obtain cancer-associated gene expressions.
Collapse
|
21
|
Isolation and Enumeration of CTC in Colorectal Cancer Patients: Introduction of a Novel Cell Imaging Approach and Comparison to Cellular and Molecular Detection Techniques. Cancers (Basel) 2020; 12:cancers12092643. [PMID: 32947903 PMCID: PMC7563529 DOI: 10.3390/cancers12092643] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Circulating tumour cells (CTC) were proven to be prognostically relevant in cancer treatment, e.g., in colorectal cancer (CRC). This study validates a molecular detection technique through using a novel cell imaging approach for CTC detection and enumeration, in comparison to a size-based cellular and correlated the data to clinico-pathological characteristics. Overall, 57 CRC patients were recruited for this prospective study. Blood samples were analysed for CTCs by three methods: (1) Epithelial marker immunofluorescence staining combined with automated microscopy using the NYONE® cell imager; (2) isolation by size using membrane filtration with the ScreenCell® Cyto IS device and immunofluorescence staining; (3) detection by semi-quantitative Cytokeratin-20 RT-qPCR. Enumeration data were compared and correlated with clinic-pathological parameters. CTC were detected by either approach; however, with varying positivity rates: NYONE® 36.4%, ScreenCell® 100%, and PCR 80.5%. All methods revealed a positive correlation of CTC presence and higher tumour burden, which was most striking using the ScreenCell® device. Generally, no intercorrelation of CTC presence emerged amongst the applied techniques. Overall, enumeration of CTC after isolation by size demonstrated to be the most reliable strategy for the detection of CTC in CRC patients. Ongoing studies will have to unravel the prognostic value of this finding, and validate this approach in a larger cohort.
Collapse
|
22
|
Mentis AFA, Grivas PD, Dardiotis E, Romas NA, Papavassiliou AG. Circulating tumor cells as Trojan Horse for understanding, preventing, and treating cancer: a critical appraisal. Cell Mol Life Sci 2020; 77:3671-3690. [PMID: 32333084 PMCID: PMC11104835 DOI: 10.1007/s00018-020-03529-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Circulating tumor cells (CTCs) are regarded as harbingers of metastases. Their ability to predict response to therapy, relapse, and resistance to treatment has proposed their value as putative diagnostic and prognostic indicators. CTCs represent one of the zeniths of cancer evolution in terms of cell survival; however, the triggers of CTC generation, the identification of potentially metastatic CTCs, and the mechanisms contributing to their heterogeneity and aggressiveness represent issues not yet fully deciphered. Thus, prior to enabling liquid biopsy applications to reach clinical prime time, understanding how the above mechanistic information can be applied to improve treatment decisions is a key challenge. Here, we provide our perspective on how CTCs can provide mechanistic insights into tumor pathogenesis, as well as on CTC clinical value. In doing so, we aim to (a) describe how CTCs disseminate from the primary tumor, and their link to epithelial-mesenchymal transition (EMT); (b) trace the route of CTCs through the circulation, focusing on tumor self-seeding and the possibility of tertiary metastasis; (c) describe possible mechanisms underlying the enhanced metastatic potential of CTCs; (d) discuss how CTC could provide further information on the tissue of origin, especially in cancer of unknown primary origin. We also provide a comprehensive review of meta-analyses assessing the prognostic significance of CTCs, to highlight the emerging role of CTCs in clinical oncology. We also explore how cell-free circulating tumor DNA (ctDNA) analysis, using a combination of genomic and phylogenetic analysis, can offer insights into CTC biology, including our understanding of CTC heterogeneity and tumor evolution. Last, we discuss emerging technologies, such as high-throughput quantitative imaging, radiogenomics, machine learning approaches, and the emerging breath biopsy. These technologies could compliment CTC and ctDNA analyses, and they collectively represent major future steps in cancer detection, monitoring, and management.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
- Department of Microbiology, University Hospital of Thessaly, Larissa, Greece
| | - Petros D Grivas
- Division of Oncology, Department of Medicine, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Nicholas A Romas
- Department of Urology, Columbia University Medical Center, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street-Bldg. 16, 11527, Athens, Greece.
| |
Collapse
|
23
|
Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020; 39:969-987. [PMID: 32507912 PMCID: PMC7497325 DOI: 10.1007/s10555-020-09898-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum, Neuherberg, Germany.
| | - Min Pan
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Henrik Schinke
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Patrick A Baeuerle
- Institute for Immunology, LMU Munich, Grosshadernerstr. 9, 82152 Planegg, Martinsried, Germany
- MPM Capital, Cambridge MA, 450 Kendall Street, Cambridge, MA, 02142, USA
| |
Collapse
|
24
|
Drucker A, Teh EM, Kostyleva R, Rayson D, Douglas S, Pinto DM. Comparative performance of different methods for circulating tumor cell enrichment in metastatic breast cancer patients. PLoS One 2020; 15:e0237308. [PMID: 32790691 PMCID: PMC7425969 DOI: 10.1371/journal.pone.0237308] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/24/2020] [Indexed: 01/01/2023] Open
Abstract
The isolation and analysis of circulating tumor cells (CTC) has the potential to provide minimally invasive diagnostic, prognostic and predictive information. Widespread clinical implementation of CTC analysis has been hampered by a lack of comparative investigation between different analytic methodologies in clinically relevant settings. The objective of this study was to evaluate four different CTC isolation techniques–those that rely on surface antigen expression (EpCAM or CD45 using DynaBeads® or EasySep™ systems) or the biophysical properties (RosetteSep™ or ScreenCell®) of CTCs. These were evaluated using cultured cells in order to calculate isolation efficiency at various levels including; inter-assay and inter-operator variability, protocol complexity and turn-around time. All four techniques were adequate at levels above 100 cells/mL which is commonly used for the evaluation of new isolation techniques. Only the RosetteSep™ and ScreenCell® techniques were found to provide adequate sensitivity at a level of 10 cells/mL. These techniques were then applied to the isolation and analysis of circulating tumor cells blood drawn from metastatic breast cancer patients where CTCs were detected in 54% (15/28) of MBC patients using the RosetteSep™ and 75% (6/8) with ScreenCell®. Overall, the ScreenCell® method had better sensitivity.
Collapse
Affiliation(s)
- Arik Drucker
- Division of Medical Oncology, Department of Medicine, Dalhousie University and Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Evelyn M. Teh
- Human Health Therapeutics Research Centre, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Ripsik Kostyleva
- Human Health Therapeutics Research Centre, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Daniel Rayson
- Division of Medical Oncology, Department of Medicine, Dalhousie University and Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Susan Douglas
- Human Health Therapeutics Research Centre, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Devanand M. Pinto
- Human Health Therapeutics Research Centre, National Research Council of Canada, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
25
|
A Multi-Analyte Approach for Improved Sensitivity of Liquid Biopsies in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12082247. [PMID: 32796730 PMCID: PMC7465186 DOI: 10.3390/cancers12082247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/04/2023] Open
Abstract
Novel androgen receptor (AR) signaling inhibitors have improved the treatment of castration-resistant prostate cancer (CRPC). Nonetheless, the effect of these drugs is often time-limited and eventually most patients become resistant due to various AR alterations. Although liquid biopsy approaches are powerful tools for early detection of such therapy resistances, most assays investigate only a single resistance mechanism. In combination with the typically low abundance of circulating biomarkers, liquid biopsy assays are therefore informative only in a subset of patients. In this pilot study, we aimed to increase overall sensitivity for tumor-related information by combining three liquid biopsy approaches into a multi-analyte approach. In a cohort of 19 CRPC patients, we (1) enumerated and characterized circulating tumor cells (CTCs) by mRNA-based in situ padlock probe analysis, (2) used RT-qPCR to detect cancer-associated transcripts (e.g., AR and AR-splice variant 7) in lysed whole blood, and (3) conducted shallow whole-genome plasma sequencing to detect AR amplification. Although 44–53% of patient samples were informative for each assay, a combination of all three approaches led to improved diagnostic sensitivity, providing tumor-related information in 89% of patients. Additionally, distinct resistance mechanisms co-occurred in two patients, further reinforcing the implementation of multi-analyte liquid biopsy approaches.
Collapse
|
26
|
Eslami-S Z, Cortés-Hernández LE, Alix-Panabières C. Epithelial Cell Adhesion Molecule: An Anchor to Isolate Clinically Relevant Circulating Tumor Cells. Cells 2020; 9:cells9081836. [PMID: 32764280 PMCID: PMC7464831 DOI: 10.3390/cells9081836] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, the epithelial cell adhesion molecule (EpCAM) has received increased attention as the main membrane marker used in many enrichment technologies to isolate circulating tumor cells (CTCs). Although there has been a great deal of progress in the implementation of EpCAM-based CTC detection technologies in medical settings, several issues continue to limit their clinical utility. The biology of EpCAM and its role are not completely understood but evidence suggests that the expression of this epithelial cell-surface protein is crucial for metastasis-competent CTCs and may not be lost completely during the epithelial-to-mesenchymal transition. In this review, we summarize the most significant advantages and disadvantages of using EpCAM as a marker for CTC enrichment and its potential biological role in the metastatic cascade.
Collapse
|
27
|
Yu H, Ma L, Zhu Y, Li W, Ding L, Gao H. Significant diagnostic value of circulating tumour cells in colorectal cancer. Oncol Lett 2020; 20:317-325. [PMID: 32565958 PMCID: PMC7285991 DOI: 10.3892/ol.2020.11537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
Circulating tumour cells (CTCs) have potential utility in various clinical applications for cancer management. The present study focused on evaluating the diagnostic role of CTCs in colorectal cancer (CRC). A total of 89 blood samples from 59 patients diagnosed with CRC and 30 healthy individuals were collected for CTC detection. The Cyttel method is an improved CTC detection strategy, which combines negative enrichment with immunofluorescence and fluorescence in situ hybridization. This method effectively detected a significant increase in total CTCs in patients with CRC (49/59) compared with those in healthy controls (3/30). A cut-off value of 2 CTCs/3.2 ml blood yielded a sensitivity of 83.05% and a specificity of 100%. Additionally, three traditional serum tumour markers, namely carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9) and CA72-4, were examined by immunoassays. The diagnostic sensitivity of CTCs was much higher than that of CEA, CA19-9 and CA72-4 alone or in combination, particularly in patients with early stage CRC. The combined sensitivity of CTCs and CEA reached 91.53%, which was only slightly lower than the sensitivity of all four markers combined (CTCs + CEA + CA19-9 + CA72-4). CTCs with aneuploidy of chromosome 7 or 8 were carefully distinguished, and the associations among different types of CTCs, clinicopathological characteristics and overall survival were statistically analysed. Total CTCs were revealed to be significantly associated with tumour differentiation and nerve invasion. CTCs were more likely to be detected in poorly differentiated CRC tumours than in well- and moderately-differentiated tumours (P=0.026). Furthermore, to the best of our knowledge, the present study was the first to report that CTCs with multiploidy of chromosome 7 were significantly associated with TNM stage. These CTCs exhibited a high chance of being identified in the peripheral blood of patients with late-stage CRC (stage III-IV; P=0.031). The present study suggests that the combination of CTCs and CEA may serve as an effective potential diagnostic and prognostic indicator in patients with CRC. Detection of CTCs with aneuploidy may have increased specificity in predicting highly malignant and invasive tumours in CRC management.
Collapse
Affiliation(s)
- Haijiao Yu
- Department of Colorectal Tumour Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, P.R. China
| | - Ling Ma
- Department of Colorectal Tumour Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, P.R. China
| | - Yubing Zhu
- Department of Colorectal Tumour Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, P.R. China
| | - Wenxia Li
- Department of Colorectal Tumour Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, P.R. China
| | - Lei Ding
- Department of Colorectal Tumour Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, P.R. China
| | - Hong Gao
- Department of Colorectal Tumour Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
28
|
Gerdtsson AS, Thiele JA, Shishido SN, Zheng S, Schaffer R, Bethel K, Curley S, Lenz HJ, Hanna DL, Nieva J, Kolatkar A, Ruiz C, Rodriguez-Lee M, Oakley III GJ, Lee JS, Hicks J, Kuhn P. Single cell correlation analysis of liquid and solid biopsies in metastatic colorectal cancer. Oncotarget 2019; 10:7016-7030. [PMID: 31903162 PMCID: PMC6925029 DOI: 10.18632/oncotarget.27271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023] Open
Abstract
As cancer care is transitioning to personalized therapies with necessary complementary or companion biomarkers there is significant interest in determining to what extent non-invasive liquid biopsies reflect the gold standard solid biopsy. We have established an approach for measuring patient-specific circulating and solid cell concordance by introducing tumor touch preparations to the High-Definition Single Cell Analysis workflow for high-resolution cytomorphometric characterization of metastatic colorectal cancer (mCRC). Subgroups of cells based on size, shape and protein expression were identified in both liquid and solid biopsies, which overall displayed high inter- and intra- patient pleomorphism at the single-cell level of analysis. Concordance of liquid and solid biopsies was patient-dependent and between 0.1-0.9. Morphometric variables displayed particularly high correlation, suggesting that circulating cells do not represent distinct subpopulations from the solid tumor. This was further substantiated by significant decrease in concentration of circulating cells after mCRC resection. Combined with the association of circulating cells with tumor burden and necrosis of hepatic lesions, our overall findings demonstrate that liquid biopsy cells can be informative biomarkers in the mCRC setting. Patient-specific level of concordance can readily be measured to establish the utility of circulating cells as biomarkers and define biosignatures for liquid biopsy assays.
Collapse
Affiliation(s)
- Anna S. Gerdtsson
- USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Jana-Aletta Thiele
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Stephanie N. Shishido
- USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Serena Zheng
- USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | | | - Kelly Bethel
- Scripps MDAnderson Cancer Center, La Jolla, CA, USA
| | - Steven Curley
- Division of Surgical Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Heinz-Josef Lenz
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Diana L. Hanna
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jorge Nieva
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anand Kolatkar
- USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Carmen Ruiz
- USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Mariam Rodriguez-Lee
- USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Gerard J. Oakley III
- Diagnostic and Experimental Pathology, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Jerry S.H. Lee
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - James Hicks
- USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Peter Kuhn
- USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Yang C, Chen F, Wang S, Xiong B. Circulating Tumor Cells in Gastrointestinal Cancers: Current Status and Future Perspectives. Front Oncol 2019; 9:1427. [PMID: 31921680 PMCID: PMC6923205 DOI: 10.3389/fonc.2019.01427] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
Circulating tumor cells (CTCs), which are now defined as the "break away" cancer cells that derive from primary- or metastatic-tumor sites and present in the bloodstream, are considered to be the precursors of metastases. Considering the key role of CTCs in cancer progression, researchers are committed to analyze them in the past decades and many technologies have been proposed for achieving CTCs isolation and characterization with highly sensitivity and specificity until now. On this basis, clinicians gradually realize the clinical values of CTCs' detection through various clinical studies. As a "liquid biopsy," CTCs' detection and measurement can supply important information for predicting patient's survival, monitoring of response/resistance, assessment of minimal residual disease, evaluating distant metastasis, and sometimes, customizing therapy choices. Nowadays, eliminating CTCs of the blood circulation has been regarded as a promising method to prevent tumor metastasis. However, research on CTCs still faces many challenges. Herein, we present an overview to discuss the current concept of CTCs, summarize the available techniques for CTCs detection, and provide an update on the clinical significance of CTCs in gastrointestinal malignancies, especially focus on gastric and colorectal cancer.
Collapse
Affiliation(s)
- Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Fangfang Chen
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China.,Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
30
|
Yousefi M, Ghaffari P, Nosrati R, Dehghani S, Salmaninejad A, Abarghan YJ, Ghaffari SH. Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer. Cell Oncol (Dordr) 2019; 43:31-49. [PMID: 31828552 DOI: 10.1007/s13402-019-00470-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lung cancer is the second most common cancer and the main cause of cancer-related mortality worldwide. In spite of various efforts that have been made to facilitate the early diagnosis of lung cancer, most patients are diagnosed when the disease is already in stage IV, which is generally associated with the occurrence of distant metastases and a poor survival. Moreover, a large proportion of these patients will relapse after treatment, heralding the need for the stratification of lung cancer patients in addition to identifying those who are at a higher risk of relapse and, thus, require alternative and/or additional therapies. Recently, circulating tumor cells (CTCs) have been considered as valuable markers for the early diagnosis, prognosis and risk stratification of cancer patients, and they have been found to be able to predict the survival of patients with various types of cancer, including lung cancer. Additionally, the characterization of CTCs has recently provided fascinating insights into the heterogeneity of tumors, which may be instrumental for the development of novel targeted therapies. CONCLUSIONS Here we review our current understanding of the significance of CTCs in lung cancer metastasis. We also discuss prominent studies reporting the utility of enumeration and characterization of CTCs in lung cancer patients as prognostic and pharmacodynamic biomarkers for those who are at a higher risk of metastasis and drug resistance.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parisa Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Jafari Abarghan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Soda N, Rehm BHA, Sonar P, Nguyen NT, Shiddiky MJA. Advanced liquid biopsy technologies for circulating biomarker detection. J Mater Chem B 2019; 7:6670-6704. [PMID: 31646316 DOI: 10.1039/c9tb01490j] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liquid biopsy is a new diagnostic concept that provides important information for monitoring and identifying tumor genomes in body fluid samples. Detection of tumor origin biomolecules like circulating tumor cells (CTCs), circulating tumor specific nucleic acids (circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), microRNAs (miRNAs), long non-coding RNAs (lnRNAs)), exosomes, autoantibodies in blood, saliva, stool, urine, etc. enables cancer screening, early stage diagnosis and evaluation of therapy response through minimally invasive means. From reliance on painful and hazardous tissue biopsies or imaging depending on sophisticated equipment, cancer management schemes are witnessing a rapid evolution towards minimally invasive yet highly sensitive liquid biopsy-based tools. Clinical application of liquid biopsy is already paving the way for precision theranostics and personalized medicine. This is achieved especially by enabling repeated sampling, which in turn provides a more comprehensive molecular profile of tumors. On the other hand, integration with novel miniaturized platforms, engineered nanomaterials, as well as electrochemical detection has led to the development of low-cost and simple platforms suited for point-of-care applications. Herein, we provide a comprehensive overview of the biogenesis, significance and potential role of four widely known biomarkers (CTCs, ctDNA, miRNA and exosomes) in cancer diagnostics and therapeutics. Furthermore, we provide a detailed discussion of the inherent biological and technical challenges associated with currently available methods and the possible pathways to overcome these challenges. The recent advances in the application of a wide range of nanomaterials in detecting these biomarkers are also highlighted.
Collapse
Affiliation(s)
- Narshone Soda
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan, QLD 4111, Australia
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Molecular Design and Synthesis, Queensland University of Technology (QUT), Brisbane, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
32
|
Chen S, Tauber G, Langsenlehner T, Schmölzer LM, Pötscher M, Riethdorf S, Kuske A, Leitinger G, Kashofer K, Czyż ZT, Polzer B, Pantel K, Sedlmayr P, Kroneis T, El-Heliebi A. In Vivo Detection of Circulating Tumor Cells in High-Risk Non-Metastatic Prostate Cancer Patients Undergoing Radiotherapy. Cancers (Basel) 2019; 11:E933. [PMID: 31277254 PMCID: PMC6678903 DOI: 10.3390/cancers11070933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
High-risk non-metastatic prostate cancer (PCa) has the potential to progress into lethal disease. Treatment options are manifold but, given a lack of surrogate biomarkers, it remains unclear which treatment offers the best results. Several studies have reported circulating tumor cells (CTCs) to be a prognostic biomarker in metastatic PCa. However, few reports on CTCs in high-risk non-metastatic PCa are available. Herein, we evaluated CTC detection in high-risk non-metastatic PCa patients using the in vivo CellCollector CANCER01 (DC01) and CellSearch system. CTC counts were analyzed and compared before and after radiotherapy (two sampling time points) in 51 high-risk non-metastatic PCa patients and were further compared according to isolation technique; further, CTC counts were correlated to clinical features. Use of DC01 resulted in a significantly higher percentage of CTC-positive samples compared to CellSearch (33.7% vs. 18.6%; p = 0.024) and yielded significantly higher CTC numbers (range: 0-15 vs. 0-5; p = 0.006). Matched pair analysis of samples between two sampling time points showed no difference in CTC counts determined by both techniques. CTC counts were not correlated with clinicopathological features. In vivo enrichment using DC01 has the potential to detect CTC at a higher efficiency compared to CellSearch, suggesting that CTC is a suitable biomarker in high-risk non-metastatic PCa.
Collapse
Affiliation(s)
- Shukun Chen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gerlinde Tauber
- Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz, Austria
| | - Tanja Langsenlehner
- Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz, Austria
| | - Linda Maria Schmölzer
- Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz, Austria
| | - Michaela Pötscher
- Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz, Austria
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andra Kuske
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Gerd Leitinger
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University Graz, 8036 Graz, Austria
| | - Zbigniew T Czyż
- Division Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, 93053 Regensburg, Germany
| | - Bernhard Polzer
- Division Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, 93053 Regensburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter Sedlmayr
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Thomas Kroneis
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria.
| | - Amin El-Heliebi
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- Center for Biomarker Research, CBmed, 8010 Graz, Austria
| |
Collapse
|
33
|
Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol Aspects Med 2019; 69:107-122. [PMID: 31189073 DOI: 10.1016/j.mam.2019.06.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023]
Abstract
New non-invasive approaches that can complement and improve on current strategies for colorectal cancer (CRC) screening and management are urgently needed. A growing number of publications have documented that components of tumors, which are shed into the circulation, can be detected in the form of liquid biopsies and can be used to detect CRC at early stages, to predict response to certain therapies and to detect CRC recurrence in a minimally invasive way. The analysis of circulating tumor DNA (ctDNA), tumor-derived cells (CTC, circulating tumor cells) or circulating microRNA (miRNA) in blood and other body fluids, have a great potential to improve different aspects of CRC management. The challenge now is to find which types of components, biofluids and detection methods would be the most suitable to be applied in the different steps of CRC detection and treatment. This chapter will provide an up to date review on ctDNA, CTCs and circulating miRNAs as new biomarkers for CRC, either for clinical management or early detection, highlighting their advantages and limitations.
Collapse
|
34
|
Zhao Y, Ma W, Zou S, Chen B, Cheng H, He X, Wang K. Terminal deoxynucleotidyl transferase-initiated molecule beacons arrayed aptamer probe for sensitive detection of metastatic colorectal cancer cells. Talanta 2019; 202:152-158. [PMID: 31171163 DOI: 10.1016/j.talanta.2019.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world, which can lead to considerably high mortality rate. It was reported that the prognosis is extremely poor and survival is often measured in months once CRC metastases become clinically evident. Therefore, the development of effective approach for metastatic CRC cells detection and imaging may potentially be significant and helpful for CRC prognosis and treatment. Therefore, we proposed a sensitive and specific approach for high-metastatic CRC LoVo cells detection and imaging by using terminal deoxynucleotidyl transferase (TdT)-initiated molecule beacons (MBs) arrayed fluorescent aptamer probes (denoted as TMAP). In this approach, the aptamer W3 targeting high-metastatic CRC LoVo cells was elongated to form W3-poly A at the 3'-hydroxyl terminus with repeated A bases in the presence of TdT and dATP. The MBs designed with poly T sequence in the loop were then hybridized with the poly A in the aptamer W3. The TMAP was easily constructed without the need of aptamer modification. It was demonstrated that this approach could specifically detect and image the high-metastatic CRC LoVo cells from the mixture of high-metastatic CRC LoVo cells and non-metastatic HCT-8 cells. Compared with 6-carboxyfluorescein (6-FAM) labeled aptamer W3, the TMAP was demonstrated to have a much stronger fluorescence signal on the target cells, realizing a 4-fold increase in signal-to-background ratio (SBR). Determination by flow cytometry allowed for detection of as low as 23 CRC LoVo cells in 200 μL cell culture medium. The high sensitivity and the capability for using in complicate biological samples imply that this approach holds considerable potential for metastatic CRC detection and therapy.
Collapse
Affiliation(s)
- Yujie Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Shanzi Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|
35
|
Shou X, Li Y, Hu W, Ye T, Wang G, Xu F, Sui M, Xu Y. Six-gene Assay as a new biomarker in the blood of patients with colorectal cancer: establishment and clinical validation. Mol Oncol 2019; 13:781-791. [PMID: 30556647 PMCID: PMC6441906 DOI: 10.1002/1878-0261.12427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cancer in men and the third most common cancer in women. Although long-term survival has improved over the past 30 years, at least 50% of patients with CRC will develop metastases after diagnosis. In this study, we examined whether quantifying the mRNA of six CRC-related genes in the blood could improve disease assessment through detection of circulating tumor cells (CTC), and thereby improve progression prediction in relapsed CRC patients. Cell spiking assay and RT-PCR were performed with blood samples from healthy volunteers spiked with six CRC cell lines to generate an algorithm, herein called the Six-gene Assay, based on six genes (CEA, EpCAM, CK19, MUC1, EGFR and C-Met) for CTC detection. The CTCs of 50 relapsed CRC patients were then respectively measured by CEA Gene Assay (single-gene assay control) and Six-gene Assay. Subsequently, receiver operating characteristic analysis of the CTC panel performance in diagnosing CRC was conducted for both assays. Moreover, the 2-year progression-free survival (PFS) of all patients was collected, and the application of CEA Gene Assay and Six-gene Assay in predicting PFS was carefully evaluated with different CTC cutoff values. Encouragingly, we successfully constructed the first multiple gene-based algorithm, named the Six-gene Assay, for CTC detection in CRC patients. Six-gene Assay was more sensitive than CEA Gene Assay; for instance, in 50 CRC patients, the positive rate of Six-gene Assay in CTC detection was 82%, whereas that of CEA Gene Assay was only 70%. Moreover, Six-gene Assay was more sensitive and accurate than CEA Gene Assay in diagnosing CRC as well as predicting the 2-year PFS of CRC patients. Statistical analysis demonstrated that CTC numbers measured by Six-gene Assay were significantly associated with 2-year PFS. This novel Six-gene Assay improves the definition of disease status and correlates with PFS in relapsed CRC, and thus holds promise for future clinical applications.
Collapse
Affiliation(s)
- Xin Shou
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Li
- Department of Medical Oncology, Shanghai Gongli Hospital, Second Military Medical University, Shanghai, China
| | - Weilei Hu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Ye
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Wang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Department of Medical Oncology, Shanghai Gongli Hospital, Second Military Medical University, Shanghai, China
| | - Meihua Sui
- Center for Cancer Biology and Innovative Therapeutics, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Yibing Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Circulating tumor DNA – Current state of play and future perspectives. Pharmacol Res 2018; 136:35-44. [DOI: 10.1016/j.phrs.2018.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
|
37
|
The Interplay between Circulating Tumor Cells and the Immune System: From Immune Escape to Cancer Immunotherapy. Diagnostics (Basel) 2018; 8:diagnostics8030059. [PMID: 30200242 PMCID: PMC6164896 DOI: 10.3390/diagnostics8030059] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
Circulating tumor cells (CTCs) have aroused increasing interest not only in mechanistic studies of metastasis, but also for translational applications, such as patient monitoring, treatment choice, and treatment change due to tumor resistance. In this review, we will assess the state of the art about the study of the interactions between CTCs and the immune system. We intend to analyze the impact that the cells of the immune system have in limiting or promoting the metastatic capability of CTCs. To this purpose, we will examine studies that correlate CTCs, immune cells, and patient prognosis, and we will also discuss relevant animal models that have contributed to the understanding of the mechanisms of immune-mediated metastasis. We will then consider some studies in which CTCs seem to play a promising role in monitoring cancer patients during immunotherapy regimens. We believe that, from an accurate and profound knowledge of the interactions between CTCs and the immune system, new immunotherapeutic strategies against cancer might emerge in the future.
Collapse
|
38
|
The liquid biopsy in the management of colorectal cancer patients: Current applications and future scenarios. Cancer Treat Rev 2018; 70:1-8. [PMID: 30053724 DOI: 10.1016/j.ctrv.2018.07.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
The term liquid biopsy refers to the analysis of biomarkers in any body fluid, including blood, urine and cerebrospinal fluid. In cancer, liquid biopsy testing allows the analysis of tumor-derived DNA, RNA, miRNA and proteins that can be either cell-free or contained in circulating tumor cells (CTC), extracellular vesicles (EVs) or platelets. A number of studies suggest that liquid biopsy testing could have a relevant role in the management of colorectal cancer (CRC) patients at different stages of the disease. Analysis of cell-free DNA (cfDNA), CTC and/or miRNA can provide relevant information for the early diagnosis of CRC and the identification of minimal residual disease and, more generally, the evaluation of the risk of recurrence in early CRC patients. In addition, liquid biopsy testing might allow the assessment of prognostic and predictive biomarkers in metastatic CRC patients, and the monitoring of the response to treatment and of the clonal evolution of the disease. While a number of elegant studies have shown the potential of liquid biopsy in CRC, the possibility to use this approach in the daily clinical practice is still limited. The use of non-standardized methods, the small cohorts of patients analyzed, the lack of demonstration of a clear clinical benefit are the main limitations of the studies with liquid biopsy in CRC reported up to now. The potential of this approach and the steps that need still to be taken to translate these preliminary findings in the clinic are discussed in this review.
Collapse
|
39
|
Burz C, Pop VV, Buiga R, Daniel S, Samasca G, Aldea C, Lupan I. Circulating tumor cells in clinical research and monitoring patients with colorectal cancer. Oncotarget 2018; 9:24561-24571. [PMID: 29849961 PMCID: PMC5966258 DOI: 10.18632/oncotarget.25337] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer remains a frequent disease to which screening and target therapy exist, but despite this is still marked by a high mortality rate. Even though radical surgery may be performed in many cases, patients relapse with metastatic disease. Circulating tumor cells were incriminated for tumor recurrence, that's why vigorous research started on their field. Owning prognostic and predictive value, it was revealed their usefulness in disease monitoring. Moreover, they may serve as liquid biopsies for genetic tests in cases where tissue biopsy is contraindicated or cannot be performed. In spite of these advantages, they were not included in clinical guidelines, despite CellSearch and many other detection methods were developed to ease the identification of circulating tumor cells. This review highlights the implication of circulating tumor cells in metastasis cascade, intrinsic tumor cells mechanisms and correlations with clinical parameters along with their utility for medical practice and detection techniques.
Collapse
Affiliation(s)
- Claudia Burz
- Iuliu Hatieganu University of Medicine and Pharmacy, Department Of Immunology and Allergology, Cluj-Napoca, Romania.,Ion Chiricuta Institute of Oncology, Cluj-Napoca, Romania
| | - Vlad-Vasile Pop
- Iuliu Hatieganu University of Medicine and Pharmacy, Department Of Immunology and Allergology, Cluj-Napoca, Romania
| | - Rares Buiga
- Ion Chiricuta Institute of Oncology, Cluj-Napoca, Romania
| | - Sur Daniel
- Iuliu Hatieganu University of Medicine and Pharmacy, Department Of Immunology and Allergology, Cluj-Napoca, Romania.,Ion Chiricuta Institute of Oncology, Cluj-Napoca, Romania
| | - Gabriel Samasca
- Iuliu Hatieganu University of Medicine and Pharmacy, Department Of Immunology and Allergology, Cluj-Napoca, Romania.,Emergency Hospital for Children, Cluj-Napoca, Romania
| | - Cornel Aldea
- Emergency Hospital for Children, Cluj-Napoca, Romania
| | - Iulia Lupan
- Babeş-Bolyai University, Department of Molecular Biology and Biotehnology, Cluj-Napoca, Romania.,Institute of Interdisciplinary Research in Bio-Nano-Sciences, Cluj-Napoca, Romania
| |
Collapse
|
40
|
Opoku-Damoah Y, Assanhou AG, Sooro MA, Baduweh CA, Sun C, Ding Y. Functional Diagnostic and Therapeutic Nanoconstructs for Efficient Probing of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14231-14247. [PMID: 29557165 DOI: 10.1021/acsami.7b17896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The circulation of tumor cells in peripheral blood is mostly recognized as a prerequisite for cancer progression or systemic invasion, and it correlates with the pivotal hallmark of malignancies known as metastasis. Multiple detection schemes for circulating tumor cells (CTCs) have emerged as the most discerning criteria for monitoring the outcome of anticancer therapy. Therefore, there has been a tremendous increase in the use of robust nanostructured platforms for observation of these mobile tumor cells through various simultaneous diagnosis and treatment regimens developed from conventional techniques. This review seeks to give detailed information about the nature of CTCs as well as techniques for exploiting specific biomarkers to help monitor cancer via detection, capturing, and analysis of unstable tumor cells. We will further discuss nanobased diagnostic interventions and novel platforms which have recently been developed from versatile nanomaterials such as polymer nanocomposites, metal organic frameworks, bioderived nanomaterials and other physically responsive particles with desirable intrinsic and external properties. Herein, we will also include in vivo nanotheranostic platforms which have received a lot of attention because of their enormous clinical potential. In all, this review sums up the general potential of key promising nanoinspired systems as well as other advanced strategies under research and those in clinical use.
Collapse
Affiliation(s)
- Yaw Opoku-Damoah
- Australian Institute for Bioengineering & Nanotechnology , The University of Queensland , St. Lucia , Brisbane, QLD 4072
| | - Assogba G Assanhou
- UFR Pharmacie, Falculté des Sciences de la Santé , Université d'Abomey-Calavi , 01BP188 Cotonou , Benin
| | | | | | | | | |
Collapse
|
41
|
Circulating tumor cells count as a predictor of survival in lung cancer. Crit Rev Oncol Hematol 2018; 125:60-68. [DOI: 10.1016/j.critrevonc.2018.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
|
42
|
Riethdorf S, O'Flaherty L, Hille C, Pantel K. Clinical applications of the CellSearch platform in cancer patients. Adv Drug Deliv Rev 2018; 125:102-121. [PMID: 29355669 DOI: 10.1016/j.addr.2018.01.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
Abstract
The CellSearch® system (CS) enables standardized enrichment and enumeration of circulating tumor cells (CTCs) that are repeatedly assessable via non-invasive "liquid biopsy". While the association of CTCs with poor clinical outcome for cancer patients has clearly been demonstrated in numerous clinical studies, utilizing CTCs for the identification of therapeutic targets, stratification of patients for targeted therapies and uncovering mechanisms of resistance is still under investigation. Here, we comprehensively review the current benefits and drawbacks of clinical CTC analyses for patients with metastatic and non-metastatic tumors. Furthermore, the review focuses on approaches beyond CTC enumeration that aim to uncover therapeutically relevant antigens, genomic aberrations, transcriptional profiles and epigenetic alterations of CTCs at a single cell level. This characterization of CTCs may shed light on the heterogeneity and genomic landscapes of malignant tumors, an understanding of which is highly important for the development of new therapeutic strategies.
Collapse
|
43
|
Praharaj PP, Bhutia SK, Nagrath S, Bitting RL, Deep G. Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochim Biophys Acta Rev Cancer 2018; 1869:117-127. [PMID: 29360544 PMCID: PMC6054479 DOI: 10.1016/j.bbcan.2017.12.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
Traditional 2D cell cultures do not accurately recapitulate tumor heterogeneity, and insufficient human cell lines are available. Patient-derived xenograft (PDX) models more closely mimic clinical tumor heterogeneity, but are not useful for high-throughput drug screening. Recently, patient-derived organoid cultures have emerged as a novel technique to fill this critical need. Organoids maintain tumor tissue heterogeneity and drug-resistance responses, and thus are useful for high-throughput drug screening. Among various biological tissues used to produce organoid cultures, circulating tumor cells (CTCs) are promising, due to relative ease of ascertainment. CTC-derived organoids could help to acquire relevant genetic and epigenetic information about tumors in real time, and screen and test promising drugs. This could reduce the need for tissue biopsies, which are painful and may be difficult depending on the tumor location. In this review, we have focused on advances in CTC isolation and organoid culture methods, and their potential applications in disease modeling and precision medicine.
Collapse
Affiliation(s)
- Prakash P Praharaj
- Wake Forest Baptist Medical Center, Department of Cancer Biology, Winston-Salem, NC, United States; Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Rhonda L Bitting
- Hematology and Oncology Department, United States; Wake Forest Baptist Comprehensive Cancer Center, United States
| | - Gagan Deep
- Wake Forest Baptist Medical Center, Department of Cancer Biology, Winston-Salem, NC, United States; Wake Forest Baptist Comprehensive Cancer Center, United States; Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States.
| |
Collapse
|
44
|
Kuai JH, Wang Q, Zhang AJ, Zhang JY, Chen ZF, Wu KK, Hu XZ. Epidermal growth factor receptor-targeted immune magnetic liposomes capture circulating colorectal tumor cells efficiently. World J Gastroenterol 2018; 24:351-359. [PMID: 29391757 PMCID: PMC5776396 DOI: 10.3748/wjg.v24.i3.351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To compare the capacity of newly developed epidermal growth factor receptor (EGFR)-targeted immune magnetic liposomes (EILs) vs epithelial cell adhesion molecule (EpCAM) immunomagnetic beads to capture colorectal circulating tumor cells (CTCs).
METHODS EILs were prepared using a two-step method, and the magnetic and surface characteristics were confirmed. The efficiency of capturing colorectal CTCs as well as the specificity were compared between EILs and EpCAM magnetic beads.
RESULTS The obtained EILs had a lipid nanoparticle structure similar to cell membrane. Improved binding with cancer cells was seen in EILs compared with the method of coupling nano/microspheres with antibody. The binding increased as the contact time extended. Compared with EpCAM immunomagnetic beads, EILs captured more CTCs in peripheral blood from colorectal cancer patients. The captured cells showed consistency with clinical diagnosis and pathology. Mutation analysis showed same results between captured CTCs and cancer tissues.
CONCLUSION EGFR antibody-coated magnetic liposomes show high efficiency and specificity in capturing colorectal CTCs.
Collapse
Affiliation(s)
- Jing-Hua Kuai
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Qing Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Ai-Jun Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Jing-Yu Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Zheng-Feng Chen
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Kang-Kang Wu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Xiao-Zhen Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| |
Collapse
|
45
|
EpCAM-expressing circulating tumor cells in colorectal cancer. Int J Biol Markers 2017; 32:e415-e420. [PMID: 28604994 DOI: 10.5301/ijbm.5000284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Several studies have raised the issue of the inadequacy of CellSearch® to detect the entire pool of circulating tumor cells (CTCs) from blood of cancer patients, suggesting that cells expressing low levels of epithelial cell adhesion molecule (EpCAM) are not recognized by the capture reagent. In this exploratory study, we aimed to evaluate the status of EpCAM in CTCs isolated from a group of metastatic colorectal cancer patients, in 40% of whom, CTC had been found to be undetected by the CellSearch® system. METHODS CTCs were analyzed using both a microfiltration method (ScreenCell) and CellSearch® in parallel. Furthermore, since EpCAM exists in 2 different variants, we investigated the presence of both its intracellular domain (EpICD) and extracellular domain (EpEX) through immunofluorescence staining of CTCs on filters. RESULTS Results from immunofluorescence experiments demonstrated that, overall, EpICD and/or EpEX was expressed in 176 CTCs detected by ScreenCell, while the CellSearch® system was able to capture only 10 CTCs. CONCLUSIONS This is the first demonstration that the low sensitivity of CellSearch® to detect CTCs in colorectal cancer patients is not due to the lack of EpCAM.
Collapse
|
46
|
Wu T, Cheng B, Fu L. Clinical Applications of Circulating Tumor Cells in Pharmacotherapy: Challenges and Perspectives. Mol Pharmacol 2017; 92:232-239. [PMID: 28356334 DOI: 10.1124/mol.116.108142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Screening for circulating tumor cells (CTCs) has been identified as one approach to ultrasensitive liquid biopsy in real-time monitoring of cancer patients. The detection of CTCs in peripheral blood from cancer patients is promising as a diagnostic tool; however, the application of CTCs in therapeutic treatment still faces serious challenges with respect to specificity and sensitivity. Here, we review the significant roles of CTCs in metastasis and the strengths and weaknesses of the currently available methods for CTC detection and characterization. Moreover, we discuss the clinical application of CTCs as markers for patient prognosis, and we specifically focus on the application of CTCs as indicators in cancer pharmacotherapy. Characterization of the detected CTCs will provide new biologic perspectives and clinical applications for the treatment of cancer patients with metastasis.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute (T.W., L.F.); and Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China (T.W., B.C.)
| | - Bin Cheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute (T.W., L.F.); and Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China (T.W., B.C.)
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute (T.W., L.F.); and Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China (T.W., B.C.)
| |
Collapse
|
47
|
Chen S, El-Heliebi A, Kroneis T. Biological and Molecular Characterization of Circulating Tumor Cells: A Creative Strategy for Precision Medicine? Adv Clin Chem 2017; 82:71-103. [PMID: 28939214 DOI: 10.1016/bs.acc.2017.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells (CTCs) are a group of rare cells disseminated from either primary or metastatic tumors into the blood stream. CTCs are considered to be the precursor of cancer metastasis. As a critical component of liquid biopsies, CTCs are a unique tool to understand the formation of metastasis and a valuable source of information on intratumor heterogeneity. Much effort has been invested in technologies for the detection of CTCs because they are rare cells among the vast number of blood cells. Studies in various cancers have repeatedly demonstrated that increased CTC counts prior to or during treatment are significantly associated with poor outcomes. In the new era of precision medicine, the study of CTCs reaches far beyond detection and counting. The rapidly growing field of analytical platforms for rare-cell analysis allows in-depth characterization of CTCs at the bulk cell and single-cell level. Genetic profiling of CTCs may provide an insight into the real-time tumor status, may allow the monitoring and evaluation of treatment response in clinical routine, and may lead to the development of novel therapeutic targets as well.
Collapse
Affiliation(s)
- Shukun Chen
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria.
| | - Amin El-Heliebi
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria
| | - Thomas Kroneis
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria
| |
Collapse
|
48
|
Predicting Outcome and Therapy Response in mCRC Patients Using an Indirect Method for CTCs Detection by a Multigene Expression Panel: A Multicentric Prospective Validation Study. Int J Mol Sci 2017; 18:ijms18061265. [PMID: 28608814 PMCID: PMC5486087 DOI: 10.3390/ijms18061265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related deaths. Early detection of tumor relapse is crucial for determining the most appropriate therapeutic management. In clinical practice, computed tomography (CT) is routinely used, but small tumor changes are difficult to visualize, and reliable blood-based prognostic and monitoring biomarkers are urgently needed. The aim of this study was to prospectively validate a gene expression panel (composed of GAPDH, VIL1, CLU, TIMP1, TLN1, LOXL3 and ZEB2) for detecting circulating tumor cells (CTCs) as prognostic and predictive tool in blood samples from 94 metastatic CRC (mCRC) patients. Patients with higher gene panel expression before treatment had a reduced progression-free survival (PFS) and overall-survival (OS) rates compared with patients with low expression (p = 0.003 and p ≤ 0.001, respectively). Patients with increased expression of CTCs markers during treatment presented PFS and OS times of 8.95 and 11.74 months, respectively, compared with 14.41 and 24.7 for patients presenting decreased expression (PFS; p = 0.020; OS; p ≤ 0.001). Patients classified as non-responders by CTCs with treatment, but classified as responders by CT scan, showed significantly shorter survival times (PFS: 8.53 vs. 11.70; OS: 10.37 vs. 24.13; months). In conclusion, our CTCs detection panel demonstrated efficacy for early treatment response assessment in mCRC patients, and with increased reliability compared to CT scan.
Collapse
|
49
|
Sonn CH, Cho JH, Kim JW, Kang MS, Lee J, Kim J. Detection of circulating tumor cells in patients with non-small cell lung cancer using a size-based platform. Oncol Lett 2017; 13:2717-2722. [PMID: 28454457 DOI: 10.3892/ol.2017.5772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/10/2016] [Indexed: 12/21/2022] Open
Abstract
The detection of circulating tumor cells (CTCs) is limited by the rarity of these cells in the peripheral blood of patients with cancer. Understanding tumor biology may be useful in the development of novel therapeutic strategies for patients with lung cancer. The present study evaluated a novel size-based filtration platform for enriching CTCs from patients with lung cancer. Blood samples were obtained from 82 patients with lung cancer for CTC analysis. CTC enrichment by size-based filtration was performed on 5-ml blood samples. The collected cells were detected by immunofluorescence using monoclonal anti-human antibodies against protein tyrosine phosphatase, receptor type C (CD45) and epithelial cell adhesion molecule (EpCAM; an epithelial cell marker), as well as a DAPI nucleic acid stain. CTCs were detected in 57 patients (69.5%) using the size-based filtration platform. The mean CTC counts, defined as the number of cells with DAPI-positive, CD45-negative and EpCAM-positive staining, were 1.48±1.71 per 5 ml blood for the 66 stage I-III patients and 8.00±9.95 per 5 ml blood for the 16 stage IV patients. The presence of ≥1 CTCs per 5-ml blood sample was significantly associated with pathological stage (stage IV vs. stage I-III, P=0.009), but not with patient age or gender, tumor histology, tumor size or lymphovascular invasion. The mean CTC count of healthy donors was 0.25±0.55 per 5 ml blood. In summary, CTCs from the blood of patients with lung cancer were enriched using a size-based filtration platform and immunofluorescent staining with DAPI, CD45 and EpCAM. The CTC counts of patients with stage IV cancer were higher than those of patients with stages I-III cancer. These results suggest that this novel platform may be a useful tool for determining the prognosis of patients with lung cancer.
Collapse
Affiliation(s)
- Chung-Hee Sonn
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jong Ho Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jae-Won Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Moon Sung Kang
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jinseon Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jhingook Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.,Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
50
|
Kulasinghe A, Tran THP, Blick T, O'Byrne K, Thompson EW, Warkiani ME, Nelson C, Kenny L, Punyadeera C. Enrichment of circulating head and neck tumour cells using spiral microfluidic technology. Sci Rep 2017; 7:42517. [PMID: 28198401 PMCID: PMC5309765 DOI: 10.1038/srep42517] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/11/2017] [Indexed: 01/01/2023] Open
Abstract
Whilst locoregional control of head and neck cancers (HNCs) has improved over the last four decades, long-term survival has remained largely unchanged. A possible reason for this is that the rate of distant metastasis has not changed. Such disseminated disease is reflected in measurable levels of cancer cells in the blood of HNC patients, referred to as circulating tumour cells (CTCs). Numerous marker-independent techniques have been developed for CTC isolation and detection. Recently, microfluidics-based platforms have come to the fore to avoid molecular bias. In this pilot, proof of concept study, we evaluated the use of the spiral microfluidic chip for CTC enrichment and subsequent detection in HNC patients. CTCs were detected in 13/24 (54%) HNC patients, representing both early to late stages of disease. Importantly, in 7/13 CTC-positive patients, CTC clusters were observed. This is the first study to use spiral microfluidics technology for CTC enrichment in HNC.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Thao Huynh Phuoc Tran
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Tony Blick
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Ken O'Byrne
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,Translational Cell Imaging Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Qld, Australia
| | - Erik W Thompson
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,University of Melbourne, Department of Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Majid E Warkiani
- School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia
| | - Colleen Nelson
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute Brisbane, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland; Royal Brisbane and Women's Hospital, Brisbane; Central Integrated Regional Cancer Service, Queensland Health, Queensland, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|