1
|
Mahadik JD, Assarzadegan N. Connecting the dots: Low-grade appendiceal mucinous neoplasms and serrated polyps in the appendix. Am J Clin Pathol 2025; 163:752-757. [PMID: 39832259 DOI: 10.1093/ajcp/aqae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE This study aimed to examine the relationship between low-grade appendiceal mucinous neoplasms (LAMNs) and serrated polyps (SPs) of the appendix, both characterized by KRAS mutations and overlapping morphologic features. METHODS We analyzed 27 cases of LAMN and 24 cases of SP from archival records, reviewed pathology, and performed molecular analysis on select cases. Four cases initially diagnosed as LAMN were excluded for not meeting diagnostic criteria, and 1 SP case was reclassified as LAMN. RESULTS Microscopic evaluation revealed serrated architecture in 8 (29.6%) of 27 LAMNs: 4 hyperplastic polyp-like, 2 sessile serrated lesion-like (SSL), and 1 traditional serrated adenoma-like (TSA). One case exhibited both SSL- and TSA-like areas. Among SPs, 3 (12.5%) of 24 cases showed morphologic overlap with LAMN due to cytoplasmic mucin, flattened mucosa, and conventional adenoma-like features; all were grossly visible. KRAS was the most common mutation in LAMNs with serrated architecture (4/4, 100%), 1 classic LAMN, and 1 SP with dysplasia and associated signet-ring cell carcinoma. CONCLUSIONS Serrated polyps and LAMNs likely represent a biological continuum, sharing key features such as KRAS mutations and morphologic overlap. Our findings underscore the need for careful molecular and histopathologic evaluation in diagnosing these neoplasms.
Collapse
Affiliation(s)
- Juhi Devendra Mahadik
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Naziheh Assarzadegan
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
2
|
Florea MA, Becheanu G, Niculae A, Dobre M, Costache M. Immunohistochemical insights into the pathogenesis of colonic sessile serrated lesions. Arch Clin Cases 2025; 12:22-28. [PMID: 40135194 PMCID: PMC11934239 DOI: 10.22551/2025.46.1201.10307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Sessile serrated lesions (SSLs) are recognized as precursor lesions in the pathogenesis of colorectal cancer, particularly in the context of microsatellite instability (MSI). This study evaluates the role of immunohistochemical (IHC) markers in understanding the molecular and immunologic characteristics of SSLs. MATERIALS AND METHODS A retrospective analysis was performed on 45 colonic neoplastic lesions diagnosed as SSLs. An IHC staining panel was conducted, including MLH1, p53, CD44, CD3, CD8, MUC2, MUC5AC, MUC6, chromogranin and Ki67 antibodies. RESULTS MLH1 and p53 expressions showed correlations with dysplastic changes. Immunological markers CD3 and CD8 indicated a variable immune response, potentially reflecting the tumor's ability to evade immune surveillance in certain situations. CD44 was overexpressed in all SSLs. The number of neuroendocrine cells was overall reduced. CONCLUSIONS SSLs are heterogeneous lesions, exhibiting a wide range of histological and molecular features. Using IHC might enhance diagnostic accuracy, particularly in lesions with ambiguous histological features, when dysplasia develops. Accurate identification of SSLs and understanding their molecular characteristics are crucial for assessing their malignant potential.
Collapse
Affiliation(s)
- Maria-Alexandra Florea
- Victor Babeş National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Gabriel Becheanu
- Victor Babeş National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andrei Niculae
- Victor Babeş National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Maria Dobre
- Victor Babeş National Institute of Pathology, Bucharest, Romania
| | - Mariana Costache
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Pathology Department, Emergency University Hospital, Bucharest, Romania
| |
Collapse
|
3
|
Taira A, Aavikko M, Katainen R, Kaasinen E, Välimäki N, Ravantti J, Ristimäki A, Seppälä TT, Renkonen-Sinisalo L, Lepistö A, Tahkola K, Mattila A, Koskensalo S, Mecklin JP, Böhm J, Bramsen JB, Andersen CL, Palin K, Rajamäki K, Aaltonen LA. Comprehensive metabolomic and epigenomic characterization of microsatellite stable BRAF-mutated colorectal cancer. Oncogene 2025:10.1038/s41388-025-03326-y. [PMID: 40102611 DOI: 10.1038/s41388-025-03326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
Oncogenic codon V600E mutations of the BRAF gene affect 10-15% of colorectal cancers, resulting in activation of the MAPK/ERK signaling pathway and increased cell proliferation and survival. BRAF-mutated colorectal tumors are often microsatellite unstable and characterized by high DNA methylation levels. However, the mechanistic link between BRAF mutations and hypermethylation remains controversial. Understanding this link, particularly in microsatellite stable tumors is of great interest as these often show poor survival. We characterized the metabolomic, epigenetic and transcriptomic patterns of altogether 39 microsatellite stable BRAF-mutated colorectal cancers. Metabolomic analysis of tumor tissue showed low levels of vitamin C and its metabolites in BRAF-mutated tumors. Gene expression analysis indicated dysregulation of vitamin C antioxidant activity in these lesions. As vitamin C is an important cofactor for the activity of TET DNA demethylase enzymes, low vitamin C levels could directly contribute to the high methylation levels in these tumors by decreasing enzymatic TET activity. Vitamin C transporter gene SLC23A1 expression, as well as vitamin C metabolite levels, were inversely correlated with DNA methylation levels. This work proposes a new mechanistic link between BRAF mutations and hypermethylation, inspiring further work on the role of vitamin C in the genesis of BRAF-mutated colorectal cancer.
Collapse
Affiliation(s)
- Aurora Taira
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Mervi Aavikko
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Eevi Kaasinen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Niko Välimäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Janne Ravantti
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, 00014, Finland
| | - Toni T Seppälä
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, 00290, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital and TAYS Cancer Centre, 33520, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33100, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00014, Finland
| | - Laura Renkonen-Sinisalo
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, 00290, Finland
| | - Anna Lepistö
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, 00290, Finland
| | - Kyösti Tahkola
- Department of Surgery, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620, Jyväskylä, Finland
| | - Anne Mattila
- Department of Surgery, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620, Jyväskylä, Finland
| | - Selja Koskensalo
- The HUCH Gastrointestinal Clinic, Helsinki University Central Hospital, Helsinki, 00280, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620, Jyväskylä, Finland
- Department of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Jan Böhm
- Department of Pathology, The Wellbeing Services of Central Finland, Hoitajatie 1, 40620, Jyväskylä, Finland
| | - Jesper Bertram Bramsen
- Department of Molecular Medicine, Aarhus University Hospital, DK-8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, DK-8200, Aarhus, Denmark
| | - Claus Lindbjerg Andersen
- Department of Molecular Medicine, Aarhus University Hospital, DK-8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, DK-8200, Aarhus, Denmark
| | - Kimmo Palin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00014, Finland
| | - Kristiina Rajamäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Lauri A Aaltonen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00014, Finland.
| |
Collapse
|
4
|
Li J, Pan J, Wang L, Ji G, Dang Y. Colorectal Cancer: Pathogenesis and Targeted Therapy. MedComm (Beijing) 2025; 6:e70127. [PMID: 40060193 PMCID: PMC11885891 DOI: 10.1002/mco2.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 04/29/2025] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant neoplasms globally. A growing body of evidence underscores the pivotal roles of genetic alterations and dysregulated epigenetic modifications in the pathogenesis of CRC. In recent years, the reprogramming of tumor cell metabolism has been increasingly acknowledged as a hallmark of cancer. Substantial evidence suggests a crosstalk between tumor cell metabolic reprogramming and epigenetic modifications, highlighting a complex interplay between metabolism and the epigenetic genome that warrants further investigation. Biomarkers associated with the pathogenesis and metabolic characteristics of CRC hold significant clinical implications. Nevertheless, elucidating the genetic, epigenetic, and metabolic landscapes of CRC continues to pose considerable challenges. Here, we attempt to summarize the key genes driving the onset and progression of CRC and the related epigenetic regulators, clarify the roles of gene expression and signaling pathways in tumor metabolism regulation, and explore the potential crosstalk between epigenetic events and tumor metabolic reprogramming, providing a comprehensive mechanistic explanation for the malignant progression of CRC. Finally, by integrating reliable targets from genetics, epigenetics, and metabolic processes that hold promise for translation into clinical practice, we aim to offer more strategies to overcome the bottlenecks in CRC treatment.
Collapse
Affiliation(s)
- Jingyuan Li
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiashu Pan
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of BiochemistryMicrobiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
5
|
Colombo A, Concetta PM, Gebbia V, Sambataro D, Scandurra G, Valerio MR. A Narrative Review of the Role of Immunotherapy in Metastatic Carcinoma of the Colon Harboring a BRAF Mutation. In Vivo 2025; 39:25-36. [PMID: 39740863 PMCID: PMC11705148 DOI: 10.21873/invivo.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 01/02/2025]
Abstract
Patients affected by metastatic carcinoma of the colon/rectum (mCRC) harboring mutations in the BRAF gene (MBRAF) respond poorly to conventional therapy and have a prognosis worse than that of patients without mutations. Despite the promising outcomes of targeted therapy utilizing multi-targeted inhibition of the mitogen-activated protein kinase (MAPK) signaling system, the therapeutic efficacy, especially for the microsatellite stable/DNA proficient mismatch repair (MSS/PMMR) subtype, remains inadequate. Patients with MBRAF/mCRC and high microsatellite instability or DNA deficient mismatch repair (MSI-H/DMMR) exhibit a substantial tumor mutation burden, suggesting a high probability of response to immunotherapy. It is widely acknowledged that MSS/pMMR/mCRC is an immunologically "cold" malignancy that exhibits resistance to immunotherapy. The integration of targeted therapy and immunotherapy may enhance clinical outcomes in patients with MBRAF/mCRC. Efforts to enhance outcomes are exclusively focused on MSS/DMMR-BRAF mutant cancers, which constitute the largest proportion. This review evaluates the clinical efficacy and advancement of novel immune checkpoint blockade therapies for MSI-H/DMMR and MSS/PMMR BRAF mutant mCRC. We examine potential indicators in the tumor immune milieu for forecasting immunotherapeutic response in BRAF mutant mCRC.
Collapse
Affiliation(s)
| | | | - Vittorio Gebbia
- Medical Oncology, Department of Medicine and Surgery, Kore University of Enna, Enna, Italy;
- Medical Oncology Unit, CdC Torina, Palermo, Italy
| | - Daniela Sambataro
- Medical Oncology, Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
- Medical Oncology Unit, Ospedale Umberto I, Enna, Italy
| | - Giuseppina Scandurra
- Medical Oncology, Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
- Medical Oncology Unit, Ospedale Cannizzario, Catania, Italy
| | | |
Collapse
|
6
|
Liu M, Liu Q, Hu K, Dong Y, Sun X, Zou Z, Ji D, Liu T, Yu Y. Colorectal cancer with BRAF V600E mutation: Trends in immune checkpoint inhibitor treatment. Crit Rev Oncol Hematol 2024; 204:104497. [PMID: 39245296 DOI: 10.1016/j.critrevonc.2024.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC) with BRAF V600E mutation presents a formidable scientific and clinical challenge due to its aggressive nature and poor response to standard therapeutic approaches. BRAF V600E mutation-induced conspicuous activation of the MAPK pathway contributes to the relentless tumor progression. Nevertheless, the efficacy of multi-targeted MAPK pathway inhibition remains suboptimal in clinical practice. Patients with high microsatellite instability (MSI-H) have shown favorable results with immune checkpoint inhibitors (ICIs). The combination of the MAPK pathway inhibition with ICIs has recently emerged as a promising regimen to improve clinical outcomes in the microsatellite stable (MSS) subgroup of BRAF V600E-mutant metastatic CRC patients. In this review, we elucidate the unique tumor biology of BRAF V600E-mutant CRC, with a particular focus on the immune features underlying the rationale for ICI treatments in the MSI-H and MSS subpopulations, then highlight the trends in clinical trials of the ICI therapy for BRAF V600E-mutant metastatic CRC.
Collapse
Affiliation(s)
- Mengling Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qing Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Keshu Hu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Dong
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xun Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiguo Zou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dingkun Ji
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Wang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, et alWang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, Li W, Fu J, Wu L, Lan S, Ou J, Shi L, Zhai Z, Wang Y, Li B, Zhang Z, Wang K, Ma X, Li Z, Liu Z, Yang N, Wu L, Wang H, Jin G, Wang G, Wang J, Shi H, Fang M, Fang Y, Li Y, Wang X, Chen J, Zhang Y, Zhu X, Shen Y, Ma S, Wang B, Song Y, Song Z, Fang W, Lu Y, Si L. Expert consensus on the diagnosis and treatment of solid tumors with BRAF mutations. Innovation (N Y) 2024; 5:100661. [PMID: 39529955 PMCID: PMC11551471 DOI: 10.1016/j.xinn.2024.100661] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth, differentiation, and survival. When the BRAF gene mutates, it can lead to abnormal activation of the signaling pathway, which promotes cell proliferation, inhibits cell apoptosis, and ultimately contributes to the occurrence and development of cancer. BRAF mutations are widely present in various cancers, including malignant melanoma, thyroid cancer, colorectal cancer, non-small cell lung cancer, and hairy cell leukemia, among others. BRAF is an important target for the treatment of various solid tumors, and targeted combination therapies, represented by BRAF inhibitors, have become one of the main treatment modalities for a variety of BRAF-mutation-positive solid tumors. Dabrafenib plus trametinib, as the first tumor-agnostic therapy, has been approved by the US Food and Drug Administration for the treatment of adult and pediatric patients aged 6 years and older harboring a BRAF V600E mutation with unresectable or metastatic solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options. This is also the first time a BRAF/MEK inhibitor combination has been approved for use in pediatric patients. As research into the diagnosis and treatment of BRAF mutations advances, standardizing the detection of BRAF mutations and the clinical application of BRAF inhibitors becomes increasingly important. Therefore, we have established a universal and systematic strategy for diagnosing and treating solid tumors with BRAF mutations. In this expert consensus, we (1) summarize the epidemiology and clinical characteristics of BRAF mutations in different solid tumors, (2) provide recommendations for the selection of genetic testing methods and platforms, and (3) establish a universal strategy for the diagnosis and treatment of patients with solid tumors harboring BRAF mutations.
Collapse
Affiliation(s)
- Wenxian Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Nan Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 200030, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 200030, China
| | - Aijun Liu
- Senior Department of Pathology, the 7 Medical Center of PLA General Hospital, Beijing 100700, P.R. China
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingjing Liu
- Department of Thoracic Cancer, Jilin Cancer Hospital, Jilin, Changchun 130012, P.R. China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, West Lake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. ChinaP.R. China
| | - Anwen Liu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Lingfeng Min
- Department of Respiratory Medicine, Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Wang
- Department of Internal Medicine, Cancer Center of PLA, Qinhuai Medical Area, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhansheng Jiang
- Derpartment of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Gen Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Long Huang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Rongbo Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing 100035, P.R. China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Dongqing Lv
- Department of Pulmonary Medicine, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900 Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital), Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100700, P.R. China
| | - Chuanhao Tang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510300, P.R. China
| | - Junping Zhang
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, P.R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P.R. China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Rui Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan 610041, P.R. China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fan Xia
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P.R. China
| | - Xiaofeng Chen
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Rui Ge
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 13003, P.R. China
| | - Yu Han
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 1550081, P.R. China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Fei Pang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Xin Huang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Meizhen Hu
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Qing Hao
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Kai Wang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Fan Wu
- Department of Medical, Menarini Silicon Biosystems Spa, Shanghai 400000, P.R. China
| | - Binbin Song
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Bingwei Xu
- Department of Biotherapy, Cancer Institute, First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Liping Wang
- Department of Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia 014000, P.R. China
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Li Lin
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Yanru Xie
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Xinqing Lin
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Cai
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Xu
- Department of Interventional Pulmonary Diseases, Anhui Chest Hospital, Hefei, Anhui 230011, P.R. China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinnan, Shangdong 250012, P.R. China
| | - Xiaodong Jiao
- Department of Medical Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200070, P.R. China
| | - Kainan Li
- Department of Oncology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250031, P.R. China
| | - Jia Wei
- Department of the Comprehensive Cancer Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Lin Wang
- Department of Pathology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, P.R. China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yue Feng
- Department of Gynecologic Radiation Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yinbin Zhang
- Department of Oncology, the Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Pingli Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hong Wang
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yue Hao
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Zhen Wang
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Bin Wan
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Donglai Lv
- Department of Clinical Oncology, The 901 Hospital of Joint Logistics Support Force of People Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Shengjie Yang
- Department of Thoracic Surgery, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, Yunnan 675000, P.R. China
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Lizhi Wu
- Department of Microsurgery, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Shijie Lan
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Lin Shi
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhanqiang Zhai
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Bihui Li
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210000, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Zhefeng Liu
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Huijuan Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Gu Jin
- Department of Bone and Soft-tissue Surgery, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jiandong Wang
- Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hubing Shi
- Frontier Science Center for Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meiyu Fang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaojia Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiping Zhang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Xixu Zhu
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhengbo Song
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| |
Collapse
|
8
|
Veselovsky E, Lebedeva A, Kuznetsova O, Kravchuk D, Belova E, Taraskina A, Grigoreva T, Kavun A, Yudina V, Belyaeva L, Nikulin V, Mileyko V, Tryakin A, Fedyanin M, Ivanov M. Evaluation of blood MSI burden dynamics to trace immune checkpoint inhibitor therapy efficacy through the course of treatment. Sci Rep 2024; 14:23454. [PMID: 39379462 PMCID: PMC11461614 DOI: 10.1038/s41598-024-73952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Analysis of serial liquid biopsy (LB) samples has been found to be a promising approach for the monitoring of tumor dynamics in the course of therapy for patients with colorectal cancer (CRC). Currently, somatic mutations are used for tracing the dynamics of the tumor via LB. However, the analysis of the dynamic changes in the molecular signatures such as microsatellite instability (MSI) is not currently used. We hypothesized that changes in blood MSI burden (bMSI) could be registered using serial LB sampling in the course of immune checkpoint inhibitors (ICI), and that its changes could potentially correlate with treatment outcomes. We report the preliminary findings of the observational trial launched to study (NCT06414304) the dynamics of bMSI in 9 MSI-positive CRC patients receiving ICI. NGS-based MSI testing was performed on both pre-treatment FFPE and serial LB samples. For patients who had detectable bMSI burden in any of the LB samples (n = 8, 89%), median bMSI was 1.4% (range, 0.01-40%). Among patients with detectable MSI in available FFPE samples, median MSI burden was 29.3% (range, 10-40%). bMSI detected in baseline LB and FFPE samples were positively correlated (Pearson's R 0.47). Maximal variant allele frequencies of driver mutations observed in LB were also positively correlated with bMSI burden (Pearson's R 0.7). Patients who had clinical benefit had undetectable bMSI burden at follow-up. Our results provide the rationale for further validation of bMSI as a predictive biomarker of ICI in MSI-positive patients.
Collapse
Affiliation(s)
- Egor Veselovsky
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexandra Lebedeva
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Olesya Kuznetsova
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Federal State Budgetary Institution N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Daria Kravchuk
- State Budgetary Institution of Health Care of the City of Moscow "Moscow Multidisciplinary Clinical Center" "Kommunarka" of the Department of Health of the City of Moscow, Moscow, Russian Federation
| | - Ekaterina Belova
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Tatiana Grigoreva
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexandra Kavun
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
| | - Victoria Yudina
- Federal State Budgetary Institution N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Laima Belyaeva
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Vladislav Nikulin
- Federal State Budgetary Institution N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Vladislav Mileyko
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexey Tryakin
- Federal State Budgetary Institution N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Mikhail Fedyanin
- Federal State Budgetary Institution N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
- State Budgetary Institution of Health Care of the City of Moscow "Moscow Multidisciplinary Clinical Center" "Kommunarka" of the Department of Health of the City of Moscow, Moscow, Russian Federation
- Federal State Budgetary Institution "National Medical and Surgical Center named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Maxim Ivanov
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
9
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
10
|
Hamada K, Honda M, Horikawa Y, Shiwa Y, Techigawara K, Nagahashi T, Ishikawa M, Takeda Y, Fukushima D, Nishino N, Uesugi N, Suzuki M, Sugai T. Histopathologic vertical margin positivity in cold snare polypectomy and mucosal resection for sessile serrated lesions. Gastrointest Endosc 2024; 100:283-291. [PMID: 38272275 DOI: 10.1016/j.gie.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND AND AIMS Data regarding the status of the vertical margin of sessile serrated lesions (SSLs) resected using cold snare polypectomy (CSP) are lacking, and whether a histopathologically positive vertical margin is related to recurrence remains unclear. Therefore, this preliminary study aimed to clarify the rates of positive or unassessable vertical and horizontal margins and the rate of muscularis mucosae resection in SSLs treated using CSP compared with those treated with EMR. METHODS Histologic outcomes of patients treated with CSP or EMR for SSLs were evaluated in this single-center observational study. The primary outcome was the incidence of histopathologically positive vertical margins in CSP and EMR. Furthermore, the comparisons were adjusted for confounding factors using propensity score matching. RESULTS Overall, 82 patients with SSLs were included in the CSP and EMR groups after matching. The incidence of positive histologic vertical margins in the CSP and EMR groups were 67.1% and 2.4%, respectively (P < .001). Regarding the evaluation of the presence of muscularis mucosae, 29.3% and 98.8% of patients in the CSP and EMR groups, respectively, had a complete muscularis mucosae resection (P < .001). CONCLUSIONS A rigorous histopathologic evaluation revealed that for SSLs, CSP more frequently leads to positive vertical margins than EMR. (Clinical trial registration number: UMIN 000051569.).
Collapse
Affiliation(s)
- Koichi Hamada
- Department of Gastroenterology, Southern-Tohoku General Hospital, Koriyama, Japan; Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Michitaka Honda
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan; Department of Surgery, Southern-Tohoku General Hospital, Koriyama, Japan
| | - Yoshinori Horikawa
- Department of Gastroenterology, Southern-Tohoku General Hospital, Koriyama, Japan
| | - Yoshiki Shiwa
- Department of Gastroenterology, Southern-Tohoku General Hospital, Koriyama, Japan
| | - Kae Techigawara
- Department of Gastroenterology, Southern-Tohoku General Hospital, Koriyama, Japan; Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Takayuki Nagahashi
- Department of Gastroenterology, Southern-Tohoku General Hospital, Koriyama, Japan; Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Masafumi Ishikawa
- Department of Gastroenterology, Southern-Tohoku General Hospital, Koriyama, Japan
| | - Yuki Takeda
- Department of Gastroenterology, Southern-Tohoku General Hospital, Koriyama, Japan
| | - Daizo Fukushima
- Department of Gastroenterology, Southern-Tohoku General Hospital, Koriyama, Japan
| | - Noriyuki Nishino
- Department of Gastroenterology, Southern-Tohoku General Hospital, Koriyama, Japan
| | - Noriyuki Uesugi
- Department of Pathology, Southern-Tohoku General Hospital, Koriyama, Japan
| | - Masamichi Suzuki
- Department of Pathology, Southern-Tohoku General Hospital, Koriyama, Japan
| | - Tamotsu Sugai
- Department of Pathology, Southern-Tohoku General Hospital, Koriyama, Japan
| |
Collapse
|
11
|
Nakamori S, Takao M, Takao A, Natsume S, Iijima T, Kojika E, Nakano D, Kawai K, Inokuchi T, Fujimoto A, Urushibara M, Horiguchi SI, Ishida H, Yamaguchi T. Clinicopathological characteristics of Lynch-like syndrome. Int J Clin Oncol 2024; 29:944-952. [PMID: 38642190 DOI: 10.1007/s10147-024-02527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Lynch-like syndrome (LLS) has recently been proposed as a third type of microsatellite instability (MSI) tumor after Lynch syndrome (LS) and sporadic MSI colorectal cancer (CRC) without either a germline variant of mismatch repair (MMR) genes or hypermethylation of the MLH1 gene. The present study aimed to clarify and compare the clinicopathological characteristics of LLS with those of the other MSI CRC subtypes. METHODS In total, 2634 consecutive patients with CRC who underwent surgical resection and subsequently received universal tumor screening (UTS), including MSI analysis were enrolled between January 2008 and November 2019. Genetic testing was performed in patients suspected of having Lynch syndrome. RESULTS UTS of the cohort found 146 patients with MSI CRC (5.5%). Of these, excluding sporadic MSI CRC, 30 (1.1%) had a diagnosis of LS, and 19 (0.7%) had no germline pathogenic variants of the MMR gene. The CRC type in the latter group was identified as LLS. LLS occurred significantly more often in young patients, was left-sided, involved a KRAS variant and BRAF wild-type, and had a higher concordance rate with the Revised Bethesda Guidelines than sporadic MSI CRC. No significant differences were observed in terms of the clinicopathological factors between LLS and LS-associated MSI CRC; however, LLS had a lower frequency of LS-related neoplasms compared with LS. CONCLUSIONS Distinguishing clinically between LS and LLS was challenging, but the incidence of neoplasms was higher in LS than in LLS, suggesting the need for different screening and surveillance methods for the two subtypes.
Collapse
Affiliation(s)
- Sakiko Nakamori
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Misato Takao
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Akinari Takao
- Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Soichiro Natsume
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Takeru Iijima
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
- Hereditary Tumor Research Project, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Ekumi Kojika
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
- Hereditary Tumor Research Project, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Daisuke Nakano
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Kazushige Kawai
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Takuhiko Inokuchi
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Ai Fujimoto
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Makiko Urushibara
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Shin-Ichiro Horiguchi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Tatsuro Yamaguchi
- Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan.
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan.
| |
Collapse
|
12
|
Zhang QQ, Wu JD, Li XY, Fang FF, Li GP, Bai T, Song J. Clinical and endoscopic characteristics of colorectal sessile serrated lesions with or without dysplasia/carcinoma: A systematic review and meta-analysis. J Dig Dis 2024; 25:424-435. [PMID: 39104049 DOI: 10.1111/1751-2980.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE We aimed to compare the clinical and endoscopic characteristics of sessile serrated lesions (SSLs) with dysplasia/carcinoma (SSLD/Cs) and SSLs without dysplasia in this systematic review and meta-analysis. METHODS MEDLINE, EMBASE, and Cochrane Library databases and Clinicaltrials.gov were searched for relevant studies published up to August 28, 2023. The primary outcome was lesion size in SSLD/Cs and SSLs without dysplasia. The secondary outcomes included risk of dysplasia/carcinoma, morphology (classified based on the Paris classification), and lesion features such as mucus cap and nodules/protrusions in the two groups. RESULTS Thirteen studies with 14 381 patients were included. The proportion of SSLD/Cs ≥10 mm was significantly higher than that of SSLs without dysplasia (odds ratio [OR] 3.82, 95% confidence interval [CI] 1.21-12.02, p = 0.02). There was no significant difference in the risk of dysplasia/carcinoma between the proximal (OR 0.80, 95% CI 0.57-1.14) and distal colon (OR 1.25, 95% CI 0.88-1.77, p = 0.21). The 0-Ip (OR 2.47, 95% CI 1.50-4.09) and 0-IIa + Is (OR 10.38, 95% CI 3.08-34.98) morphologies were more prevalent among SSLD/Cs, whereas the 0-IIa morphology (OR 0.38, 95% CI 0.22-0.65) was more prevalent among SSLs without dysplasia (all p < 0.001). Furthermore, mucus cap (OR 0.61, 95% CI 0.42-0.89, p = 0.01) was more common among SSLs without dysplasia, whereas nodules/protrusions (OR 7.80, 95% CI 3.07-19.85, p < 0.001) were more common in SSLD/Cs. CONCLUSION SSLs >10 mm, 0-Ip or 0-IIa + Is morphologies, and those with nodules/protrusions are significantly associated with dysplasia/carcinoma.
Collapse
Affiliation(s)
- Qing Qing Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jian Di Wu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xue Yan Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fei Fei Fang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gang Ping Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Tao Bai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jun Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
13
|
Sadien ID, Davies RJ, Wheeler JMD. The genomics of sporadic and hereditary colorectal cancer. Ann R Coll Surg Engl 2024; 106:313-320. [PMID: 38555871 PMCID: PMC10981993 DOI: 10.1308/rcsann.2024.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2024] [Indexed: 04/02/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Over the past three decades, extensive efforts have sought to elucidate the genomic landscape of CRC. These studies reveal that CRC is highly heterogeneous at the molecular level, with different subtypes characterised by distinct somatic mutational profiles, epigenetic aberrations and transcriptomic signatures. This review summarises our current understanding of the genomic and epigenomic alterations implicated in CRC development and progression. Particular focus is given to how characterisation of CRC genomes is leading to more personalised approaches to diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - JMD Wheeler
- Cambridge University Hospitals NHS Foundation Trust, UK
| |
Collapse
|
14
|
Ding C, Yang JF, Wang X, Zhou YF, Khizar H, Jin Z, Zhang XF. Cold EMR vs. Hot EMR for the removal of sessile serrated polyps larger than 10 mm: a systematic review and meta-analysis. BMC Surg 2024; 24:93. [PMID: 38509508 PMCID: PMC10953062 DOI: 10.1186/s12893-024-02325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/16/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Endoscopic mucosal resection (EMR) appears to be a promising technique for the removal of sessile serrated polyps (SSPs) ≥ 10 mm. To assess the effectiveness and safety of EMR for removing SSPs ≥ 10 mm, we conducted this systematic review and meta-analysis. METHODS We conducted a thorough search of Embase, PubMed, Cochrane, and Web of Science databases for relevant studies reporting on EMR of SSPs ≥ 10 mm, up until December 2023. Our primary endpoints of interest were rates of technical success, residual SSPs, and adverse events (AE). RESULTS Our search identified 426 articles, of which 14 studies with 2262 SSPs were included for analysis. The rates of technical success, AEs, and residual SSPs were 100%, 2.0%, and 3.1%, respectively. Subgroup analysis showed that the technical success rates were the same for polyps 10-19 and 20 mm, and en-bloc and piecemeal resection. Residual SSPs rates were similar in en-bloc and piecemeal resection, but much lower in cold EMR (1.0% vs. 4.2%, P = 0.034). AEs rates were reduced in cold EMR compared to hot EMR (0% vs. 2.9%, P = 0.168), in polyps 10-19 mm compared to 20 mm (0% vs. 4.1%, P = 0.255), and in piecemeal resection compared to en-bloc (0% vs. 0.7%, P = 0.169). CONCLUSIONS EMR is an effective and safe technique for removing SSPs ≥ 10 mm. The therapeutic effect of cold EMR is superior to that of hot EMR, with a lower incidence of adverse effects. PROSPERO REGISTRATION NUMBER CRD42023388959.
Collapse
Affiliation(s)
- Cong Ding
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jian-Feng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xia Wang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yi-Feng Zhou
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Hayat Khizar
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Zheng Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xiao-Feng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
15
|
Ozeki H, Shimada Y, Nakano M, Kondo S, Ohashi R, Miwa Y, Yamai D, Matsumoto A, Abe K, Tajima Y, Ichikawa H, Sakata J, Takii Y, Sugai M, Nagai T, Ling Y, Okuda S, Wakai T. Mucin phenotype and genetic alterations in non-V600E BRAF-mutated colorectal cancer. Hum Pathol 2024; 145:71-79. [PMID: 38423222 DOI: 10.1016/j.humpath.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease that develops through stepwise accumulation of genetic alterations and progresses via several distinct pathways. However, the tumorigenesis of CRCs with BRAF non-V600E mutations remains unclear. Here, we aimed to elucidate the tumorigenesis of CRCs with BRAF non-V600E mutations, focusing on differences in mucin phenotype and genetic alterations between CRCs with non-V600E and V600E mutations. We investigated 201 patients with CRC and performed panel testing of 415 genes to identify BRAF mutations. Patients were classified into five mucin phenotypes - large-intestinal, small-intestinal, gastric, mixed, and unclassified - using immunohistochemistry for CD10, MUC2, MUC5AC, and MUC6. BRAF mutations were identified in 24 of 201 patients' samples, of which 13 (6.5%) had a V600E mutation (V600E-mutant) and 11 (5.5%) had non-V600E mutations (non-V600E-mutant). MUC5AC expression was significantly associated with V600E mutations (P = 0.040), while CD10 expression was significantly associated with non-V600E mutations (P = 0.010). The small-intestinal mucin phenotype was significantly associated with non-V600E mutations (P = 0.031), while the mixed mucin phenotype was significantly associated with V600E mutations (P = 0.027). Regarding genetic alterations, focusing on the WNT signaling pathway, APC mutation was significantly associated with non-V600E mutations (P < 0.001), while RNF43 mutation was significantly associated with V600E mutations (P = 0.020). Considering the differences in mucin phenotype and genetic alterations, different modes of tumorigenesis are assumed for CRC with BRAF V600E mutation and non-V600E mutations. These findings are important in understanding the biology and treatment strategies for BRAF-mutant CRC.
Collapse
Affiliation(s)
- Hikaru Ozeki
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan; Medical Genome Center, Niigata University Medical and Dental Hospital, Niigata, 951-8520, Japan.
| | - Mae Nakano
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan; Medical Genome Center, Niigata University Medical and Dental Hospital, Niigata, 951-8520, Japan
| | - Shuhei Kondo
- Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Riuko Ohashi
- Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Yamato Miwa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Daisuke Yamai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Akio Matsumoto
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Kaoru Abe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Yosuke Tajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Yasumasa Takii
- Department of Surgery, Niigata Cancer Center Hospital, Niigata City, Niigata, 951-8566, Japan
| | - Mika Sugai
- Division of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata City, Niigata, 951-8518, Japan
| | - Takahiro Nagai
- Center for Genomic Data Management, Niigata University Medical and Dental Hospital, Niigata, 951-8520, Japan
| | - Yiwei Ling
- Medical AI Center/Bioinformatics Laboratory, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8514, Japan
| | - Shujiro Okuda
- Medical AI Center/Bioinformatics Laboratory, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8514, Japan; Center for Genomic Data Management, Niigata University Medical and Dental Hospital, Niigata, 951-8520, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan; Medical Genome Center, Niigata University Medical and Dental Hospital, Niigata, 951-8520, Japan.
| |
Collapse
|
16
|
van Toledo DEFWM, Bleijenberg AGC, Venema A, de Wit MJ, van Eeden S, Meijer GA, Carvalho B, Dekker E, Henneman P, IJspeert JEG, van Noesel CJM. Aberrant PRDM2 methylation as an early event in serrated lesions destined to evolve into microsatellite-instable colorectal cancers. J Pathol Clin Res 2024; 10:e348. [PMID: 38380944 PMCID: PMC10880511 DOI: 10.1002/cjp2.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 10/15/2023] [Indexed: 02/22/2024]
Abstract
Up to 30% of colorectal cancers (CRCs) develop from sessile serrated lesions (SSLs). Within the serrated neoplasia pathway, at least two principally distinct oncogenetic routes exist generating microsatellite-stable and microsatellite-instable CRCs, respectively. Aberrant DNA methylation (DNAm) is found early in the serrated pathway and might play a role in both oncogenetic routes. We studied a cohort of 23 SSLs with a small focus (<10 mm) of dysplasia or cancer, 10 of which were MLH1 deficient and 13 MLH1 proficient. By comparing, for each SSL, the methylation status of (1) the region of dysplasia or cancer (SSL-D), (2) the nondysplastic SSL (SSL), and (3) adjacent normal mucosa, differentially methylated probes (DMPs) and regions (DMRs) were assessed both genome-wide as well as in a tumor-suppressor gene-focused approach. By comparing DNAm of MLH1-deficient SSL-Ds with their corresponding SSLs, we identified five DMRs, including those annotating for PRDM2 and, not unexpectedly, MLH1. PRDM2 gene promotor methylation was associated with MLH1 expression status, as it was largely hypermethylated in MLH1-deficient SSL-Ds and hypomethylated in MLH1-proficient SSL-Ds. Significantly increased DNAm levels of PRDM2 and MLH1, in particular at 'critical' MLH1 probe sites, were to some extent already visible in SSLs as compared to normal mucosa (p = 0.02, p = 0.01, p < 0.0001, respectively). No DMRs, nor DMPs, were identified for SSLs destined to evolve into MLH1-proficient SSL-Ds. Our data indicate that, within both arms of the serrated CRC pathway, the majority of the epigenetic alterations are introduced early during SSL formation. Promoter hypermethylation of PRDM2 and MLH1 on the other hand specifically initiates in SSLs destined to transform into MLH1-deficient CRCs suggesting that the fate of SSLs may not necessarily result from a stochastic process but possibly is already imprinted and predisposed.
Collapse
Affiliation(s)
- David EFWM van Toledo
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centers, location Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Arne GC Bleijenberg
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centers, location Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Andrea Venema
- Department of Human Genetics, Epigenetics of disease, Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Mireille J de Wit
- Department of PathologyAmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterThe Netherlands
| | - Susanne van Eeden
- Department of PathologyAmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterThe Netherlands
| | - Gerrit A Meijer
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Beatrice Carvalho
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centers, location Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Peter Henneman
- Department of Human Genetics, Epigenetics of disease, Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Joep EG IJspeert
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centers, location Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Carel JM van Noesel
- Department of PathologyAmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterThe Netherlands
| |
Collapse
|
17
|
Li J, Zeng Q, Lin J, Huang H, Chen L. Loss of SATB2 and CDX2 expression is associated with DNA mismatch repair protein deficiency and BRAF mutation in colorectal cancer. Med Mol Morphol 2024; 57:1-10. [PMID: 37583001 DOI: 10.1007/s00795-023-00366-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023]
Abstract
The relationship between the expression of the SATB2 and CDX2 proteins and common molecular changes and clinical prognosis in colorectal cancer (CRC) still needs further clarification. We collected 1180 cases of CRC and explored the association between the expression of SATB2 and CDX2 and clinicopathological characteristics, molecular alterations, and overall survival of CRC using whole-slide immunohistochemistry. Our results showed that negative expression of SATB2 and CDX2 was more common in MMR-protein-deficient CRC than in MMR-protein-proficient CRC (15.8% vs. 6.0%, P = 0.001; 14.5% vs. 4.0%, P = 0.000, respectively). Negative expression of SATB2 and CDX2 was more common in BRAF-mutant CRC than in BRAF wild-type CRC (17.2% vs. 6.1%, P = 0.003; 13.8% vs. 4. 2%; P = 0.004, respectively). There was no relationship between SATB2 and/or CDX2 negative expression and KRAS, NRAS, and PIK3CA mutations. The lack of expression of SATB2 and CDX2 was associated with poor histopathological features of CRC. In multivariate analysis, negative expression of SATB2 (P = 0.030), negative expression of CDX2 (P = 0.043) and late clinical stage (P = 0.000) were associated with decreased overall survival of CRC. In conclusion, the lack of SATB2 and CDX2 expression in CRC was associated with MMR protein deficiency and BRAF mutation, but not with KRAS, NRAS and PIK3CA mutation. SATB2 and CDX2 are prognostic biomarkers in patients with CRC.
Collapse
Affiliation(s)
- Jiezhen Li
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Qiang Zeng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| | - Jie Lin
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Haijian Huang
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Lingfeng Chen
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, 350001, China
| |
Collapse
|
18
|
Brown I, Bettington M. Sporadic Polyps of the Colorectum. Gastroenterol Clin North Am 2024; 53:155-177. [PMID: 38280746 DOI: 10.1016/j.gtc.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Colorectal polyps are common, and their diagnosis and classification represent a major component of gastrointestinal pathology practice. The majority of colorectal polyps represent precursors of either the chromosomal instability or serrated neoplasia pathways to colorectal carcinoma. Accurate reporting of these polyps has major implications for surveillance and thus for cancer prevention. In this review, we discuss the key histologic features of the major colorectal polyps with a particular emphasis on diagnostic pitfalls and areas of contention.
Collapse
Affiliation(s)
- Ian Brown
- Envoi Pathology, Brisbane; Pathology Queensland, Royal Brisbane and Women's Hospital Cnr Herston and Bowen Bridge Roads, Herston Qld 4006, Australia; University of Queensland, St Lucia, Qld 4072, Australia.
| | - Mark Bettington
- Envoi Pathology, Brisbane; University of Queensland, St Lucia, Qld 4072, Australia; Queensland Institute of Medical Research, 300 Herston Road, Herston QLD 4006, Australia
| |
Collapse
|
19
|
Yamamoto N, Yamashita K, Takehara Y, Morimoto S, Tanino F, Kamigaichi Y, Tanaka H, Arihiro K, Shimamoto F, Oka S. Characteristics and Prognosis of Sporadic Neoplasias Detected in Patients with Ulcerative Colitis. Digestion 2024; 105:213-223. [PMID: 38417416 DOI: 10.1159/000537756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
INTRODUCTION Patients with ulcerative colitis (UC) develop not only UC-associated neoplasias but also sporadic neoplasias (SNs). However, few studies have described the characteristics of SNs in patients with UC. Therefore, this study aimed to evaluate the clinical features and prognosis of SNs in patients with UC. METHODS A total of 141 SNs in 59 patients with UC, detected by surveillance colonoscopy at Hiroshima University Hospital between January 1999 and December 2021, were included. SNs were diagnosed based on their location, endoscopic features, and histopathologic findings along with immunohistochemical staining for Ki67 and p53. RESULTS Of the SNs, 91.5% were diagnosed as adenoma and 8.5% were diagnosed as carcinoma (Tis carcinoma, 3.5%; T1 carcinoma, 5.0%). 61.0% of the SNs were located in the right colon, 31.2% were located in the left colon, and 7.8% were located in the rectum. When classified based on the site of the lesion, 70.9% of SNs occurred outside and 29.1% within the affected area. Of all SNs included, 95.7% were endoscopically resected and 4.3% were surgically resected. Among the 59 patients included, synchronous SNs occurred in 23.7% and metachronous multiple SNs occurred in 40.7% during surveillance. The 5-year cumulative incidence of metachronous multiple SNs was higher in patients with synchronous multiple SNs (54.2%) than in those without synchronous multiple SNs (46.4%). CONCLUSION Patients with UC with synchronous multiple SNs are at a higher risk of developing metachronous multiple SNs and may require a closer follow-up by total colonoscopy than patients without synchronous SNs.
Collapse
Affiliation(s)
- Noriko Yamamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ken Yamashita
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yudai Takehara
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shin Morimoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Fumiaki Tanino
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuki Kamigaichi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hidenori Tanaka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Fumio Shimamoto
- Faculty of Health Sciences, Hiroshima Cosmopolitan University, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
20
|
Thng DKH, Hooi L, Siew BE, Lee KY, Tan IJW, Lieske B, Lin NS, Kow AWC, Wang S, Rashid MBMA, Ang C, Koh JJM, Toh TB, Tan KK, Chow EKH. A functional personalised oncology approach against metastatic colorectal cancer in matched patient derived organoids. NPJ Precis Oncol 2024; 8:52. [PMID: 38413740 PMCID: PMC10899621 DOI: 10.1038/s41698-024-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Globally, colorectal cancer (CRC) is the third most frequently occurring cancer. Progression on to an advanced metastatic malignancy (metCRC) is often indicative of poor prognosis, as the 5-year survival rates of patients decline rapidly. Despite the availability of many systemic therapies for the management of metCRC, the long-term efficacies of these regimens are often hindered by the emergence of treatment resistance due to intratumoral and intertumoral heterogeneity. Furthermore, not all systemic therapies have associated biomarkers that can accurately predict patient responses. Hence, a functional personalised oncology (FPO) approach can enable the identification of patient-specific combinatorial vulnerabilities and synergistic combinations as effective treatment strategies. To this end, we established a panel of CRC patient-derived organoids (PDOs) as clinically relevant biological systems, of which three pairs of matched metCRC PDOs were derived from the primary sites (ptCRC) and metastatic lesions (mCRC). Histological and genomic characterisation of these PDOs demonstrated the preservation of histopathological and genetic features found in the parental tumours. Subsequent application of the phenotypic-analytical drug combination interrogation platform, Quadratic Phenotypic Optimisation Platform, in these pairs of PDOs identified patient-specific drug sensitivity profiles to epigenetic-based combination therapies. Most notably, matched PDOs from one patient exhibited differential sensitivity patterns to the rationally designed drug combinations despite being genetically similar. These findings collectively highlight the limitations of current genomic-driven precision medicine in guiding treatment strategies for metCRC patients. Instead, it suggests that epigenomic profiling and application of FPO could complement the identification of novel combinatorial vulnerabilities to target synchronous ptCRC and mCRC.
Collapse
Affiliation(s)
- Dexter Kai Hao Thng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bei En Siew
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai-Yin Lee
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Ian Jse-Wei Tan
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Bettina Lieske
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Norman Sihan Lin
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Alfred Wei Chieh Kow
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore
| | | | - Chermaine Ang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jasmin Jia Min Koh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore, Singapore.
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Trembath HE, Yeh JJ, Lopez NE. Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. Cancer Treat Res 2024; 192:305-418. [PMID: 39212927 DOI: 10.1007/978-3-031-61238-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advances in molecular genetics have revolutionized our understanding of the pathogenesis, progression, and therapeutic options for treating gastrointestinal (GI) cancers. This chapter provides a comprehensive overview of the molecular landscape of GI cancers, focusing on key genetic alterations implicated in tumorigenesis across various anatomical sites including GIST, colon and rectum, and pancreas. Emphasis is placed on critical oncogenic pathways, such as mutations in tumor suppressor genes, oncogenes, chromosomal instability, microsatellite instability, and epigenetic modifications. The role of molecular biomarkers in predicting prognosis, guiding treatment decisions, and monitoring therapeutic response is discussed, highlighting the integration of genomic profiling into clinical practice. Finally, we address the evolving landscape of precision oncology in GI cancers, considering targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Hannah E Trembath
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Jen Jen Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Nicole E Lopez
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA.
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA.
| |
Collapse
|
22
|
Aiderus A, Barker N, Tergaonkar V. Serrated colorectal cancer: preclinical models and molecular pathways. Trends Cancer 2024; 10:76-91. [PMID: 37880007 DOI: 10.1016/j.trecan.2023.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Serrated lesions are histologically heterogeneous, and detection can be challenging as these lesions have subtle features that may be missed by endoscopy. Furthermore, while approximately 30% of colorectal cancers (CRCs) arise from serrated lesions, only 8-10% of invasive serrated CRCs exhibit serrated morphology at presentation, suggesting potential loss of apparent characteristics with increased malignancy. Thus, understanding the genetic basis driving serrated CRC initiation and progression is critical to improve diagnosis and identify therapeutic biomarkers and targets to guide disease management. This review discusses the preclinical models of serrated CRCs reported to date and how these systems have been used to provide mechanistic insights into tumor initiation, progression, and novel treatment targets.
Collapse
Affiliation(s)
- Aziz Aiderus
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore.
| | - Nick Barker
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore 117593, Republic of Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, MD7, Singapore 117596, Republic of Singapore
| |
Collapse
|
23
|
Kawaguchi T, Okamoto K, Fujimoto S, Bando M, Wada H, Miyamoto H, Sato Y, Muguruma N, Horimoto K, Takayama T. Lansoprazole inhibits the development of sessile serrated lesions by inducing G1 arrest via Skp2/p27 signaling pathway. J Gastroenterol 2024; 59:11-23. [PMID: 37989907 DOI: 10.1007/s00535-023-02052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/07/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Although the serrated-neoplasia pathway reportedly accounts for 15-30% of colorectal cancer (CRC), no studies on chemoprevention of sessile serrated lesions (SSLs) have been reported. We searched for effective compounds comprehensively from a large series of compounds by employing Connectivity Map (CMAP) analysis of SSL-specific gene expression profiles coupled with in vitro screening using SSL patient-derived organoids (PDOs), and validated their efficacy using a xenograft mouse model of SSL. METHODS We generated SSL-specific gene signatures based on DNA microarray data, and applied them to CMAP analysis with 1309 FDA-approved compounds to select candidate compounds. We evaluated their inhibitory effects on SSL-PDOs using a cell viability assay. SSL-PDOs were orthotopically transplanted into NOG mice for in vivo evaluation. The signal transduction pathway was evaluated by gene expression profile and protein expression analysis. RESULTS We identified 221 compounds by employing CMAP analysis of SSL-specific signatures, which should cancel the gene signatures, and narrowed them down to 17 compounds. Cell viability assay using SSL-PDOs identified lansoprazole as having the lowest IC50 value (47 µM) among 17 compounds. When SSL-PDO was orthotopically transplanted into murine intestinal tract, the tumor grew gradually. Administration of lansoprazole to mice inhibited the growth of SSL xenograft whereas the tumor in control mice treated with vehicle alone grew gradually over time. The Ki67 index in xenograft lesions from the lansoprazole group was significantly lower compared with the control group. Cell cycle analysis of SSL-PDOs treated with lansoprazole exhibited a significant increase in G1 phase cell population. Microarray and protein analysis revealed that lansoprazole downregulated Skp2 expression and upregulated p27 expression in SSL-PDOs. CONCLUSIONS Our data strongly suggest that lansoprazole is the most effective chemopreventive agent against SSL, and that lansoprazole induces G1 cell cycle arrest by downregulating Skp2 and upregulating p27 in SSL cells.
Collapse
Affiliation(s)
- Tomoyuki Kawaguchi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shota Fujimoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masahiro Bando
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hironori Wada
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yasushi Sato
- Department of Community Medicine for Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Katsuhisa Horimoto
- Molecular Profiling Research Center for Drug Discovery (Molprof) National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- SOCIUM Inc, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
24
|
van de Weerd S, Torang A, Zwager LW, Koelink PJ, Koster J, Bastiaansen BA, Lammers V, Longobardi C, Roodhart JM, van Krieken JH, Farina Sarasqueta A, Dekker E, Medema JP. Consensus molecular subtype transition during progression of colorectal cancer. J Pathol 2023; 261:298-308. [PMID: 37681286 DOI: 10.1002/path.6176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023]
Abstract
The consensus molecular subtype (CMS) classification divides colorectal cancer (CRC) into four distinct subtypes based on RNA expression profiles. The biological differences between CMSs are already present in CRC precursor lesions, but not all CMSs pose the same risk of malignant transformation. To fully understand the path to malignant transformation and to determine whether CMS is a fixed entity during progression, genomic and transcriptomic data from two regions of the same CRC lesion were compared: the precursor region and the carcinoma region. In total, 24 patients who underwent endoscopic removal of T1-2 CRC were included. Regions were subtyped for CMS and DNA mutation analysis was performed. Additionally, a set of 85 benign adenomas was CMS-subtyped. This analysis revealed that almost all benign adenomas were classified as CMS3 (91.8%). In contrast, CMS2 was the most prevalent subtype in precursor regions (66.7%), followed by CMS3 (29.2%). CMS4 was absent in precursor lesions and originated at the carcinoma stage. Importantly, CMS switching occurred in a substantial number of cases and almost all (six out of seven) CMS3 precursor regions showed a shift to a different subtype in the carcinoma part of the lesion, which in four cases was classified as CMS4. In conclusion, our data indicate that CMS3 is related to a more indolent type of precursor lesion that less likely progresses to CRC and when this occurs, it is often associated with a subtype change that includes the more aggressive mesenchymal CMS4. In contrast, an acquired CMS2 signature appeared to be rather fixed during early CRC development. Combined, our data show that subtype changes occur during progression and that CMS3 switching is related to changes in the genomic background through acquisition of a novel driver mutation (TP53) or selective expansion of a clone, but also occurred independently of such genetic changes. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Simone van de Weerd
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Arezo Torang
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Liselotte W Zwager
- Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Pim J Koelink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Koster
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Barbara Aj Bastiaansen
- Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Veerle Lammers
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ciro Longobardi
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine Ml Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - J Han van Krieken
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Brisset M, Mehlen P, Meurette O, Hollande F. Notch receptor/ligand diversity: contribution to colorectal cancer stem cell heterogeneity. Front Cell Dev Biol 2023; 11:1231416. [PMID: 37860822 PMCID: PMC10582728 DOI: 10.3389/fcell.2023.1231416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Cancer cell heterogeneity is a key contributor to therapeutic failure and post-treatment recurrence. Targeting cell subpopulations responsible for chemoresistance and recurrence seems to be an attractive approach to improve treatment outcome in cancer patients. However, this remains challenging due to the complexity and incomplete characterization of tumor cell subpopulations. The heterogeneity of cells exhibiting stemness-related features, such as self-renewal and chemoresistance, fuels this complexity. Notch signaling is a known regulator of cancer stem cell (CSC) features in colorectal cancer (CRC), though the effects of its heterogenous signaling on CRC cell stemness are only just emerging. In this review, we discuss how Notch ligand-receptor specificity contributes to regulating stemness, self-renewal, chemoresistance and cancer stem cells heterogeneity in CRC.
Collapse
Affiliation(s)
- Morgan Brisset
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Patrick Mehlen
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Olivier Meurette
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Joe S, Kim J, Lee JY, Jeon J, Byeon I, Han SW, Ryoo SB, Park KJ, Song SH, Cho S, Shim H, Chu HBK, Kang J, Lee HS, Kim D, Kim YJ, Kim TY, Kim SY. Epigenetic insights into colorectal cancer: comprehensive genome-wide DNA methylation profiling of 294 patients in Korea. BMB Rep 2023; 56:563-568. [PMID: 37574809 PMCID: PMC10618077 DOI: 10.5483/bmbrep.2023-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 02/16/2025] Open
Abstract
DNA methylation regulates gene expression and contributes to tumorigenesis in the early stages of cancer. In colorectal cancer (CRC), CpG island methylator phenotype (CIMP) is recognized as a distinct subset that is associated with specific molecular and clinical features. In this study, we investigated the genomewide DNA methylation patterns among patients with CRC. The methylation data of 1 unmatched normal, 142 adjacent normal, and 294 tumor samples were analyzed. We identified 40,003 differentially methylated positions with 6,933 (79.8%) hypermethylated and 16,145 (51.6%) hypomethylated probes in the genic region. Hypermethylated probes were predominantly found in promoter-like regions, CpG islands, and N shore sites; hypomethylated probes were enriched in open-sea regions. CRC tumors were categorized into three CIMP subgroups, with 90 (30.6%) in the CIMP-high (CIMP-H), 115 (39.1%) in the CIMP-low (CIMP-L), and 89 (30.3%) in the non-CIMP group. The CIMP-H group was associated with microsatellite instabilityhigh tumors, hypermethylation of MLH1, older age, and rightsided tumors. Our results showed that genome-wide methylation analyses classified patients with CRC into three subgroups according to CIMP levels, with clinical and molecular features consistent with previous data. [BMB Reports 2023; 56(10): 563-568].
Collapse
Affiliation(s)
- Soobok Joe
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jinyong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jin-Young Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jongbum Jeon
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Iksu Byeon
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung-Bum Ryoo
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sheehyun Cho
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyeran Shim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hoang Bao Khanh Chu
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jisun Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hong Seok Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | | | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- LepiDyne Co., Ltd., Seoul 04779, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- IMBdx, Inc., Seoul 08506, Korea
| | - Seon-Young Kim
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
27
|
Joe S, Kim J, Lee JY, Jeon J, Byeon I, Han SW, Ryoo SB, Park KJ, Song SH, Cho S, Shim H, Chu HBK, Kang J, Lee HS, Kim D, Kim YJ, Kim TY, Kim SY. Epigenetic insights into colorectal cancer: comprehensive genome-wide DNA methylation profiling of 294 patients in Korea. BMB Rep 2023; 56:563-568. [PMID: 37574809 PMCID: PMC10618077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023] Open
Abstract
DNA methylation regulates gene expression and contributes to tumorigenesis in the early stages of cancer. In colorectal cancer (CRC), CpG island methylator phenotype (CIMP) is recognized as a distinct subset that is associated with specific molecular and clinical features. In this study, we investigated the genomewide DNA methylation patterns among patients with CRC. The methylation data of 1 unmatched normal, 142 adjacent normal, and 294 tumor samples were analyzed. We identified 40,003 differentially methylated positions with 6,933 (79.8%) hypermethylated and 16,145 (51.6%) hypomethylated probes in the genic region. Hypermethylated probes were predominantly found in promoter-like regions, CpG islands, and N shore sites; hypomethylated probes were enriched in open-sea regions. CRC tumors were categorized into three CIMP subgroups, with 90 (30.6%) in the CIMP-high (CIMP-H), 115 (39.1%) in the CIMP-low (CIMP-L), and 89 (30.3%) in the non-CIMP group. The CIMP-H group was associated with microsatellite instabilityhigh tumors, hypermethylation of MLH1, older age, and rightsided tumors. Our results showed that genome-wide methylation analyses classified patients with CRC into three subgroups according to CIMP levels, with clinical and molecular features consistent with previous data. [BMB Reports 2023; 56(10): 563-568].
Collapse
Affiliation(s)
- Soobok Joe
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jinyong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jin-Young Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jongbum Jeon
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Iksu Byeon
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung-Bum Ryoo
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sheehyun Cho
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyeran Shim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hoang Bao Khanh Chu
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jisun Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hong Seok Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | | | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- LepiDyne Co., Ltd., Seoul 04779, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- IMBdx, Inc., Seoul 08506, Korea
| | - Seon-Young Kim
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
28
|
Utsumi T, Yamada Y, Diaz-Meco MT, Moscat J, Nakanishi Y. Sessile serrated lesions with dysplasia: is it possible to nip them in the bud? J Gastroenterol 2023; 58:705-717. [PMID: 37219625 PMCID: PMC10366009 DOI: 10.1007/s00535-023-02003-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
The serrated neoplasia pathway constitutes an "alternative route" to colorectal cancer (CRC), and sessile serrated lesions with dysplasia (SSLDs) are an intermediate step between sessile serrated lesions (SSLs) and invasive CRC in this pathway. While SSLs show indolent growth before becoming dysplastic (> 10-15 years), SSLDs are considered to rapidly progress to either immunogenic microsatellite instable-high (MSI-H) CRC (presumably 75% of cases) or mesenchymal microsatellite stable (MSS) CRC. Their flat shapes and the relatively short window of this intermediate state make it difficult to detect and diagnose SSLDs; thus, these lesions are potent precursors of post-colonoscopy/interval cancers. Confusing terminology and the lack of longitudinal observation data of serrated polyps have hampered the accumulation of knowledge about SSLDs; however, a growing body of evidence has started to clarify their characteristics and biology. Together with recent efforts to incorporate terminology, histological studies of SSLDs have identified distinct dysplastic patterns and revealed alterations in the tumor microenvironment (TME). Molecular studies at the single-cell level have identified distinct gene alterations in both the epithelium and the TME. Mouse serrated tumor models have demonstrated the importance of TME in disease progression. Advances in colonoscopy provide clues to distinguish pre-malignant from non-malignant-SSLs. Recent progress in all aspects of the field has enhanced our understanding of the biology of SSLDs. The aim of this review article was to assess the current knowledge of SSLDs and highlight their clinical implications.
Collapse
Affiliation(s)
- Takahiro Utsumi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Maria Teresa Diaz-Meco
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Jorge Moscat
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
29
|
Zhong J, Sun Z, Li S, Yang L, Cao Y, Bao J. Immune checkpoint blockade therapy for BRAF mutant metastatic colorectal cancer: the efficacy, new strategies, and potential biomarkers. Discov Oncol 2023; 14:94. [PMID: 37302081 PMCID: PMC10258190 DOI: 10.1007/s12672-023-00718-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
BRAF mutant metastatic colorectal cancer has long been considered a tumor with a poor prognosis and a poor response to chemotherapy. Despite the efficacy of targeted therapy with multi-targeted blockade of the mitogen-activated protein kinase (MAPK) signaling pathway has brought a glimmer of hope to this group of patients, the need to improve treatment efficacy remains unmet, especially for the microsatellite stability/DNA proficient mismatch repair (MSS/pMMR) subtype. BRAF mutant colorectal cancer patients with high microsatellite instability/DNA deficient mismatch repair (MSI-H/dMMR) have high tumor mutation burden and abundant neoantigen, who are deemed as ones that could receive expected efficacy from immunotherapy. Generally, it is believed that MSS/pMMR colorectal cancer is an immunologically "cold" tumor that is insensitive to immunotherapy. However, targeted therapy combined with immune checkpoint blockade therapy seems to bring light to BRAF mutant colorectal cancer patients. In this review, we provide an overview of clinical efficacy and evolving new strategies concerning immune checkpoint blockade therapy for both MSI-H/dMMR and MSS/pMMR BRAF mutant metastatic colorectal cancer and discuss the potential biomarkers in the tumor immune microenvironment for predicting immunotherapeutic response in BRAF mutant colorectal cancer.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Zijian Sun
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Sheng Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Liu Yang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yuepeng Cao
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Jun Bao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
30
|
Matoba H, Iwaya M, Sato Y, Kobayashi N, Takemura H, Kouno Y, Karasawa A, Nakayama J. Increased GS-II lectin binding and SATB2 downregulation are biological features for sessile serrated lesions and microvesicular hyperplastic polyps. Pathol Int 2023; 73:246-254. [PMID: 37036163 PMCID: PMC11551811 DOI: 10.1111/pin.13321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Sessile serrated lesions (SSLs) and microvesicular hyperplastic polyps (MVHPs) are colorectal lesions displaying gastric differentiation. Griffonia simplicifolia-II (GS-II) is a lectin specific to terminal α/βGlcNAc residues. Here, we assessed GS-II binding and performed immunostaining for HIK1083 (specific to terminal αGlcNAc residues), MUC5AC, MUC6, and special AT-rich sequence binding protein 2 (SATB2) in SSLs, MVHPs, and tubular adenomas (TAs). We observed MUC5AC positivity in 28 of 30 SSLs, but in only three of 23 TAs. Moreover, 24 of 30 SSLs were MUC6-positive, while none of the 23 TAs were MUC6-positive. None of the 30 SSLs or 23 TAs showed HIK1083 positivity. All 30 SSLs and 26 MVHPs were GS-II-positive, while only seven of 23 were in TAs. GS-II staining was mainly distributed in the Golgi region, but SSLs and MVHPs showed goblet cell distribution, in 20 of 30 and 19 of 26 cases, respectively. All SSLs, MVHPs, and TAs were SATB2-positive, but 21 of 30 SSLs and 12 of 26 MVHPs showed decreased staining intensity relative to adjacent mucosa, a decrease seen in only two of 23 in TAs. These results indicate overall that increased terminal βGlcNAc and decreased SATB2 expression are characteristics of SSLs and MVHPs.
Collapse
Affiliation(s)
- Hisanori Matoba
- Department of Molecular PathologyShinshu University School of MedicineMatsumotoJapan
| | - Mai Iwaya
- Department of Laboratory Medicine and PathologyShinshu University HospitalMatsumotoJapan
| | - Yoshiko Sato
- Department of Molecular PathologyShinshu University School of MedicineMatsumotoJapan
| | - Noriyasu Kobayashi
- Department of Laboratory MedicineJA North Alps Medical Center Azumi HospitalOaza‐ikedaKitaazumi‐gunJapan
| | - Haruka Takemura
- Department of Laboratory MedicineJA North Alps Medical Center Azumi HospitalOaza‐ikedaKitaazumi‐gunJapan
| | - Yusuke Kouno
- Department of PathologyIna Central HospitalKoshiroukuboInaJapan
| | - Ayumi Karasawa
- Department of PathologyIna Central HospitalKoshiroukuboInaJapan
| | - Jun Nakayama
- Department of Molecular PathologyShinshu University School of MedicineMatsumotoJapan
| |
Collapse
|
31
|
Katagiri A, Suzuki N, Nakatani S, Kikuchi K, Fujiwara T, Gocho T, Konda K, Inoki K, Yamamura F, Yoshida H. Submucosal Injection Using Epinephrine-Added Saline in Cold Snare Polypectomy for Colorectal Polyps Shortens Time Required for Resection: A Randomized Controlled Study. Cureus 2023; 15:e39164. [PMID: 37332405 PMCID: PMC10276175 DOI: 10.7759/cureus.39164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
AIMS Immediate bleeding after cold snare polypectomy (CSP) for colorectal polyps might interfere with confirmation of residuals and prolong the time required for resection. We investigated whether submucosal epinephrine-added saline injection reduces the time required for the CSP procedure. METHODS We conducted a single-center, prospective, randomized controlled trial (clinical trial registration number: UMIN000046770). Patients with colorectal polyps ≤ 10 mm were randomly allocated to either CSP with epinephrine-added submucosal injection (CEMR group) or conventional CSP (CSP group). The primary outcome was the time required for resection defined as the time from the initiation of resection (the first insertion of the snare in the CSP group or the injection needle in the CEMR group) to the end of resection (confirming complete resection endoscopically after recognizing the cessation of immediate bleeding) in each lesion, and the secondary outcome was the time to spontaneous cessation of immediate bleeding after resection defined as the time from ensnaring the lesion to confirming the spontaneous cessation of immediate bleeding. RESULTS A total of 126 patients were randomly assigned. Finally, 261 lesions in 118 patients (CEMR group, n = 59; CSP group, n = 59) were analyzed. The time required for resection calculated using the least-square mean was significantly shorter in the CEMR group (106.3 s, 95% CI 97.5 to 115.4 s) than in the CSP group (130.9 s, 95% CI 121.2 to 140.7 s) (P < 0.001). The time to spontaneous cessation of immediate bleeding was also significantly shorter in the CEMR group (20.4 s, 95% CI 14.3 to 26.5 s) than in the CSP group (74.2 s, 95% CI 67.6 to 80.7 s) (P < 0.001). Neither group had cases requiring hemostasis, perforation, or delayed bleeding. CONCLUSIONS CEMR shortened the time for resection by shortening the time to cessation of immediate bleeding compared with conventional CSP in colorectal polyps ≤ 10 mm.
Collapse
Affiliation(s)
- Atsushi Katagiri
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, JPN
| | - Norihiro Suzuki
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, JPN
| | - Shinya Nakatani
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, JPN
| | - Kazuo Kikuchi
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, JPN
| | - Takahisa Fujiwara
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, JPN
| | - Toshihiko Gocho
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, JPN
| | - Kenichi Konda
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, JPN
| | - Kazuya Inoki
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, JPN
| | - Fuyuhiko Yamamura
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, JPN
| | - Hitoshi Yoshida
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, JPN
| |
Collapse
|
32
|
Kavun A, Veselovsky E, Lebedeva A, Belova E, Kuznetsova O, Yakushina V, Grigoreva T, Mileyko V, Fedyanin M, Ivanov M. Microsatellite Instability: A Review of Molecular Epidemiology and Implications for Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2023; 15:cancers15082288. [PMID: 37190216 DOI: 10.3390/cancers15082288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Microsatellite instability (MSI) is one of the most important molecular characteristics of a tumor, which occurs among various tumor types. In this review article, we examine the molecular characteristics of MSI tumors, both sporadic and Lynch-associated. We also overview the risks of developing hereditary forms of cancer and potential mechanisms of tumor development in patients with Lynch syndrome. Additionally, we summarize the results of major clinical studies on the efficacy of immune checkpoint inhibitors for MSI tumors and discuss the predictive role of MSI in the context of chemotherapy and checkpoint inhibitors. Finally, we briefly discuss some of the underlying mechanisms causing therapy resistance in patients treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Egor Veselovsky
- OncoAtlas LLC, 119049 Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, 119049 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olesya Kuznetsova
- OncoAtlas LLC, 119049 Moscow, Russia
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
| | - Valentina Yakushina
- OncoAtlas LLC, 119049 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, 119049 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Mikhail Fedyanin
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
- State Budgetary Institution of Health Care of the City of Moscow "Moscow Multidisciplinary Clinical Center" "Kommunarka" of the Department of Health of the City of Moscow, 142770 Moscow, Russia
- Federal State Budgetary Institution "National Medical and Surgical Center named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, 105203 Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, 119049 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
33
|
Chopra H, Goyal R, Baig AA, Arora S, Dua K, Gautam RK. Synbiotics in Colon Cancer. SYNBIOTICS FOR THE MANAGEMENT OF CANCER 2023:115-133. [DOI: 10.1007/978-981-19-7550-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
34
|
Chandan S, Bapaye J, Ramai D, Facciorusso A. Surveillance Colonoscopy After Polypectomy—Current Evidence and Future Directions. TECHNIQUES AND INNOVATIONS IN GASTROINTESTINAL ENDOSCOPY 2023; 25:269-283. [DOI: 10.1016/j.tige.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
35
|
Oh SJ, Kim JW, Oh CH. Sessile serrated lesion presenting as large pedunculated polyp in the rectum: A case report. Medicine (Baltimore) 2022; 101:e32287. [PMID: 36595848 PMCID: PMC9794319 DOI: 10.1097/md.0000000000032287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE Sessile serrated lesions (SSLs) are serrated polyps (SP) with the typical serrated architecture of the crypt lining epithelium. SSL has an important clinical implication because they are recognized as precursor lesion of sporadic colorectal cancer (CRC) through "serrated pathway." SSLs usually appear flat to sessile, and are located in the right colon. PATIENT CONCERNS A 69-year-old man was referred to a tertiary medical center because of intermittent hematochezia for 2 years. DIAGNOSIS Colonoscopy revealed a large, pedunculated polyp in the rectum. The polyp surface was slightly reddish in color and the elongated stalk was covered with almost normal mucosa. Histopathological examination of the resected specimens revealed the typical features of SSL with low-grade dysplasia. INTERVENTION Endoscopic mucosal resection using a detachable snare was performed on the tumor for definite diagnosis and treatment. OUTCOMES There was no evidence of immediate or delayed bleeding after endoscopic mucosal resection, and the hemoglobin level normalized after a 1-year follow-up. LESSONS We report a rare case of a large pedunculated polyp with typical histological features of SSLs in the rectum. Endoscopists should always consider SSLs at any location even with unusual morphological findings.
Collapse
Affiliation(s)
- Shin Ju Oh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, Korea
| | - Jung-Wook Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, Korea
| | - Chi Hyuk Oh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, Korea
- *Correspondence: Chi Hyuk Oh, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyung Hee University College of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea (e-mail: )
| |
Collapse
|
36
|
Recent and Future Strategies to Overcome Resistance to Targeted Therapies and Immunotherapies in Metastatic Colorectal Cancer. J Clin Med 2022; 11:jcm11247523. [PMID: 36556139 PMCID: PMC9783354 DOI: 10.3390/jcm11247523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide, and 20% of patients with CRC present at diagnosis with metastases. The treatment of metastatic CRC is based on a fluoropyrimidine-based chemotherapy plus additional agents such as oxaliplatin and irinotecan. To date, on the basis of the molecular background, targeted therapies (e.g., monoclonal antibodies against epidermal growth factor receptor or inhibiting angiogenesis) are administered to improve the treatment of metastatic CRC. In addition, more recently, immunological agents emerged as effective in patients with a defective mismatch repair system. The administration of targeted therapies and immunotherapy lead to a significant increase in the survival of patients; however these drugs do not always prove effective. In most cases the lack of effectiveness is due to the development of primary resistance, either a resistance-inducing factor is already present before treatment or resistance is acquired when it occurs after treatment initiation. In this review we describe the most relevant targeted therapies and immunotherapies and expand on the reasons for resistance to the different approved or under development targeted drugs. Then we showed the possible mechanisms and drugs that may lead to overcoming the primary or acquired resistance in metastatic CRC.
Collapse
|
37
|
Crutcher M, Waldman S. Biomarkers in the development of individualized treatment regimens for colorectal cancer. Front Med (Lausanne) 2022; 9:1062423. [DOI: 10.3389/fmed.2022.1062423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionColorectal cancer (CRC) is the third most common and second most deadly malignancy in the world with an estimated 1. 9 million cases and 0.9 million deaths in 2020. The 5-year overall survival for stage I disease is 92% compared to a dismal 11% in stage IV disease. At initial presentation, up to 35% of patients have metastatic colorectal cancer (mCRC), and 20–50% of stage II and III patients eventually progress to mCRC. These statistics imply both that there is a proportion of early stage patients who are not receiving adequate treatment and that we are not adequately treating mCRC patients.BodyTargeted therapies directed at CRC biomarkers are now commonly used in select mCRC patients. In addition to acting as direct targets, these biomarkers also could help stratify which patients receive adjuvant therapies and what types. This review discusses the role of RAS, microsatellite instability, HER2, consensus molecular subtypes and ctDNA/CTC in targeted therapy and adjuvant chemotherapy.DiscussionGiven the relatively high recurrence rate in early stage CRC patients as well as the continued poor survival in mCRC patients, additional work needs to be done beyond surgical management to limit recurrence and improve survival. Biomarkers offer both a potential target and a predictive method of stratifying patients to determine those who could benefit from adjuvant treatment.
Collapse
|
38
|
Hidaka M, Iwaizumi M, Taniguchi T, Baba S, Osawa S, Sugimoto K, Maekawa M. Pure somatic pathogenic variation profiles for patients with serrated polyposis syndrome: a case series. BMC Res Notes 2022; 15:350. [PMID: 36419139 PMCID: PMC9682711 DOI: 10.1186/s13104-022-06245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The serrated pathway is a distinct genetic/epigenetic mechanism of the adenoma-carcinoma sequence in colorectal carcinogenesis. Although many groups have reported the genetic-phenotypic correlation of serrated lesions (SLs), previous studies regarding the serrated pathway were conducted on patients with SLs that have different germline and environmental genetic backgrounds. We aimed to compare pure somatic genetic profiles among SLs within identical patient with SPS. RESULTS We analyzed SLs from one patient with SPS (Case #1) and compared DNA variant profiles using targeted DNA multigene panels via NGS among the patient's hyperplastic polyp (HP), three sessile serrated lesions (SSLs), and one traditional serrated adenoma (TSA), and separately analyzed three SSLs and one tubular adenoma (TA) within another patient with SPS (Case #2). In two patients, known pathogenic variant of BRAF (c.1799 T > A, p.Val600Glu) was observed in one TSA and one SSL in Case #1, and in three SSLs within Case #2. The pure somatic pathogenic variant BRAF (c.1799 T > A, p.Val600Glu) among SLs with identical germline genetic background supports its importance as a strong contributor for SLs.
Collapse
Affiliation(s)
- Misaki Hidaka
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
| | - Moriya Iwaizumi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan.
| | - Terumi Taniguchi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University Hospital, Hamamatsu, Japan
| | - Satoshi Osawa
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University of School of Medicine, Hamamatsu, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
39
|
van der Vlugt M, Carvalho B, Fliers J, Montazeri N, Rausch C, Grobbee EJ, Engeland MV, Spaander MCW, Meijer GA, Dekker E. Missed colorectal cancers in a fecal immunochemical test-based screening program: Molecular profiling of interval carcinomas. World J Gastrointest Oncol 2022; 14:2195-2207. [PMID: 36438700 PMCID: PMC9694267 DOI: 10.4251/wjgo.v14.i11.2195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND For optimizing fecal immunochemical test (FIT)-based screening programs, reducing the rate of missed colorectal cancers (CRCs) by FIT (FIT-interval CRCs) is an important aspect. Knowledge of the molecular make-up of these missed lesions could facilitate more accurate detection of all (precursor) lesions.
AIM To compare the molecular make-up of FIT-interval CRCs to lesions that are detected by FIT [screen-detected CRCs (SD-CRCs)].
METHODS FIT-interval CRCs observed in a Dutch pilot-program of FIT-based screening were compared to a control group of SD-CRCs in a 1:2 ratio, resulting in 27 FIT-interval CRC and 54 SD-CRCs. Molecular analyses included microsatellite instability (MSI), CpG island methylator phenotype (CIMP), DNA sequence mutations and copy number alterations (CNAs).
RESULTS Although no significant differences were reached, FIT-interval CRCs were more often CIMP positive and MSI positive (33% CIMP in FIT-interval CRCs vs 21% in SD-CRCs (P = 0.274); 19% MSI in FIT-interval CRCs vs 12% in SD-CRCs (P = 0.469)), and showed more often serrated pathway associated features such as BRAF (30% vs 12%, P = 0.090) and PTEN (15% vs 2.4%, P = 0.063) mutations. APC mutations, a classic feature of the adenoma-carcinoma-sequence, were more abundant in SD-CRCs (68% vs 40% in FIT-interval CRCs P = 0.035). Regarding CNAs differences between the two groups; FIT-interval CRCs less often showed gains at the regions 8p11.22-q24.3 (P = 0.009), and more often gains at 20p13-p12.1 (P = 0.039).
CONCLUSION Serrated pathway associated molecular features seem to be more common in FIT-interval CRCs, while classic adenoma carcinoma pathway associated molecular features seem to be more common in SD-CRCs. This indicates that proximal serrated lesions may be overrepresented among FIT-interval CRCs.
Collapse
Affiliation(s)
- Manon van der Vlugt
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam 1105 AZ, Netherlands
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Joelle Fliers
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam 1105 AZ, Netherlands
| | - Nahid Montazeri
- Biostatistics Unit, Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam 1105 AZ, Netherlands
| | - Christian Rausch
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Esmée J Grobbee
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam 3015 CN, Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6202 AZ, Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam 3015 CN, Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam 1105 AZ, Netherlands
| |
Collapse
|
40
|
Murakami T, Kamba E, Nomura K, Kurosawa T, Haga K, Fukushima H, Takeda T, Shibuya T, Yao T, Nagahara A. Linked color imaging improves visibility of colorectal serrated lesion by high color contrast to surrounding mucosa. Dig Endosc 2022; 34:1422-1432. [PMID: 35689542 DOI: 10.1111/den.14374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES This study aimed to objectively evaluate the efficacy of linked color imaging (LCI) in diagnosing colorectal serrated lesions by utilizing visibility scores and color differences. METHODS We examined 89 serrated lesions, including 36 hyperplastic polyps (HPs), 47 sessile serrated lesions (SSLs), and six traditional serrated adenomas (TSAs). Visibility changes were scored by six endoscopists as follows: 4, excellent; 3, good; 2, fair; and 1, poor. Furthermore, images obtained by white-light imaging (WLI) or LCI were assessed using the CIELAB color space in the lesion and adjacent mucosa. We calculated the mean color values (L*, a*, and b*) measured at five regions of interest of the sample lesion and surrounding mucosa and derived the color difference (ΔE*). RESULTS The visibility scores of both HPs and SSLs in LCI were significantly higher than that in WLI (HPs, 3.67/2.89, P < 0.001; SSLs, 3.07/2.36, P < 0.001). Furthermore, SSLs showed a significantly higher L* value and significantly lower a* and b* values in LCI than the adjacent mucosae (L*, 61.76/58.23, P = 0.016; a*, 14.91/17.58, P = 0.019; b*, 20.42/24.21, P = 0.007), while WLI produced no significant difference in any color value. A similar trend was apparent in HPs. In all serrated groups, LCI revealed significantly greater ΔE* values between the lesion and adjacent mucosa than WLI (HPs, 11.54/6.12; SSLs, 13.43/7.67; TSAs, 35.00/22.48). CONCLUSION Linked color imaging showed higher color contrast between serrated lesions and the surrounding mucosae compared with WLI, indicating improved visibility of colorectal serrated lesion using LCI.
Collapse
Affiliation(s)
- Takashi Murakami
- Departments of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Eiji Kamba
- Departments of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Nomura
- Departments of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taro Kurosawa
- Departments of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Keiichi Haga
- Departments of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirofumi Fukushima
- Departments of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tsutomu Takeda
- Departments of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoyoshi Shibuya
- Departments of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Yao
- Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akihito Nagahara
- Departments of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Crutcher MM, Snook AE, Waldman SA. Overview of predictive and prognostic biomarkers and their importance in developing a clinical pharmacology treatment plan in colorectal cancer patients. Expert Rev Clin Pharmacol 2022; 15:1317-1326. [PMID: 36259230 PMCID: PMC9847576 DOI: 10.1080/17512433.2022.2138339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/14/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide. Although overall survival for CRC patients has improved with earlier screening, survival continues to vary substantially across stages. Also, while the introduction of targeted therapies, including VEGF and EGFR inhibitors, has contributed to improving survival, better tools are needed to optimize patient selection and maximize therapeutic benefits. Emerging biomarkers can be used to guide pharmacologic decision-making, as well as monitor treatment response, clarify the need for adjuvant therapies, and indicate early signs of recurrence. This is a narrative review examining the current and evolving use of predictive and prognostic biomarkers in colorectal cancer. AREAS COVERED Areas covered include mutations of the MAPK (KRAS, BRAF) and HER2 pathways and their impacts on treatment decisions. In addition, novel methods for assessing tumor mutations and tracking treatment responses are examined. EXPERT OPINION The standard of care pathway for staging, and treatment selection and surveillance, of CRC will expand to include novel biomarkers in the next 5 years. It is anticipated that these new biomarkers will assist in decision-making regarding selection of targeted therapies and, importantly, in risk stratification for treatment decisions in patients at high risk for recurrence.
Collapse
Affiliation(s)
| | - Adam E. Snook
- Departmnet of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Scott A. Waldman
- Departmnet of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
42
|
Murakami T, Kurosawa T, Fukushima H, Shibuya T, Yao T, Nagahara A. Sessile serrated lesions: Clinicopathological characteristics, endoscopic diagnosis, and management. Dig Endosc 2022; 34:1096-1109. [PMID: 35352394 DOI: 10.1111/den.14273] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 02/08/2023]
Abstract
The 2019 World Health Organization (WHO) Classification of Tumours of the Digestive System (5th edition) introduced the term "sessile serrated lesion" (SSL) to replace the term "sessile serrated adenoma/polyp" (SSA/P). SSLs are early precursor lesions in the serrated neoplasia pathway that result in colorectal carcinomas with BRAF mutations, methylation for DNA repair genes, a CpG island methylator phenotype, and high levels of microsatellite instability. Some of these lesions can rapidly become dysplastic or invasive carcinomas that exhibit high lymphatic invasion and lymph node metastasis potential. The 2019 WHO classification noted that dysplasia arising in an SSL most likely is an advanced polyp, regardless of the morphologic grade of the dysplasia. Detecting SSLs with or without dysplasia is critical; however, detection of SSLs is challenging, and their identification by endoscopists and pathologists is inconsistent. Furthermore, indications for their endoscopic treatment have not been established. Moreover, SSLs are considered to contribute to the development of post-colonoscopy colorectal cancers. Herein, the clinicopathological and endoscopic characteristics of SSLs, including features determined using white light and image-enhanced endoscopy, therapeutic indications, therapeutic methods, and surveillance are reviewed based on the literature. This information may lead to more intensive research to improve detection, diagnosis, and rates of complete resection of these lesions and reduce post-colonoscopy colorectal cancer rates.
Collapse
Affiliation(s)
- Takashi Murakami
- Departments of 1Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taro Kurosawa
- Departments of 1Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirofumi Fukushima
- Departments of 1Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoyoshi Shibuya
- Departments of 1Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Yao
- Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akihito Nagahara
- Departments of 1Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Zheng Y, Zhao Y, Jiang J, Zou B, Dong L. Transmembrane Protein 100 Inhibits the Progression of Colorectal Cancer by Promoting the Ubiquitin/Proteasome Degradation of HIF-1α. Front Oncol 2022; 12:899385. [PMID: 35928881 PMCID: PMC9343598 DOI: 10.3389/fonc.2022.899385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Transmembrane protein 100 (TMEM100) is involved in embryonic cardiovascular system development. However, the biological role of TMEM100 in human cancers, particularly colorectal cancer (CRC), is unclear. In this study, tissue microarrays were stained using immunohistochemistry methods to evaluate the association between TMEM100 levels and clinic-pathological features for CRC. Kaplan-Meier and log-rank tests revealed that decreased levels of TMEM100 correlated with shorter overall survival. Cox regression revealed that reduced levels of TMEM100 was an independent prognostic factor for detrimental survival in CRC. A lentiviral vector was used to overexpress TMEM100 in HCT116 cells, and small interfering RNA was used to knockdown TMEM100 in SW480 cells. The CCK-8 assay, colony formation analysis, cell cycle analysis, cell migration assay, mouse xenograft model and mouse lung metastasis model showed that TMEM100 suppressed CRC cell proliferation and migration in vitro and in vivo. IHC scores of TMEM100 and HIF-1α were significantly negatively correlated. A half-time determination analysis in which cells were treated with cycloheximide revealed that TMEM100 shortened the HIF-1α half-life. Further immunoprecipitation experimental results showed that TMEM100 promoted the ubiquitination of HIF-1α, which caused HIF-1α degradation via the 26S proteasome pathway. Angiogenesis assay and migration assay results revealed that TMEM100 suppressed the migration and angiogenesis induction capacities of HCT116 cells, but this inhibitory effect was abolished when HIF-1α degradation was blocked by MG132 treatment. These results indicated that TMEM100 inhibited the migration and the angiogenesis induction capacities of CRC cells by enhancing HIF-1α degradation via ubiquitination/proteasome pathway.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yitong Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiong Jiang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Baicang Zou
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
44
|
Bell PD, Pai RK. Immune Response in Colorectal Carcinoma: A Review of Its Significance as a Predictive and Prognostic Biomarker. Histopathology 2022; 81:696-714. [PMID: 35758208 DOI: 10.1111/his.14713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Colorectal carcinoma is a leading cause of cancer-related death worldwide. There is significant prognostic heterogeneity in stage II and III tumours, necessitating the development of new biomarkers to better identify patients at risk of disease progression. Recently, the tumour immune environment, particularly the type and quantity of T lymphocytes, has been shown to be a useful biomarker in predicting prognosis for patients with colorectal carcinoma. In this review, the significance of the immune response in colorectal carcinoma, including its influence on prognosis and response to therapy, will be detailed.
Collapse
Affiliation(s)
- Phoenix D Bell
- Department of Pathology, University of Pittsburgh Medical Centre, Pittsburgh, PA, 15213, USA
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Centre, Pittsburgh, PA, 15213, USA
| |
Collapse
|
45
|
Fennell L, Kane A, Liu C, McKeone D, Hartel G, Su C, Bond C, Bettington M, Leggett B, Whitehall V. Braf mutation induces rapid neoplastic transformation in the aged and aberrantly methylated intestinal epithelium. Gut 2022; 71:1127-1140. [PMID: 34230216 PMCID: PMC9120393 DOI: 10.1136/gutjnl-2020-322166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/30/2021] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Sessile serrated lesions (SSLs) are common across the age spectrum, but the BRAF mutant cancers arising occur predominantly in the elderly. Aberrant DNA methylation is uncommon in SSL from young patients. Here, we interrogate the role of ageing and DNA methylation in SSL initiation and progression. DESIGN We used an inducible model of Braf mutation to direct recombination of the oncogenic Braf V637E allele to the murine intestine. BRAF mutation was activated after periods of ageing, and tissue was assessed for histological, DNA methylation and gene expression changes thereafter. We also investigated DNA methylation alterations in human SSLs. RESULTS Inducing Braf mutation in aged mice was associated with a 10-fold relative risk of serrated lesions compared with young mice. There were extensive differences in age-associated DNA methylation between animals induced at 9 months versus wean, with relatively little differential Braf-specific methylation. DNA methylation at WNT pathway genes scales with age and Braf mutation accelerated age-associated DNA methylation. In human SSLs, increased epigenetic age was associated with high-risk serrated colorectal neoplasia. CONCLUSIONS SSLs arising in the aged intestine are at a significantly higher risk of spontaneous neoplastic progression. These findings provide support for a new conceptual model for serrated colorectal carcinogenesis, whereby risk of Braf-induced neoplastic transformation is dependent on age and may be related to age-associated molecular alterations that accumulate in the ageing intestine, including DNA methylation. This may have implications for surveillance and chemopreventive strategies targeting the epigenome.
Collapse
Affiliation(s)
- Lochlan Fennell
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Alexandra Kane
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
- Conjoint Internal Medical Laboratory, Chemical Pathology, Health Support Queensland Pathology Queensland, Herston, Queensland, Australia
| | - Cheng Liu
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Diane McKeone
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Gunter Hartel
- Statistics Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Chang Su
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Catherine Bond
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Mark Bettington
- Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Barbara Leggett
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
- Department of Gastroenterology and Hepatology, The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Vicki Whitehall
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
- Conjoint Internal Medical Laboratory, Chemical Pathology, Health Support Queensland Pathology Queensland, Herston, Queensland, Australia
| |
Collapse
|
46
|
Gentilini F, Palgrave CJ, Neta M, Tornago R, Furlanello T, McKay JS, Sacchini F, Turba ME. Validation of a Liquid Biopsy Protocol for Canine BRAFV595E Variant Detection in Dog Urine and Its Evaluation as a Diagnostic Test Complementary to Cytology. Front Vet Sci 2022; 9:909934. [PMID: 35711804 PMCID: PMC9195143 DOI: 10.3389/fvets.2022.909934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
A significant proportion of canine urothelial carcinomas carry the driver valine to glutamic acid variation (V595E) in BRAF kinase. The detection of V595E may prove suitable to guide molecularly targeted therapies and support non-invasive diagnosis of the urogenital system by means of a liquid biopsy approach using urine. Three cohorts and a control group were included in this multi-step validation study which included setting up a digital PCR assay. This was followed by investigation of preanalytical factors and two alternative PCR techniques on a liquid biopsy protocol. Finally, a blind study using urine as diagnostic sample has been carried out to verify its suitability as diagnostic test to complement cytology. The digital PCR (dPCR) assay proved consistently specific, sensitive, and linear. Using the dPCR assay, the prevalence of V595E in 22 urothelial carcinomas was 90.9%. When compared with histopathology as gold standard in the blind-label cases, the diagnostic accuracy of using the canine BRAF (cBRAF) variation as a surrogate assay against the histologic diagnosis was 85.7% with 92.3% positive predictive value and 80.0% negative predictive value. In all the cases, in which both biopsy tissue and the associated urine were assayed, the findings matched completely. Finally, when combined with urine sediment cytology examination in blind-label cases with clinical suspicion of malignancy, the dPCR assay significantly improved the overall diagnostic accuracy. A liquid biopsy approach on urine using the digital PCR may be a valuable breakthrough in the diagnostic of urothelial carcinomas in dogs.
Collapse
Affiliation(s)
- Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | | | - Michal Neta
- IDEXX Laboratories Ltd., Wetherby, West Yorkshire, United Kingdom
| | - Raimondo Tornago
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | | | - Jennifer S McKay
- IDEXX Laboratories Ltd., Wetherby, West Yorkshire, United Kingdom
| | | | | |
Collapse
|
47
|
KARAYİĞİT A, ÖZDEMİR DB, DİZEN H, ÜNAL B, OZER İ, ULAŞ M. Role of red cell dstribution width in colorectal cancer diagnosis and prognosis. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective: We aimed to assess whether red cell distribution width (RDW) was associated with pre-operative clinical features or post-operative clinicopathological outcomes in patients with colorectal cancer (CRC), and to determine the utility of RDW as a diagnostic or prognostic marker of CRC.
Material and Method: This retrospective cohort study was conducted between January 2018 and May 2021 at a university hospital in Turkey. A total of 188 patients histologically diagnosed with CRC who had undergone surgery were included in the study.
Results: Our study included 118 (62.77%) male patients, and the mean age of the patients was 66.28±11.71 years. We found that RDW values were significantly higher in females compared to males (p=0.033), in patients with T3 or T4 tumors compared to those with T1 or T2 tumors (p
Collapse
Affiliation(s)
- Ahmet KARAYİĞİT
- ADANA ŞEHİR EĞİTİM VE ARAŞTIRMA HASTANESİ, CERRAHİ ONKOLOJİ KLİNİĞİ
| | | | | | - Bülent ÜNAL
- ISTANBUL AYDIN UNIVERSITY, SCHOOL OF MEDICINE
| | - İlter OZER
- ESKISEHIR OSMANGAZI UNIVERSITY, SCHOOL OF MEDICINE, DEPARTMENT OF SURGICAL MEDICAL SCIENCES, DEPARTMENT OF GENERAL SURGERY, SURGICAL ONCOLOGY (MEDICINE)
| | - Murat ULAŞ
- ESKISEHIR OSMANGAZI UNIVERSITY, SCHOOL OF MEDICINE, DEPARTMENT OF SURGICAL MEDICAL SCIENCES, DEPARTMENT OF GENERAL SURGERY, SURGICAL ONCOLOGY (MEDICINE)
| |
Collapse
|
48
|
Chu JE, Hamm J, Gentile L, Telford JJ, Schaeffer DF. Serrated Lesion Detection in a Population-based Colon Screening Program. J Clin Gastroenterol 2022; 56:243-248. [PMID: 33780220 DOI: 10.1097/mcg.0000000000001519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/28/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND Serrated lesions give rise to 15% to 30% of all colorectal cancers, driven predominantly by the sessile serrated polyp (SSP). Fecal immunochemical test (FIT), has low sensitivity for SSPs. SSP detection rate (SSPDR) is influenced by performance of both endoscopists and pathologists, as diagnosis can be subtle both on endoscopy and histology. GOALS To evaluate the SSPDR in a population-based screening program, and the influence of subspecialty trained pathologists on provincial reporting practices. STUDY The colon screening program database was used to identify all FIT-positive patients that received colonoscopy between January 2014 and June 2017. Patient demographics, colonoscopy quality indicators, pathologic diagnoses, and FIT values were collected. This study received IRB approval. RESULTS A total of 74,605 colonoscopies were included and 26.6% had at least 1 serrated polyp removed. The SSPDR was 7.0%, with 59% of the SSPs detected having a concurrent conventional adenoma. The mean FIT value for colonoscopies with only serrated lesions was less than that for colonoscopies with a conventional adenoma or colorectal cancer (P<0.0001). Centers with a gastrointestinal subspecialty pathologist diagnosed proportionally more SSPs (P<0.0001), and right-sided SSPs than centers without subspecialists. CONCLUSIONS Serrated lesions often occur in conjunction with conventional adenomas and are associated with lower FIT values. Knowledge of the characteristics of SSPs is essential for pathologists to ensure accurate diagnosis of SSPs.
Collapse
Affiliation(s)
- Jenny E Chu
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital
| | | | | | - Jennifer J Telford
- BC Cancer
- Division of Gastroenterology, University of British Columbia, Vancouver, BC, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital
- BC Cancer
| |
Collapse
|
49
|
Chezar K, Minoo P. Appendiceal sessile serrated lesions are distinct from their right-sided colonic counterparts and may be precursors for appendiceal mucinous neoplasms. Hum Pathol 2022; 122:40-49. [PMID: 35121004 DOI: 10.1016/j.humpath.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Abstract
Low-grade appendiceal mucinous neoplasms (LAMNs) can occur concurrently with appendiceal sessile serrated lesions (SSLs). To interrogate relatedness, we performed multigene and immunohistochemical characterizations of paired and unpaired SSLs and LAMNs. We evaluated 62 serrated lesions from 50 appendectomy specimens for hotspot mutations in BRAF, KRAS and GNAS genes. Cases were subdivided into 3 groups: 20 unpaired SSLs, 18 unpaired LAMNs, and 12 with an SSL and concurrent LAMN. β-catenin and Annexin A10 immunostaining were performed on the SSL and LAMN components in the 12 paired cases, and fourteen colonic SSLs served as controls. There was no significant difference in KRAS hotspot mutation rates in appendiceal SSLs (17/26; 65.4%) and LAMNs (16/30; 53.3%) (p=0.42). BRAF V600E was identified in a single case (1/50; 2.0%) of SSL and concurrent LAMN (p=1.0). Mutations in GNAS were more common in LAMNs (6/30; 20.0%) compared to SSLs (1/31; 3.2%) (p=0.05). The molecular genotypes between paired SSLs and LAMNs were concordant in most cases (10/12; 83.3%). Annexin A10 immunostaining was significantly greater in colonic SSLs (14/14; 100%) compared to appendiceal SSLs (1/12; 8.3%) (p<0.0001). β-catenin immunostaining was significantly increased in LAMNs (10/12; 83.3%) compared to their paired appendiceal SSLs (2/12; 16.7%)(p=0.003). Overall, appendiceal sessile serrated lesions are predominantly driven by KRAS mutations and are not characterized by Annexin A10 immunostaining. Our data suggests that at least a subset of LAMNs may arise from a precursor SSL in which GNAS mutations and/or upregulation of the WNT-signaling pathway are likely key events modulating this progression.
Collapse
Affiliation(s)
- Ksenia Chezar
- Department of Pathology, Cumming School of Medicine and Alberta Precision Laboratories, University of Calgary, Calgary, Alberta, Canada
| | - Parham Minoo
- Department of Pathology, Cumming School of Medicine and Alberta Precision Laboratories, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
50
|
van Toledo DEFWM, IJspeert JEG, Dekker E. Current Approaches in Managing Colonic Serrated Polyps and Serrated Polyposis. Annu Rev Med 2022; 73:293-306. [PMID: 35084990 DOI: 10.1146/annurev-med-042220-024703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For decades, conventional adenomas were the only known precursor lesions of colorectal cancer (CRC). Accordingly, education and research regarding CRC prevention were mainly focused on adenomas. The groundbreaking discovery that serrated polyps (SPs) also have the potential to develop into CRCs, and seem to account for a considerable proportion of sporadic CRCs, has led to a paradigm shift in the prevention, diagnosis, and treatment of CRC. Studies in recent years have led to our current understanding of SPs and associated CRC, but a lot of work is still to be done to further improve knowledge about this serrated neoplasia pathway and the clinical management of SPs and serrated polyposis syndrome (SPS). In this review, we reflect on the current understanding of SPs with respect to terminology, detection, resection, and surveillance and reflect on the management of SPS.
Collapse
Affiliation(s)
- David E F W M van Toledo
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; , ,
| | - Joep E G IJspeert
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; , ,
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; , ,
| |
Collapse
|