1
|
Zhu R, Eason K, Chin SF, Edwards PAW, Manzano Garcia R, Moulange R, Pan JW, Teo SH, Mukherjee S, Callari M, Caldas C, Sammut SJ, Rueda OM. Detecting homologous recombination deficiency for breast cancer through integrative analysis of genomic data. Mol Oncol 2025. [PMID: 40260608 DOI: 10.1002/1878-0261.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/25/2025] [Accepted: 03/30/2025] [Indexed: 04/23/2025] Open
Abstract
Homologous recombination deficiency (HRD) leads to genomic instability, and patients with HRD can benefit from HRD-targeting therapies. Previous studies have primarily focused on identifying HRD biomarkers using data from a single technology. Here we integrated features from different genomic data types, including total copy number (CN), allele-specific copy number (ASCN) and single nucleotide variants (SNV). Using a semi-supervised method, we developed HRD classifiers from 1404 breast tumours across two datasets based on their BRCA1/2 status, demonstrating improved HRD identification when aggregating different data types. Notably, HRD-positive tumours in ER-negative disease showed improved survival post-adjuvant chemotherapy, while HRD status strongly correlated with neoadjuvant treatment response. Furthermore, our analysis of cell lines highlighted a sensitivity to PARP inhibitors, particularly rucaparib, among predicted HRD-positive lines. Exploring somatic mutations outside BRCA1/2, we confirmed variants in several genes associated with HRD. Our method for HRD classification can adapt to different data types or resolutions and can be used in various scenarios to help refine patient selection for HRD-targeting therapies that might lead to better clinical outcomes.
Collapse
Affiliation(s)
- Rong Zhu
- School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, China
- MRC Biostatistics Unit, University of Cambridge, UK
| | - Katherine Eason
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | | | | | | | | | | | - Sach Mukherjee
- MRC Biostatistics Unit, University of Cambridge, UK
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- University of Bonn, Bonn, Germany
| | | | - Carlos Caldas
- School of Clinical Medicine, University of Cambridge, UK
| | - Stephen-John Sammut
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | | |
Collapse
|
2
|
Nabeel Mustafa A, Salih Mahdi M, Ballal S, Chahar M, Verma R, Ali Al-Nuaimi AM, Kumar MR, Kadhim A Al-Hussein R, Adil M, Jasem Jawad M. Netrin-1: Key insights in neural development and disorders. Tissue Cell 2025; 93:102678. [PMID: 39719818 DOI: 10.1016/j.tice.2024.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors. By directing axonal growth cones toward the appropriate targets, netrin-1 is a critical actor in the formation of the intricate architecture of the nervous system. Netrin-1 is believed to be involved in additional biological and pathological processes in addition to its traditional function in neural development. The behavior of a diverse array of cell types is influenced by controlling cell adhesion and movement, which is impacted by netrin-1. It is a molecule of interest in both developmental biology and clinical research because of its involvement in angiogenesis, tumorigenesis, inflammation, and tissue regeneration, as confirmed by recent studies. The therapeutic capability of netrin-1 in disorders such as cancer, neurodegenerative disorders, and cardiovascular diseases warrants significant attention.
Collapse
Affiliation(s)
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bengaluru, Karnataka, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, Rajasthan, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | | | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | | | | | | |
Collapse
|
3
|
Perampalam P, MacDonald JI, Zakirova K, Passos DT, Wasif S, Ramos-Valdes Y, Hervieu M, Mehlen P, Rottapel R, Gibert B, Correa RJM, Shepherd TG, Dick FA. Netrin signaling mediates survival of dormant epithelial ovarian cancer cells. eLife 2024; 12:RP91766. [PMID: 39023520 PMCID: PMC11257678 DOI: 10.7554/elife.91766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Dormancy in cancer is a clinical state in which residual disease remains undetectable for a prolonged duration. At a cellular level, rare cancer cells cease proliferation and survive chemotherapy and disseminate disease. We created a suspension culture model of high-grade serous ovarian cancer (HGSOC) dormancy and devised a novel CRISPR screening approach to identify survival genes in this context. In combination with RNA-seq, we discovered the Netrin signaling pathway as critical to dormant HGSOC cell survival. We demonstrate that Netrin-1, -3, and its receptors are essential for low level ERK activation to promote survival, and that Netrin activation of ERK is unable to induce proliferation. Deletion of all UNC5 family receptors blocks Netrin signaling in HGSOC cells and compromises viability during the dormancy step of dissemination in xenograft assays. Furthermore, we demonstrate that Netrin-1 and -3 overexpression in HGSOC correlates with poor outcome. Specifically, our experiments reveal that Netrin overexpression elevates cell survival in dormant culture conditions and contributes to greater spread of disease in a xenograft model of abdominal dissemination. This study highlights Netrin signaling as a key mediator HGSOC cancer cell dormancy and metastasis.
Collapse
Affiliation(s)
- Pirunthan Perampalam
- London Regional Cancer Program, London Health Sciences Centre Research InstituteLondonCanada
- Department of Biochemistry, University of Western OntarioLondonCanada
| | - James I MacDonald
- London Regional Cancer Program, London Health Sciences Centre Research InstituteLondonCanada
- Department of Pathology and Laboratory Medicine, University of Western OntarioLondonCanada
| | - Komila Zakirova
- London Regional Cancer Program, London Health Sciences Centre Research InstituteLondonCanada
- Department of Pathology and Laboratory Medicine, University of Western OntarioLondonCanada
| | - Daniel T Passos
- London Regional Cancer Program, London Health Sciences Centre Research InstituteLondonCanada
- Department of Pathology and Laboratory Medicine, University of Western OntarioLondonCanada
| | - Sumaiyah Wasif
- London Regional Cancer Program, London Health Sciences Centre Research InstituteLondonCanada
- Department of Pathology and Laboratory Medicine, University of Western OntarioLondonCanada
| | - Yudith Ramos-Valdes
- London Regional Cancer Program, London Health Sciences Centre Research InstituteLondonCanada
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer ProgramLondonCanada
| | - Maeva Hervieu
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon BérardLyonFrance
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon BérardLyonFrance
- Netris PharmaLyonFrance
| | - Rob Rottapel
- Princess Margaret Cancer Centre, University Health NetworkTorontoCanada
- Department of Medical Biophysics, University of Toronto, 1 King’s College CircleTorontoCanada
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon BérardLyonFrance
| | - Rohann JM Correa
- London Regional Cancer Program, London Health Sciences Centre Research InstituteLondonCanada
- Department of Oncology, Western UniversityLondonCanada
| | - Trevor G Shepherd
- London Regional Cancer Program, London Health Sciences Centre Research InstituteLondonCanada
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer ProgramLondonCanada
- Department of Oncology, Western UniversityLondonCanada
- Department of Obstetrics and Gynecology, Western UniversityLondonCanada
- Department of Anatomy and Cell Biology, Western UniversityLondonCanada
| | - Frederick A Dick
- London Regional Cancer Program, London Health Sciences Centre Research InstituteLondonCanada
- Department of Pathology and Laboratory Medicine, University of Western OntarioLondonCanada
- Department of Oncology, Western UniversityLondonCanada
- Children's Health Research InstituteLondonCanada
| |
Collapse
|
4
|
Hernandez-Morato I, Koss S, Honzel E, Pitman MJ. Netrin-1 as A neural guidance protein in development and reinnervation of the larynx. Ann Anat 2024; 254:152247. [PMID: 38458575 DOI: 10.1016/j.aanat.2024.152247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States; Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid, Madrid, Madrid, Spain.
| | - Shira Koss
- ENT Associates of Nassau County, Levittown, NY, United States
| | - Emily Honzel
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
5
|
Taye N, Redhead C, Hubmacher D. Secreted ADAMTS-like proteins as regulators of connective tissue function. Am J Physiol Cell Physiol 2024; 326:C756-C767. [PMID: 38284126 DOI: 10.1152/ajpcell.00680.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The extracellular matrix (ECM) determines functional properties of connective tissues through structural components, such as collagens, elastic fibers, or proteoglycans. The ECM also instructs cell behavior through regulatory proteins, including proteases, growth factors, and matricellular proteins, which can be soluble or tethered to ECM scaffolds. The secreted a disintegrin and metalloproteinase with thrombospondin type 1 repeats/motifs-like (ADAMTSL) proteins constitute a family of regulatory ECM proteins that are related to ADAMTS proteases but lack their protease domains. In mammals, the ADAMTSL protein family comprises seven members, ADAMTSL1-6 and papilin. ADAMTSL orthologs are also present in the worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster. Like other matricellular proteins, ADAMTSL expression is characterized by tight spatiotemporal regulation during embryonic development and early postnatal growth and by cell type- and tissue-specific functional pleiotropy. Although largely quiescent during adult tissue homeostasis, reexpression of ADAMTSL proteins is frequently observed in the context of physiological and pathological tissue remodeling and during regeneration and repair after injury. The diverse functions of ADAMTSL proteins are further evident from disorders caused by mutations in individual ADAMTSL proteins, which can affect multiple organ systems. In addition, genome-wide association studies (GWAS) have linked single nucleotide polymorphisms (SNPs) in ADAMTSL genes to complex traits, such as lung function, asthma, height, body mass, fibrosis, or schizophrenia. In this review, we summarize the current knowledge about individual members of the ADAMTSL protein family and highlight recent mechanistic studies that began to elucidate their diverse functions.
Collapse
Affiliation(s)
- Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Charlene Redhead
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
6
|
Zhu Y, Tesone Z, Tan M, Hardin J. TIAM-1 regulates polarized protrusions during dorsal intercalation in the Caenorhabditis elegans embryo through both its GEF and N-terminal domains. J Cell Sci 2024; 137:jcs261509. [PMID: 38345070 PMCID: PMC10949065 DOI: 10.1242/jcs.261509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Mediolateral cell intercalation is a morphogenetic strategy used throughout animal development to reshape tissues. Dorsal intercalation in the Caenorhabditis elegans embryo involves the mediolateral intercalation of two rows of dorsal epidermal cells to create a single row that straddles the dorsal midline, and thus is a simple model to study cell intercalation. Polarized protrusive activity during dorsal intercalation requires the C. elegans Rac and RhoG orthologs CED-10 and MIG-2, but how these GTPases are regulated during intercalation has not been thoroughly investigated. In this study, we characterized the role of the Rac-specific guanine nucleotide exchange factor (GEF) TIAM-1 in regulating actin-based protrusive dynamics during dorsal intercalation. We found that TIAM-1 can promote formation of the main medial lamellipodial protrusion extended by intercalating cells through its canonical GEF function, whereas its N-terminal domains function to negatively regulate the generation of ectopic filiform protrusions around the periphery of intercalating cells. We also show that the guidance receptor UNC-5 inhibits these ectopic filiform protrusions in dorsal epidermal cells and that this effect is in part mediated via TIAM-1. These results expand the network of proteins that regulate basolateral protrusive activity during directed rearrangement of epithelial cells in animal embryos.
Collapse
Affiliation(s)
- Yuyun Zhu
- Genetics PhD Program, University of Wisconsin, Madison, WI 53706, USA
| | - Zoe Tesone
- Cellular and Molecular Biology PhD Program, University of Wisconsin, Madison, WI 53706, USA
| | - Minyi Tan
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Jeff Hardin
- Genetics PhD Program, University of Wisconsin, Madison, WI 53706, USA
- Cellular and Molecular Biology PhD Program, University of Wisconsin, Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
7
|
Prato A, Cirnigliaro L, Maugeri F, Luca A, Giuliano L, Vitiello G, Errichiello E, Valente EM, Del Giudice E, Mostile G, Rizzo R, Barone R. Paroxysmal Dystonic Posturing Mimicking Nocturnal Leg Cramps as a Presenting Sign in an Infant with DCC Mutation, Callosal Agenesis and Mirror Movements. J Clin Med 2024; 13:1109. [PMID: 38398422 PMCID: PMC10889236 DOI: 10.3390/jcm13041109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Background/Objectives: Pathogenic variants in the deleted in colorectal cancer gene (DCC), encoding the Netrin-1 receptor, may lead to mirror movements (MMs) associated with agenesis/dysgenesis of the corpus callosum (ACC) and cognitive and/or neuropsychiatric issues. The clinical phenotype is related to the biological function of DCC in the corpus callosum and corticospinal tract development as Netrin-1 is implicated in the guidance of developing axons toward the midline. We report on a child with a novel inherited, monoallelic, pathogenic variant in the DCC gene. Methods: Standardized measures and clinical scales were used to assess psychomotor development, communication and social skills, emotional and behavioural difficulties. MMs were measured via the Woods and Teuber classification. Exome sequencing was performed on affected and healthy family members. Results: The patient's clinical presentation during infancy consisted of paroxysmal dystonic posturing when asleep, mimicking nocturnal leg cramps. A brain magnetic resonance imaging (MRI) showed complete ACC. He developed typical upper limb MMs during childhood and a progressively evolving neuro-phenotype with global development delay and behavioural problems. We found an intrafamilial clinical variability associated with DCC mutations: the proband's father and uncle shared the same DCC variant, with a milder clinical phenotype. The atypical early clinical presentation of the present patient expands the clinical spectrum associated with DCC variants, especially those in the paediatric age. Conclusions: This study underlines the importance of in-depth genetic investigations in young children with ACC and highlights the need for further detailed analyses of early motor symptoms in infants with DCC mutations.
Collapse
Affiliation(s)
- Adriana Prato
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
| | - Lara Cirnigliaro
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
| | - Federica Maugeri
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
| | - Antonina Luca
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, 95123 Catania, Italy; (A.L.); (L.G.); (G.M.)
| | - Loretta Giuliano
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, 95123 Catania, Italy; (A.L.); (L.G.); (G.M.)
| | - Giuseppina Vitiello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy;
| | - Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (E.E.); (E.M.V.)
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (E.E.); (E.M.V.)
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Ennio Del Giudice
- Child Neurology, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Giovanni Mostile
- Department “G.F. Ingrassia”, Section of Neurosciences, University of Catania, 95123 Catania, Italy; (A.L.); (L.G.); (G.M.)
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, OASI Research Institute-IRCCS, 94018 Troina, Italy
| | - Renata Rizzo
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.P.); (L.C.); (F.M.); (R.R.)
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, OASI Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
8
|
Chotiprasidhi P, Sato-Espinoza AK, Wangensteen KJ. Germline Genetic Associations for Hepatobiliary Cancers. Cell Mol Gastroenterol Hepatol 2023; 17:623-638. [PMID: 38163482 PMCID: PMC10899027 DOI: 10.1016/j.jcmgh.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Hepatobiliary cancers (HBCs) include hepatocellular carcinoma, cholangiocarcinoma, and gallbladder carcinoma, which originate from the liver, bile ducts, and gallbladder, respectively. They are responsible for a substantial burden of cancer-related deaths worldwide. Despite knowledge of risk factors and advancements in therapeutics and surgical interventions, the prognosis for most patients with HBC remains bleak. There is evidence from familial aggregation and case-control studies to suggest a familial risk component in HBC susceptibility. Recent progress in genomics research has led to the identification of germline variants including single nucleotide polymorphisms (SNPs) and pathogenic or likely pathogenic (P/LP) variants in cancer-associated genes associated with HBC risk. These findings emerged from genome-wide association studies and next-generation sequencing techniques such as whole-exome sequencing. Patients with other cancer types, including breast, colon, ovarian, prostate, and pancreatic cancer, are recommended by guidelines to undergo germline genetic testing, but similar recommendations are lagging in HBC. This prompts the question of whether multi-gene panel testing should be integrated into clinical guidelines for HBC management. Here, we review the hereditary genetics of HBC, explore studies investigating SNPs and P/LP variants in HBC patients, discuss the clinical implications and potential for personalized treatments and impact on patient's family members, and conclude that additional studies are needed to examine how genetic testing can be applied clinically.
Collapse
Affiliation(s)
- Perapa Chotiprasidhi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Kirk J Wangensteen
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
9
|
Li C, Furth EE, Rustgi AK, Klein PS. When You Come to a Fork in the Road, Take It: Wnt Signaling Activates Multiple Pathways through the APC/Axin/GSK-3 Complex. Cells 2023; 12:2256. [PMID: 37759479 PMCID: PMC10528086 DOI: 10.3390/cells12182256] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The Wnt signaling pathway is a highly conserved regulator of metazoan development and stem cell maintenance. Activation of Wnt signaling is an early step in diverse malignancies. Work over the past four decades has defined a "canonical" Wnt pathway that is initiated by Wnt proteins, secreted glycoproteins that bind to a surface receptor complex and activate intracellular signal transduction by inhibiting a catalytic complex composed of the classical tumor suppressor Adenomatous Polyposis Coli (APC), Axin, and Glycogen Synthase Kinase-3 (GSK-3). The best characterized effector of this complex is β-catenin, which is stabilized by inhibition of GSK-3, allowing β-catenin entrance to the nucleus and activation of Wnt target gene transcription, leading to multiple cancers when inappropriately activated. However, canonical Wnt signaling through the APC/Axin/GSK-3 complex impinges on other effectors, independently of β-catenin, including the mechanistic Target of Rapamycin (mTOR), regulators of protein stability, mitotic spindle orientation, and Hippo signaling. This review focuses on these alternative effectors of the canonical Wnt pathway and how they may contribute to cancers.
Collapse
Affiliation(s)
- Chenchen Li
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Peter S. Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Zhu Y, Hardin J. TIAM-1 regulates polarized protrusions during dorsal intercalation in the C. elegans embryo through both its GEF and N-terminal domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550374. [PMID: 37546890 PMCID: PMC10402040 DOI: 10.1101/2023.07.24.550374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Mediolateral cell intercalation is a morphogenetic strategy used throughout animal development to reshape tissues. Dorsal intercalation in the C. elegans embryo involves the mediolateral intercalation of two rows of dorsal epidermal cells to create a single row that straddles the dorsal midline, and so is a simple model to study cell intercalation. Polarized protrusive activity during dorsal intercalation requires the C. elegans Rac and RhoG orthologs CED-10 and MIG-2, but how these GTPases are regulated during intercalation has not been thoroughly investigated. In this study, we characterize the role of the Rac-specific guanine nucleotide exchange factor (GEF), TIAM-1, in regulating actin-based protrusive dynamics during dorsal intercalation. We find that TIAM-1 can promote protrusion formation through its canonical GEF function, while its N-terminal domains function to negatively regulate this activity, preventing the generation of ectopic protrusions in intercalating cells. We also show that the guidance receptor UNC-5 inhibits ectopic protrusive activity in dorsal epidermal cells, and that this effect is in part mediated via TIAM-1. These results expand the network of proteins that regulate basolateral protrusive activity during directed cell rearrangement. Summary statement TIAM-1 activates the Rac pathway to promote protrusion formation via its GEF domain, while its N-terminal domains suppress ectopic protrusions during dorsal intercalation in the C. elegans embryo.
Collapse
|
11
|
Nickerson KR, Tom I, Cortés E, Abolafia JR, Özkan E, Gonzalez LC, Jaworski A. WFIKKN2 is a bifunctional axon guidance cue that signals through divergent DCC family receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.544950. [PMID: 37398498 PMCID: PMC10312737 DOI: 10.1101/2023.06.15.544950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Axon pathfinding is controlled by attractive and repulsive molecular cues that activate receptors on the axonal growth cone, but the full repertoire of axon guidance molecules remains unknown. The vertebrate DCC receptor family contains the two closely related members DCC and Neogenin with prominent roles in axon guidance and three additional, divergent members - Punc, Nope, and Protogenin - for which functions in neural circuit formation have remained elusive. We identified a secreted Punc/Nope/Protogenin ligand, WFIKKN2, which guides mouse peripheral sensory axons through Nope-mediated repulsion. In contrast, WFIKKN2 attracts motor axons, but not via Nope. These findings identify WFIKKN2 as a bifunctional axon guidance cue that acts through divergent DCC family members, revealing a remarkable diversity of ligand interactions for this receptor family in nervous system wiring. One-Sentence Summary WFIKKN2 is a ligand for the DCC family receptors Punc, Nope, and Prtg that repels sensory axons and attracts motor axons.
Collapse
|
12
|
Yanagihara H, Morioka T, Yamazaki S, Yamada Y, Tachibana H, Daino K, Tsuruoka C, Amasaki Y, Kaminishi M, Imaoka T, Kakinuma S. Interstitial deletion of the Apc locus in β-catenin-overexpressing cells is a signature of radiation-induced intestinal tumors in C3B6F1 ApcMin/+ mice†. JOURNAL OF RADIATION RESEARCH 2023; 64:622-631. [PMID: 37117033 DOI: 10.1093/jrr/rrad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/13/2023] [Indexed: 05/27/2023]
Abstract
Recent studies have identified interstitial deletions in the cancer genome as a radiation-related mutational signature, although most of them do not fall on cancer driver genes. Pioneering studies in the field have indicated the presence of loss of heterozygosity (LOH) spanning Apc in a subset of sporadic and radiation-induced intestinal tumors of ApcMin/+ mice, albeit with a substantial subset in which LOH was not detected; whether copy number losses accompany such LOH has also been unclear. Herein, we analyzed intestinal tumors of C3B6F1 ApcMin/+ mice that were either left untreated or irradiated with 2 Gy of γ-rays. We observed intratumor mosaicism with respect to the nuclear/cytoplasmic accumulation of immunohistochemically detectable β-catenin, which is a hallmark of Apc+ allele loss. An immunoguided laser microdissection approach enabled the detection of LOH involving the Apc+ allele in β-catenin-overexpressing cells; in contrast, the LOH was not observed in the non-overexpressing cells. With this improvement, LOH involving Apc+ was detected in all 22 tumors analyzed, in contrast to what has been reported previously. The use of a formalin-free fixative facilitated the LOH and microarray-based DNA copy number analyses, enabling the classification of the aberrations as nondisjunction/mitotic recombination type or interstitial deletion type. Of note, the latter was observed only in radiation-induced tumors (nonirradiated, 0 of 8; irradiated, 11 of 14). Thus, an analysis considering intratumor heterogeneity identifies interstitial deletion involving the Apc+ allele as a causative radiation-related event in intestinal tumors of ApcMin/+ mice, providing an accurate approach for attributing individual tumors to radiation exposure.
Collapse
Affiliation(s)
- Hiromi Yanagihara
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shunsuke Yamazaki
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hirotaka Tachibana
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiko Amasaki
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mutsumi Kaminishi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
13
|
van der Vlugt M, Carvalho B, Fliers J, Montazeri N, Rausch C, Grobbee EJ, Engeland MV, Spaander MCW, Meijer GA, Dekker E. Missed colorectal cancers in a fecal immunochemical test-based screening program: Molecular profiling of interval carcinomas. World J Gastrointest Oncol 2022; 14:2195-2207. [PMID: 36438700 PMCID: PMC9694267 DOI: 10.4251/wjgo.v14.i11.2195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND For optimizing fecal immunochemical test (FIT)-based screening programs, reducing the rate of missed colorectal cancers (CRCs) by FIT (FIT-interval CRCs) is an important aspect. Knowledge of the molecular make-up of these missed lesions could facilitate more accurate detection of all (precursor) lesions.
AIM To compare the molecular make-up of FIT-interval CRCs to lesions that are detected by FIT [screen-detected CRCs (SD-CRCs)].
METHODS FIT-interval CRCs observed in a Dutch pilot-program of FIT-based screening were compared to a control group of SD-CRCs in a 1:2 ratio, resulting in 27 FIT-interval CRC and 54 SD-CRCs. Molecular analyses included microsatellite instability (MSI), CpG island methylator phenotype (CIMP), DNA sequence mutations and copy number alterations (CNAs).
RESULTS Although no significant differences were reached, FIT-interval CRCs were more often CIMP positive and MSI positive (33% CIMP in FIT-interval CRCs vs 21% in SD-CRCs (P = 0.274); 19% MSI in FIT-interval CRCs vs 12% in SD-CRCs (P = 0.469)), and showed more often serrated pathway associated features such as BRAF (30% vs 12%, P = 0.090) and PTEN (15% vs 2.4%, P = 0.063) mutations. APC mutations, a classic feature of the adenoma-carcinoma-sequence, were more abundant in SD-CRCs (68% vs 40% in FIT-interval CRCs P = 0.035). Regarding CNAs differences between the two groups; FIT-interval CRCs less often showed gains at the regions 8p11.22-q24.3 (P = 0.009), and more often gains at 20p13-p12.1 (P = 0.039).
CONCLUSION Serrated pathway associated molecular features seem to be more common in FIT-interval CRCs, while classic adenoma carcinoma pathway associated molecular features seem to be more common in SD-CRCs. This indicates that proximal serrated lesions may be overrepresented among FIT-interval CRCs.
Collapse
Affiliation(s)
- Manon van der Vlugt
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam 1105 AZ, Netherlands
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Joelle Fliers
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam 1105 AZ, Netherlands
| | - Nahid Montazeri
- Biostatistics Unit, Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam 1105 AZ, Netherlands
| | - Christian Rausch
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Esmée J Grobbee
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam 3015 CN, Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6202 AZ, Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam 3015 CN, Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam 1105 AZ, Netherlands
| |
Collapse
|
14
|
Liu F, Bouznad N, Kaller M, Shi X, König J, Jaeckel S, Hermeking H. Csf1r mediates enhancement of intestinal tumorigenesis caused by inactivation of Mir34a. Int J Biol Sci 2022; 18:5415-5437. [PMID: 36147476 PMCID: PMC9461672 DOI: 10.7150/ijbs.75503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
The CSF1 receptor (CSF1R) encoding mRNA represents a direct target of miR-34a. However, the in vivo relevance of the suppression of CSF1R by miR-34a for intestinal tumor suppression mediated by the p53/miR-34a pathway has remained unknown. Here, ApcMin/+ mice with intestinal-epithelial cell (IEC)-specific deletions of Mir34a showed increased formation of adenomas and decreased survival, whereas deletion of Csf1r decreased adenoma formation and increased survival. In adenomas deletion of Mir34a enhanced proliferation, STAT3 signaling, infiltration with fibroblasts, immune cells and microbes, and tumor stem cell abundance and decreased apoptosis. Deletion of Csf1r had the opposite effects. In addition, homeostasis of intestinal secretory and stem cells, and tumoroid formation were affected in opposite directions by deletion of Mir34a and CSF1R. Concomitant deletion of Csf1r and Mir34a neutralized the effects of the single deletions. mRNAs containing Mir34a seed-matching sites, which encode proteins related to EMT (epithelial-mesenchymal transition), stemness and Wnt signaling, were enriched after Mir34a inactivation in adenomas and derived tumoroids. Netrin-1/Ntn1 and Transgelin/Tagln were characterized as direct targets of Mir34a and Csf1r signaling. Mir34a-inactivation related expression signatures were associated with CMS4/CRISB+D, stage 4 CRCs and poor patient survival. In tumoroids the loss of Mir34a conferred resistance to 5-FU which was mediated by Csf1r. This study provides genetic evidence for a requirement of Mir34a-mediated Csf1r suppression for intestinal stem/secretory cell homeostasis and tumor suppression, and suggests that therapeutic targeting of CSF1R may be effective for the treatment of CRCs with defects in the p53/miR-34a pathway.
Collapse
Affiliation(s)
- Fangteng Liu
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Xiaolong Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Janine König
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Stephanie Jaeckel
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany.,German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Basta DW, Vong M, Beshimova A, Nakamura BN, Rusu I, Kattah MG, Shao L. A20 Restricts NOS2 Expression and Intestinal Tumorigenesis in a Mouse Model of Colitis-Associated Cancer. GASTRO HEP ADVANCES 2022; 2:96-107. [PMID: 36636264 PMCID: PMC9833806 DOI: 10.1016/j.gastha.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Colon cancer can occur sporadically or in the setting of chronic inflammation, such as in patients with inflammatory bowel disease. We previously showed that A20, a critical negative regulator of tumor necrosis factor signal transduction, could regulate sporadic colon cancer development. In this report, we investigate whether A20 also acts as a tumor suppressor in a model of colitis-associated cancer. METHODS Colitis and colitis-associated tumors were induced in wild-type and A20 intestinal epithelial cell-specific knockout (A20dIEC) mice using dextran sodium sulfate and azoxymethane. Clinicopathologic markers of inflammation were assessed in conjunction with colonic tumor burden. Gene expression analyses and immunohistochemistry were performed on colonic tissue and intestinal enteroids. Nitric oxide (NO) production and activity were assessed in whole colonic lysates and mouse embryonic fibroblasts. RESULTS A20dIEC mice develop larger tumors after treatment with dextran sodium sulfate and azoxymethane than wild-type mice. In addition to elevated markers of inflammation, A20dIEC mice have significantly enhanced expression of inducible nitric oxide synthase (iNOS), a well-known driver of neoplasia. Enhanced iNOS expression is associated with the formation of reactive nitrogen species and DNA damage. Loss of A20 also enhances NO-dependent cell death directly. CONCLUSION Mechanistically, we propose that A20 normally restricts tumor necrosis factor-induced nuclear factor kappa B-dependent production of iNOS in intestinal epithelial cells, thereby protecting against colitis-associated tumorigenesis. We also propose that A20 plays a direct role in regulating NO-dependent cell death.
Collapse
Affiliation(s)
- David W Basta
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Mandy Vong
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Adolat Beshimova
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Brooke N Nakamura
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Iulia Rusu
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Michael G Kattah
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Ling Shao
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| |
Collapse
|
16
|
Somatic mutations in DCC are associated with genomic instability and favourable outcomes in melanoma patients treated with immune checkpoint inhibitors. Br J Cancer 2022; 127:1411-1423. [PMID: 35871235 PMCID: PMC9553921 DOI: 10.1038/s41416-022-01921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Deleted in colorectal cancer (DCC) encodes a transmembrane dependence receptor and is frequently mutated in melanoma. The associations of DCC mutation with chromosomal instability and immunotherapeutic efficacy in melanoma are largely uncharacterised. METHODS We performed an integrated study based on biological experiments and multi-dimensional data types, including genomic, transcriptomic and clinical immune checkpoint blockade (ICB)-treated melanoma cohorts from public databases. RESULTS DCC mutation was significantly correlated with the tumour mutational burden (TMB) in The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and ICB-treated melanoma cohorts. DCC expression levels were correlated with DNA damage response and repair (DDR) pathways responsive to irradiation (IR) in the Malme-3M and SK-MEL-2 cell lines. In the TCGA cohort, DCC-mutated samples presented more neoantigens, higher proportions of infiltrating antitumour immunocytes and lower proportions of infiltrating pro-tumour immunocytes than DCC wild-type samples. DCC-mutated samples were significantly enriched in activated immune response and DDR pathways. Furthermore, patients harbouring mutated DCC treated with ICB showed remarkable clinical benefits in terms of the response rate and overall survival. CONCLUSIONS Somatic mutations in DCC are associated with improved clinical outcomes in ICB-treated melanoma patients. Once further validated, the DCC mutational status can improve patient selection for clinical practice and future study enrolment.
Collapse
|
17
|
Nakayama H, Ohnuki H, Nakahara M, Nishida-Fukuda H, Sakaue T, Fukuda S, Higashiyama S, Doi Y, Mitsuyoshi M, Okimoto T, Tosato G, Kusumoto C. Inactivation of axon guidance molecule netrin-1 in human colorectal cancer by an epigenetic mechanism. Biochem Biophys Res Commun 2022; 611:146-150. [PMID: 35489200 DOI: 10.1016/j.bbrc.2022.04.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/16/2023]
Abstract
Netrin-1, the protein product of the NTN1 gene, is an axon guidance molecule implicated in regulation of cell survival and tumorigenesis. Expression of the netrin-1 receptors deleted in colorectal cancer (DCC) and uncoordinated 5 homolog (UNC5H) is frequently silenced in colorectal cancer (CRC) by either loss of heterozygosity or epigenetic mechanisms. However, netrin-1 expression and regulation in CRC are mostly unknown. Here, we report that NTN1 expression is significantly reduced in most CRC tissues compared to the adjacent normal intestinal mucosa, and that NTN1 DNA methylation is significantly higher in CRCs (24.6%) than in the adjacent normal intestinal mucosa (4.0%). In 6 CRC cell lines, NTN1 expression is low. Treatment with 5-Aza-2'-deoxycytidine increased expression of NTN1 in CRC cell lines, indicating that DNA methylation represses NTN1 transcription in CRCs. NTN1 DNA hypermethylation was significantly associated with advanced CRC disease. Median netrin-1 serum levels were significantly decreased in CRC patients (330.1 pg/mL) compared with normal individuals (438.6 pg/mL). Our results suggest that netrin-1 is a candidate biomarker for CRC.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, Hiroshima, 739-2695, Japan.
| | - Hidetaka Ohnuki
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Masako Nakahara
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, Hiroshima, 739-2695, Japan
| | - Hisayo Nishida-Fukuda
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, 5731010, Japan
| | - Tomohisa Sakaue
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Shitsukawa, Ehime, 791-0295, Japan; Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Shitsukawa, Ehime, 791-0295, Japan
| | - Shinji Fukuda
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Shitsukawa, Ehime, 791-0295, Japan; Department of Biochemistry, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Shitsukawa, Ehime, 791-0295, Japan; Department of Molecular and Cellular Biology, Osaka International Cancer Institute, Chuo-ku, Osaka, 541-8567, Japan
| | - Yuki Doi
- Department of Surgery, Nippon Kokan Fukuyama Hospital, Fukuyama, Hiroshima, 721-0927, Japan
| | - Masahiro Mitsuyoshi
- Department of Surgery, Nippon Kokan Fukuyama Hospital, Fukuyama, Hiroshima, 721-0927, Japan; Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kita-kyushu, Fukuoka, 807-0804, Japan
| | - Takashi Okimoto
- Department of Surgery, Nippon Kokan Fukuyama Hospital, Fukuyama, Hiroshima, 721-0927, Japan; Department of Surgery, Kyushu Rosai Hospital, Kita-kyushu, Fukuoka, 800-0296, Japan
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chiaki Kusumoto
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, Hiroshima, 739-2695, Japan; Department of Gastroenterology, Nippon Kokan Fukuyama Hospital, Fukuyama, Hiroshima, 721-0927, Japan.
| |
Collapse
|
18
|
Carpizo DR, Harris CR. Genetic Drivers of Ileal Neuroendocrine Tumors. Cancers (Basel) 2021; 13:cancers13205070. [PMID: 34680217 PMCID: PMC8533727 DOI: 10.3390/cancers13205070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Although ileal neuroendocrine tumors are the most common tumors of the small intestine, they are not well-defined at the genetic level. Unlike most cancers, they have an unusually low number of mutations, and also lack recurrently mutated genes. Moreover ileal NETs have been difficult to study in the laboratory because there were no animal models and because cell lines were generally unavailable. But recent advances, including the first ileal NET mouse model as well as methods for culturing patient tumor samples, have been described and have already helped to identify IGF2 and CDK4 as two of the genetic drivers for this tumor type. These advances may help in the development of new treatments for patients. Abstract The genetic causes of ileal neuroendocrine tumors (ileal NETs, or I-NETs) have been a mystery. For most types of tumors, key genes were revealed by large scale genomic sequencing that demonstrated recurrent mutations of specific oncogenes or tumor suppressors. In contrast, genomic sequencing of ileal NETs demonstrated a distinct lack of recurrently mutated genes, suggesting that the mechanisms that drive the formation of I-NETs may be quite different than the cell-intrinsic mutations that drive the formation of other tumor types. However, recent mouse studies have identified the IGF2 and RB1 pathways in the formation of ileal NETs, which is supported by the subsequent analysis of patient samples. Thus, ileal NETs no longer appear to be a cancer without genetic causes.
Collapse
|
19
|
Fahed D, Chettab A, Mathe D, Denis M, Traverse-Glehen A, Karlin L, Perrial E, Dumontet C. Netrin-1 expression and targeting in multiple myeloma. Leuk Lymphoma 2021; 63:395-403. [PMID: 34585999 DOI: 10.1080/10428194.2021.1984459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Deleted in colorectal cancer (DCC) and uncoordinated-5 (UNC5) receptors, play a key role in tumor progression of several solid tumors by inducing apoptosis when unbound to their ligand netrin-1. Netrin 1 is currently being evaluated as a therapeutic target. These receptors, known as dependence receptors, and their ligands, have not yet been extensively explored in hematological malignancies. Here, we performed a screening of various human myeloma cell lines and bone marrow samples from multiple myeloma patients for netrin-1 and its receptors to determine the expression of netrin 1 and its receptors in multiple myeloma as well as to assess the potential anti-myeloma activity of a novel anti-netrin-1 treatment (NP137). Our results showed heterogeneous expression of netrin-1 and its receptors DCC and UNC5H2(B) in six human myeloma lines. Additionally, immunohistochemistry and flow cytometry showed expression of these molecules in a majority of myeloma patient samples. In vitro NP137 did not induce apoptosis of myeloma cell lines yet enhanced the cytotoxicity of bortezomib and dexamethasone. In vivo, NP137 treatment of SCID mice with established RPMI8226 myeloma tumors led to a reduction of tumor size compared to controls. Ex vivo, NP137 lowered the plasma cells percentage in bone marrow aspirates in a fraction of the patient samples analyzed. These results suggest that netrin signaling could constitute a novel therapeutic target in multiple myeloma.
Collapse
Affiliation(s)
- David Fahed
- Anticancer Antibodies Team, CRCL, CNRS UMR5286, CLB, UCBL, Lyon, France
| | | | | | | | | | | | - Emeline Perrial
- Anticancer Antibodies Team, CRCL, CNRS UMR5286, CLB, UCBL, Lyon, France
| | - Charles Dumontet
- Anticancer Antibodies Team, CRCL, CNRS UMR5286, CLB, UCBL, Lyon, France.,Antineo, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
20
|
Sharma B, Angurana S, Bhat A, Verma S, Bakshi D, Bhat GR, Jamwal RS, Amin A, Qadri RA, Shah R, Kumar R. Genetic analysis of colorectal carcinoma using high throughput single nucleotide polymorphism genotyping technique within the population of Jammu and Kashmir. Mol Biol Rep 2021; 48:5889-5895. [PMID: 34319543 DOI: 10.1007/s11033-021-06583-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND SNP genotyping has become increasingly more common place to understand the genetic basis of complex diseases like cancer. SNP-genotyping through MassARRAY™ is a cost-effective method to quantitatively analyse the variation of gene expression in multiple samples, making it a potential tool to identify the underlying causes of colorectal carcinogenesis. METHODS In the present study, SNP genotyping was carried out using Agena MassARRAY™, which is a cost-effective, robust, and sensitive method to analyse multiple SNPs simultaneously. We analysed 7 genes in 492 samples (100 cases and 392 controls) associated with CRC within the population of Jammu and Kashmir. These SNPs were selected based on their association with multiple cancers in literature. RESULTS This is the first study to explore these SNPs with colorectal cancer within the J&K population.7 SNPs with a call rate of 90% were selected for the study. Out of these, five SNPs rs2234593, rs1799966, rs2229080, rs8034191, rs1042522 were found to be significantly associated with the current study under the allelic model with an Odds Ratio OR = 2.981(1.731-5.136 at 95% CI); p value = 4.81E-05 for rs2234593,OR = 1.685(1.073-2.647 at 95% CI);; p value = 0.02292 for rs1799966, OR = 1.5 (1.1-2.3 at 95% CI), p value = 0.02 for rs2229080, OR = 1.699(1.035-2.791 at 95% CI); p value = 0.03521 for rs8034191, OR = 20.07 (11.26-35.75); p value = 1.84E-34 for rs1042522 respectively. CONCLUSION This is the first study to find the relation of Genetic variants with the colorectal cancer within the studied population using high throughput MassARRAY™ technology. It is further anticipated that the variants should be evaluated in other population groups that may aid in understanding the genetic complexity and bridge the missing heritability.
Collapse
Affiliation(s)
- Bhanu Sharma
- School of Biotechnology, Shri Mata Vaishno Devi University, Jammu and Kashmir 182320, Katra, India
| | | | - Amrita Bhat
- School of Biotechnology, Shri Mata Vaishno Devi University, Jammu and Kashmir 182320, Katra, India
| | - Sonali Verma
- School of Biotechnology, Shri Mata Vaishno Devi University, Jammu and Kashmir 182320, Katra, India
| | - Divya Bakshi
- School of Biotechnology, Shri Mata Vaishno Devi University, Jammu and Kashmir 182320, Katra, India
| | - Ghulam Rasool Bhat
- School of Biotechnology, Shri Mata Vaishno Devi University, Jammu and Kashmir 182320, Katra, India
| | - Rajeshwer Singh Jamwal
- School of Biotechnology, Shri Mata Vaishno Devi University, Jammu and Kashmir 182320, Katra, India
| | - Asif Amin
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Raies Ahmed Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Ruchi Shah
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India.
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Jammu and Kashmir 182320, Katra, India.
| |
Collapse
|
21
|
Malik MA, Malik SA, Haq MG, Bangri SA, Ahmad SZ, Shah OJ, Shah ZA. Genetic Susceptibility of DCC Gene in Gallbladder Cancer in Kashmir and Meta-Analysis. Nutr Cancer 2021; 74:947-955. [PMID: 34259111 DOI: 10.1080/01635581.2021.1949728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/09/2023]
Abstract
Deleted in colorectal carcinoma (DCC) A > G (rs714) is the most widely studied SNP of tumor suppressor DCC gene found to be associated with increased risk of various cancers. Therefore, the aim of present case control study was to investigate the role of DCC A > G (rs714) in gallbladder cancer (GBC) in Kashmir and to conduct a meta-analysis of DCC A > G (rs714) polymorphism to demonstrate the more accurate strength of these associations. Genotyping was done by PCR/RFLP and confirmed by sequencing in 100 GBC cases, and 150 controls. We also performed a comprehensive meta-analysis of 2223 subjects (1118 cases and 1105 controls) to evaluate the association between DCC A > G (rs714) polymorphisms and cancer. In present case control study DCC A > G (rs714) genotypes did not modulate the GBC cancer risk. Meta-analysis results showed that DCC A > G (rs714) is associated with increased overall cancer risk. DCC A > G (rs714) polymorphism conferred significant risk for cancer in dominant model but in recessive model P-value was at borderline. DCC A > G (rs714) genotype was associated with increased risk of cancer in Asians and Kashmiri population whereas no such association was observed in Europeans. The evidence in this meta-analysis supports a modest involvement of DCC A > G (rs714) tumoursupressor pathway genes in cancer susceptibility.
Collapse
Affiliation(s)
- Manzoor Ahmad Malik
- Cancer Diagnostic & Research Centre (CDRC), Department of Immunology & Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Kashmir, India
| | - Subzar Ahmad Malik
- Department of Immunology & Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Kashmir, India
| | - Malik Gowharul Haq
- Department of Immunology & Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Kashmir, India
| | - Sadaf Ali Bangri
- Departments of Surgical Gastroenterology, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Kashmir, India
| | - Sheikh Zahoor Ahmad
- Department of Surgical Oncology, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Kashmir, India
| | - Omar Javed Shah
- Departments of Surgical Gastroenterology, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Kashmir, India
| | - Zafar Amin Shah
- Cancer Diagnostic & Research Centre (CDRC), Department of Immunology & Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Kashmir, India
- Department of Immunology & Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Kashmir, India
| |
Collapse
|
22
|
Chen APF, Chen L, Kim TA, Xiong Q. Integrating the Roles of Midbrain Dopamine Circuits in Behavior and Neuropsychiatric Disease. Biomedicines 2021; 9:biomedicines9060647. [PMID: 34200134 PMCID: PMC8228225 DOI: 10.3390/biomedicines9060647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) is a behaviorally and clinically diverse neuromodulator that controls CNS function. DA plays major roles in many behaviors including locomotion, learning, habit formation, perception, and memory processing. Reflecting this, DA dysregulation produces a wide variety of cognitive symptoms seen in neuropsychiatric diseases such as Parkinson’s, Schizophrenia, addiction, and Alzheimer’s disease. Here, we review recent advances in the DA systems neuroscience field and explore the advancing hypothesis that DA’s behavioral function is linked to disease deficits in a neural circuit-dependent manner. We survey different brain areas including the basal ganglia’s dorsomedial/dorsolateral striatum, the ventral striatum, the auditory striatum, and the hippocampus in rodent models. Each of these regions have different reported functions and, correspondingly, DA’s reflecting role in each of these regions also has support for being different. We then focus on DA dysregulation states in Parkinson’s disease, addiction, and Alzheimer’s Disease, emphasizing how these afflictions are linked to different DA pathways. We draw upon ideas such as selective vulnerability and region-dependent physiology. These bodies of work suggest that different channels of DA may be dysregulated in different sets of disease. While these are great advances, the fine and definitive segregation of such pathways in behavior and disease remains to be seen. Future studies will be required to define DA’s necessity and contribution to the functional plasticity of different striatal regions.
Collapse
Affiliation(s)
- Allen PF Chen
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
| | - Thomas A. Kim
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Correspondence:
| |
Collapse
|
23
|
Diez-Calzadilla NA, Noguera Salvá R, Soriano Sarrió P, Martínez-Jabaloyas JM. Genetic profile and immunohistochemical study of clear cell renal carcinoma: Pathological-anatomical correlation and prognosis. Cancer Treat Res Commun 2021; 27:100374. [PMID: 33932757 DOI: 10.1016/j.ctarc.2021.100374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) accounts for 2-3% of all tumors being the most frequent solid lesion in the kidney. OBJECTIVE To determine what genetic alterations and immunohistochemical (IHC) of clear cell renal carcinoma (ccRCC) are associated with prognosis and tumor aggressiveness. PATIENTS AND METHODS Experimental analytical study with 57 patients who underwent radical and partial nephrectomy between 2005 and 2011, all with diagnosis of ccRCC and minimum post-operative follow-up of 36 months. The pathological study included IHC determination of biomarkers associated (CAIX, CAM 5.2, CD10, c-erbB-2, EGFR, HIF-1a, Ki67, MDM2, PAX-2 y 8, p53, survivin and VEGFR 1 and 2). Genetic analysis was carried out using multiplex ligation-dependent probe amplification (MLPA). Clinical data were collected and summarized using an access-type database, adding genetic analysis and IHC data of each patient's tumor sample. IHC statistical analysis included Chi-square, Kruskal-Wallis and multivariate analysis. The genetic analysis was performed using multivariate logistic regression (normal/deletion-duplication). Significance level p<0.05. RESULTS Pathologic stage was: pT1 (61.8%), pT2 (32.7%); pT3-T4 (5.4%); 16.3% were pN+ and 19.3% M1. 23.6% recurred being predominantly to distance in 83.3%. 27.3% of patients died (73.3% ccCCR). CAIX (Carbonic anhydrase IX) and tumor size were associated with worse Fuhrman grade (p = 0.035; p = 0.001 respectively). Deletion-duplication of genes increased the likelihood: of death (APC, Bcl-2 and CDKN2A by 11, 7 and 4 respectively and SMAD4 reduced the probability by 88%); tumor recurrence (CDKN2A by fifteen fold and VHL reduced the probability by 87%); pT greater than 2 (CCND2, MDM2 and WT1 multiplied by 6, 7 and 9); risk of N+ (CDK4 and EBF1 by 13); distant metastases (BRCA2 and DLEU1 by 5); Fuhrman grade ≥3 (BRCA1, BRCA2 and p53 by 40, 75 and 34 respectively, while that FHIT reduced by 96%). Deletion-duplication of CDK4 and DCC increased survival by a factor of 13 and 16, while that DLEU1 and RUNX1 decreased survival time by 80%. CONCLUSION CAIX and tumor size are associated with increased aggressiveness. The mutations to level 5q, 9p, 11p, 12, 13q, 17, 18q and 21q are associated with more aggressive tumors and with worse survival rate.
Collapse
Affiliation(s)
- N A Diez-Calzadilla
- Department of Urology. Hospital de Sagunto, Av. Ramón y Cajal, s/n, 46520. Sagunto, Valencia-España.
| | - R Noguera Salvá
- Department of Pathology. Faculty of Medicine. University of Valencia, Av. Blasco Ibáñez, 13. 46010. Valencia-España
| | - P Soriano Sarrió
- Department of Pathology. Faculty of Medicine. University of Valencia, Av. Blasco Ibáñez, 13. 46010. Valencia-España
| | - J M Martínez-Jabaloyas
- Department of Urology. Hospital Clínico Universitario de Valencia, Av. Blasco Ibáñez, 17, 46010. Valencia- España.
| |
Collapse
|
24
|
Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements. Int J Mol Sci 2020; 22:ijms22010130. [PMID: 33374459 PMCID: PMC7794761 DOI: 10.3390/ijms22010130] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer, is the second leading cause of cancer-related mortality rates worldwide. Although modern research was able to shed light on the pathogenesis of CRC and provide enhanced screening strategies, the prevalence of CRC is still on the rise. Studies showed several cellular signaling pathways dysregulated in CRC, leading to the onset of malignant phenotypes. Therefore, analyzing signaling pathways involved in CRC metastasis is necessary to elucidate the underlying mechanism of CRC progression and pharmacotherapy. This review focused on target genes as well as various cellular signaling pathways including Wnt/β-catenin, p53, TGF-β/SMAD, NF-κB, Notch, VEGF, and JAKs/STAT3, which are associated with CRC progression and metastasis. Additionally, alternations in methylation patterns in relation with signaling pathways involved in regulating various cellular mechanisms such as cell cycle, transcription, apoptosis, and angiogenesis as well as invasion and metastasis were also reviewed. To date, understanding the genomic and epigenomic instability has identified candidate biomarkers that are validated for routine clinical use in CRC management. Nevertheless, better understanding of the onset and progression of CRC can aid in the development of early detection molecular markers and risk stratification methods to improve the clinical care of CRC patients.
Collapse
|
25
|
Claro V, Ferro A. Netrin-1: Focus on its role in cardiovascular physiology and atherosclerosis. JRSM Cardiovasc Dis 2020; 9:2048004020959574. [PMID: 33282228 PMCID: PMC7691900 DOI: 10.1177/2048004020959574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023] Open
Abstract
The netrins form a family of laminin-related proteins which were first
described as modulators of cell migration and axonal guidance during
fetal development. Netrin-1 is the most extensively studied member of
this family and, since its discovery, non-neural roles have been
associated with it. Together with its receptors, DCC/neogenin and
UNC5, netrin-1 has been shown to be involved in the regulation of
angiogenesis, organogenesis, cancer and inflammation. An
NF-κB-dependent truncated isoform of netrin-1 has also been shown to
be produced in endothelial and some types of cancer cells, which both
accumulates in and affects the function of the nucleus. In
atherosclerosis, conflicting roles for netrin-1 have been reported on
plaque progression via its receptor UNC5b. Whereas endothelial-derived
netrin-1 inhibits chemotaxis of leukocytes and reduces the migration
of monocytes to the atherosclerotic plaque, netrin-1 expressed by
macrophages within the plaque plays a pro-atherogenic role, promoting
cell survival, recruiting smooth muscle cells and inhibiting foam cell
egress to the lymphatic system. In contrast, there is evidence that
netrin-1 promotes macrophage differentiation to an alternative
activated phenotype and induces expression of IL-4 and IL-13, while
downregulate expression of IL-6 and COX-2. Further work is needed to
elucidate the precise roles of the two isoforms of netrin-1 in
different cell types in the context of atherosclerosis, and its
potential as a putative novel therapeutic target in this disease.
Collapse
Affiliation(s)
- Vasco Claro
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Albert Ferro
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| |
Collapse
|
26
|
Zaka A, Shahzad S, Rao HZ, Hashim Y, Basit S. A novel homozygous frameshift mutation in the DCC gene in a Pakistani family with autosomal recessive horizontal gaze palsy with progressive scoliosis-2 with impaired intellectual development. Am J Med Genet A 2020; 185:355-361. [PMID: 33141514 DOI: 10.1002/ajmg.a.61952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 01/10/2023]
Abstract
Horizontal Gaze Palsy with Progressive Scoliosis-2 with Impaired Intellectual Development (HGPPS2) is a rare congenital disorder characterized by absence of conjugate horizontal eye movements, and progressive scoliosis developing in childhood and adolescence. We report three new patients with HGPPS2 in a consanguineous Pakistani family, presenting varying degrees of progressive scoliosis, developmental delays, horizontal gaze palsy, agenesis of corpus callosum, and absence of cerebral commissures. Analysis of genotyping data identified shared loss of heterozygosity (LOH) region on chromosomes 5p15.33-15.31, 6q11.2-12, and 18q21.1-21.3. A hypothesis-free, unbiased exome data analysis detected an insertion of nucleotide A (c.2399dupA) in exon 16 of the DCC gene. The insertion is predicted to cause frameshift p.(Asn800Lysfs*11). Interestingly, DCC gene is present in the LOH region on chromosome 18. Variant (c.2399dupA) in the DCC gene is considered as the most probable candidate variant for HGPPS2 based on the presence of DCC in the LOH region, previously reported role of DCC in HGPPS2, perfect segregation of candidate variant with the disease, prediction of variant pathogenicity, and absence of variant in variation databases. Sanger Sequencing confirmed the presence of the novel homozygous mutation in all three patients; the parents were heterozygous carriers of the mutation, in accordance with an autosomal recessive inheritance pattern. DCC encodes a netrin-1 receptor protein; its role in the development of the CNS has recently been established. Biallelic DCC mutations have previously been shown to cause HGPPS2. A novel homozygous variant in patients of the reported family extend the genotypic and phenotypic spectrum of HGPPS2.
Collapse
Affiliation(s)
- Ayesha Zaka
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Shaheen Shahzad
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Hadi Zahid Rao
- Department of Oral & Maxillofacial Surgery, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Yasmin Hashim
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
27
|
Suzuki T, Hayman L, Kilbey A, Edwards J, Coffelt SB. Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev 2020; 298:198-217. [PMID: 32840001 DOI: 10.1111/imr.12916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 08/17/2023]
Abstract
Colorectal cancer is the third most common cancer worldwide with nearly 2 million cases per year. Immune cells and inflammation are a critical component of colorectal cancer progression, and they are used as reliable prognostic indicators of patient outcome. With the growing appreciation for immunology in colorectal cancer, interest is growing on the role γδ T cells have to play, as they represent one of the most prominent immune cell populations in gut tissue. This group of cells consists of both resident populations-γδ intraepithelial lymphocytes (γδ IELs)-and transient populations that each has unique functions. The homeostatic role of these γδ T cell subsets is to maintain barrier integrity and prevent microorganisms from breaching the mucosal layer, which is accomplished through crosstalk with enterocytes and other immune cells. Recent years have seen a surge in discoveries regarding the regulation of γδ IELs in the intestine and the colon with particular new insights into the butyrophilin family. In this review, we discuss the development, specialities, and functions of γδ T cell subsets during cancer progression. We discuss how these cells may be used to predict patient outcome, as well as how to exploit their behavior for cancer immunotherapy.
Collapse
Affiliation(s)
- Toshiyasu Suzuki
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Liam Hayman
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
28
|
García-Guillén IM, Alonso A, Morales-Delgado N, Andrés B, Puelles L, López-Bendito G, Marín F, Aroca P. Netrin-1/DCC Signaling Differentially Regulates the Migration of Pax7, Nkx6.1, Irx2, Otp, and Otx2 Cell Populations in the Developing Interpeduncular Nucleus. Front Cell Dev Biol 2020; 8:588851. [PMID: 33195252 PMCID: PMC7606981 DOI: 10.3389/fcell.2020.588851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
The interpeduncular nucleus (IPN) is a hindbrain structure formed by three main subdivisions, the prodromal (Pro) domain located at the isthmus (Ist), and the rostral and caudal interpeduncular domains (IPR, IPC) within rhombomere 1 (r1). Various cell populations can be detected in the IPN through the expression of the Nkx6.1, Otp, Otx2, Pax7, and/or Irx2 transcription factors. These cell populations follow independent dorsoventral tangential and radial migratory routes targeting the ventral paramedian region of Ist and r1. Here we set out to examine the influence of the Netrin-1/DCC pathway on these migrations, since it is known to regulate other processes of neuronal migration in the brain. To this end, we analyzed IPN development in late gestational wild-type and DCC-/- mice, using mainly in situ hybridization (ISH) to identify the cells expressing each of the aforementioned genes. We found that the migration of Nkx6.1 + and Irx2 + cells into the Pro domain was strongly disrupted by the loss of DCC, as occurred with the migration of Pax7 +, Irx2 +, and Otp + cells that would normally form the IPR. In addition, there was mild impairment of the migration of the Pax7 + and Otx2 + cells that form the IPC. These results demonstrate that the Netrin-1/DCC signaling pathway is involved in the migration of most of the IPN populations, mainly affecting those of the Pro and IPR domains of this nucleus. There are psychiatric disorders that involve the medial habenula (mHb)-IPN system, so that this experimental model could provide a basis to study their neurodevelopmental etiology.
Collapse
Affiliation(s)
- Isabel M García-Guillén
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Antonia Alonso
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Nicanor Morales-Delgado
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Histology and Anatomy, School of Medicine, Miguel Hernández University, Alicante, Spain
| | - Belén Andrés
- Instituto de Neurociencias de Alicante, CSIC, Universidad Miguel Hernández, Alicante, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | | | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
29
|
van Wietmarschen N, Sridharan S, Nathan WJ, Tubbs A, Chan EM, Callen E, Wu W, Belinky F, Tripathi V, Wong N, Foster K, Noorbakhsh J, Garimella K, Cruz-Migoni A, Sommers JA, Huang Y, Borah AA, Smith JT, Kalfon J, Kesten N, Fugger K, Walker RL, Dolzhenko E, Eberle MA, Hayward BE, Usdin K, Freudenreich CH, Brosh RM, West SC, McHugh PJ, Meltzer PS, Bass AJ, Nussenzweig A. Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature 2020; 586:292-298. [PMID: 32999459 PMCID: PMC8916167 DOI: 10.1038/s41586-020-2769-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022]
Abstract
The RecQ DNA helicase WRN is a synthetic lethal target for cancer cells with microsatellite instability (MSI), a form of genetic hypermutability that arises from impaired mismatch repair1-4. Depletion of WRN induces widespread DNA double-strand breaks in MSI cells, leading to cell cycle arrest and/or apoptosis. However, the mechanism by which WRN protects MSI-associated cancers from double-strand breaks remains unclear. Here we show that TA-dinucleotide repeats are highly unstable in MSI cells and undergo large-scale expansions, distinct from previously described insertion or deletion mutations of a few nucleotides5. Expanded TA repeats form non-B DNA secondary structures that stall replication forks, activate the ATR checkpoint kinase, and require unwinding by the WRN helicase. In the absence of WRN, the expanded TA-dinucleotide repeats are susceptible to cleavage by the MUS81 nuclease, leading to massive chromosome shattering. These findings identify a distinct biomarker that underlies the synthetic lethal dependence on WRN, and support the development of therapeutic agents that target WRN for MSI-associated cancers.
Collapse
Affiliation(s)
| | - Sriram Sridharan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - William J Nathan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Anthony Tubbs
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Edmond M Chan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Frida Belinky
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Veenu Tripathi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kyla Foster
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | | | - Abimael Cruz-Migoni
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | | | - Ashir A Borah
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | | | - Nikolas Kesten
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Cambridge, MA, USA
| | - Kasper Fugger
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| | - Robert L Walker
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | | | - Bruce E Hayward
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | | | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paul S Meltzer
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
30
|
Margaryan A, Lawson DJ, Sikora M, Racimo F, Rasmussen S, Moltke I, Cassidy LM, Jørsboe E, Ingason A, Pedersen MW, Korneliussen T, Wilhelmson H, Buś MM, de Barros Damgaard P, Martiniano R, Renaud G, Bhérer C, Moreno-Mayar JV, Fotakis AK, Allen M, Allmäe R, Molak M, Cappellini E, Scorrano G, McColl H, Buzhilova A, Fox A, Albrechtsen A, Schütz B, Skar B, Arcini C, Falys C, Jonson CH, Błaszczyk D, Pezhemsky D, Turner-Walker G, Gestsdóttir H, Lundstrøm I, Gustin I, Mainland I, Potekhina I, Muntoni IM, Cheng J, Stenderup J, Ma J, Gibson J, Peets J, Gustafsson J, Iversen KH, Simpson L, Strand L, Loe L, Sikora M, Florek M, Vretemark M, Redknap M, Bajka M, Pushkina T, Søvsø M, Grigoreva N, Christensen T, Kastholm O, Uldum O, Favia P, Holck P, Sten S, Arge SV, Ellingvåg S, Moiseyev V, Bogdanowicz W, Magnusson Y, Orlando L, Pentz P, Jessen MD, Pedersen A, Collard M, Bradley DG, Jørkov ML, Arneborg J, Lynnerup N, Price N, Gilbert MTP, Allentoft ME, Bill J, Sindbæk SM, Hedeager L, Kristiansen K, Nielsen R, Werge T, Willerslev E. Population genomics of the Viking world. Nature 2020. [PMID: 32939067 DOI: 10.1038/s41586-020–2688-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The maritime expansion of Scandinavian populations during the Viking Age (about AD 750-1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442 humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci-including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response-in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent.
Collapse
Affiliation(s)
- Ashot Margaryan
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia.,Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Daniel J Lawson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Statistical Sciences, University of Bristol, Bristol, UK
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lara M Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Emil Jørsboe
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrés Ingason
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Mikkel W Pedersen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Thorfinn Korneliussen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,HSE University, Russian Federation National Research University Higher School of Economics, Moscow, Russia
| | - Helene Wilhelmson
- Department of Archaeology and Ancient History, Lund University, Lund, Sweden.,Sydsvensk Arkeologi AB, Kristianstad, Sweden
| | - Magdalena M Buś
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peter de Barros Damgaard
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rui Martiniano
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Gabriel Renaud
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Section for Bioinformatics, Technical University of Denmark (DTU), Copenhagen, Denmark
| | - Claude Bhérer
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - J Víctor Moreno-Mayar
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Anna K Fotakis
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marie Allen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Raili Allmäe
- Archaeological Research Collection, Tallinn University, Tallinn, Estonia
| | - Martyna Molak
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Enrico Cappellini
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Gabriele Scorrano
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alexandra Buzhilova
- Anuchin Research Institute and Museum of Anthropology, Moscow State University, Moscow, Russia
| | - Allison Fox
- Manx National Heritage, Douglas, Isle of Man
| | - Anders Albrechtsen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Birgitte Skar
- NTNU University Museum, Department of Archaeology and Cultural History, Trondheim, Norway
| | - Caroline Arcini
- The Archaeologists, National Historical Museums, Stockholm, Sweden
| | - Ceri Falys
- Thames Valley Archaeological Services (TVAS), Reading, UK
| | | | | | - Denis Pezhemsky
- Anuchin Research Institute and Museum of Anthropology, Moscow State University, Moscow, Russia
| | - Gordon Turner-Walker
- Department of Cultural Heritage Conservation, National Yunlin University of Science and Technology, Douliou, Taiwan
| | | | - Inge Lundstrøm
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid Gustin
- Department of Archaeology and Ancient History, Lund University, Lund, Sweden
| | - Ingrid Mainland
- UHI Archaeology Institute, University of the Highlands and Islands, Kirkwall, UK
| | - Inna Potekhina
- Department of Bioarchaeology, Institute of Archaeology of National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Italo M Muntoni
- Soprintendenza Archeologia, Belle Arti e Paesaggio per le Province di Barletta, Andria, Trani e Foggia, Foggia, Italy
| | - Jade Cheng
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Stenderup
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jilong Ma
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Julie Gibson
- UHI Archaeology Institute, University of the Highlands and Islands, Kirkwall, UK
| | - Jüri Peets
- Archaeological Research Collection, Tallinn University, Tallinn, Estonia
| | | | - Katrine H Iversen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Section for Bioinformatics, Technical University of Denmark (DTU), Copenhagen, Denmark
| | | | - Lisa Strand
- NTNU University Museum, Department of Archaeology and Cultural History, Trondheim, Norway
| | - Louise Loe
- Heritage Burial Services, Oxford Archaeology, Oxford, UK
| | | | - Marek Florek
- Institute of Archaeology, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | | | - Mark Redknap
- Department of History and Archaeology, Amgueddfa Cymru-National Museum Wales, Cardiff, UK
| | - Monika Bajka
- Trzy Epoki Archaeological Service, Klimontów, Poland
| | | | | | - Natalia Grigoreva
- Department of Slavic-Finnish Archaeology, Institute for the History of Material Culture, Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Ole Kastholm
- Department of Research and Heritage, Roskilde Museum, Roskilde, Denmark
| | | | - Pasquale Favia
- Department of Humanities, University of Foggia, Foggia, Italy
| | - Per Holck
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sabine Sten
- Department of Archaeology and Ancient History, Uppsala University Campus Gotland, Visby, Sweden
| | - Símun V Arge
- Tjóðsavnið - Faroe Islands National Museum, Tórshavn, Faroe Islands
| | - Sturla Ellingvåg
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vayacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Science, St Petersburg, Russia
| | | | | | - Ludovic Orlando
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Peter Pentz
- National Museum of Denmark, Copenhagen, Denmark
| | | | | | - Mark Collard
- Department of Archaeology, Simon Fraser University, Burnaby, British Colombia, Canada
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Marie Louise Jørkov
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jette Arneborg
- National Museum of Denmark, Copenhagen, Denmark.,School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Niels Lynnerup
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Neil Price
- Department of Archaeology and Ancient History, Uppsala University, Uppsala, Sweden
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Natural History, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Jan Bill
- Museum of Cultural History, University of Oslo, Oslo, Norway
| | - Søren M Sindbæk
- Centre for Urban Network Evolutions (UrbNet), School of Culture and Society, Aarhus University, Højbjerg, Denmark
| | - Lotte Hedeager
- Institute of Archaeology, Conservation and History, Oslo, Norway
| | | | - Rasmus Nielsen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. .,Department of Integrative Biology, UC Berkeley, Berkeley, CA, USA. .,Department of Statistics, UC Berkeley, Berkeley, CA, USA.
| | - Thomas Werge
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. .,Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen, Denmark. .,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark.
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. .,Department of Zoology, University of Cambridge, Cambridge, UK. .,The Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark. .,The Wellcome Trust Sanger Institute, Cambridge, UK.
| |
Collapse
|
31
|
Margaryan A, Lawson DJ, Sikora M, Racimo F, Rasmussen S, Moltke I, Cassidy LM, Jørsboe E, Ingason A, Pedersen MW, Korneliussen T, Wilhelmson H, Buś MM, de Barros Damgaard P, Martiniano R, Renaud G, Bhérer C, Moreno-Mayar JV, Fotakis AK, Allen M, Allmäe R, Molak M, Cappellini E, Scorrano G, McColl H, Buzhilova A, Fox A, Albrechtsen A, Schütz B, Skar B, Arcini C, Falys C, Jonson CH, Błaszczyk D, Pezhemsky D, Turner-Walker G, Gestsdóttir H, Lundstrøm I, Gustin I, Mainland I, Potekhina I, Muntoni IM, Cheng J, Stenderup J, Ma J, Gibson J, Peets J, Gustafsson J, Iversen KH, Simpson L, Strand L, Loe L, Sikora M, Florek M, Vretemark M, Redknap M, Bajka M, Pushkina T, Søvsø M, Grigoreva N, Christensen T, Kastholm O, Uldum O, Favia P, Holck P, Sten S, Arge SV, Ellingvåg S, Moiseyev V, Bogdanowicz W, Magnusson Y, Orlando L, Pentz P, Jessen MD, Pedersen A, Collard M, Bradley DG, Jørkov ML, Arneborg J, Lynnerup N, Price N, Gilbert MTP, Allentoft ME, Bill J, Sindbæk SM, Hedeager L, Kristiansen K, Nielsen R, Werge T, Willerslev E. Population genomics of the Viking world. Nature 2020; 585:390-396. [PMID: 32939067 DOI: 10.1038/s41586-020-2688-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
The maritime expansion of Scandinavian populations during the Viking Age (about AD 750-1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442 humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci-including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response-in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent.
Collapse
Affiliation(s)
- Ashot Margaryan
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia.,Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Daniel J Lawson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Statistical Sciences, University of Bristol, Bristol, UK
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lara M Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Emil Jørsboe
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrés Ingason
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Mikkel W Pedersen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Thorfinn Korneliussen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,HSE University, Russian Federation National Research University Higher School of Economics, Moscow, Russia
| | - Helene Wilhelmson
- Department of Archaeology and Ancient History, Lund University, Lund, Sweden.,Sydsvensk Arkeologi AB, Kristianstad, Sweden
| | - Magdalena M Buś
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peter de Barros Damgaard
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rui Martiniano
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Gabriel Renaud
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Section for Bioinformatics, Technical University of Denmark (DTU), Copenhagen, Denmark
| | - Claude Bhérer
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - J Víctor Moreno-Mayar
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Anna K Fotakis
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marie Allen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Raili Allmäe
- Archaeological Research Collection, Tallinn University, Tallinn, Estonia
| | - Martyna Molak
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Enrico Cappellini
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Gabriele Scorrano
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alexandra Buzhilova
- Anuchin Research Institute and Museum of Anthropology, Moscow State University, Moscow, Russia
| | - Allison Fox
- Manx National Heritage, Douglas, Isle of Man
| | - Anders Albrechtsen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Birgitte Skar
- NTNU University Museum, Department of Archaeology and Cultural History, Trondheim, Norway
| | - Caroline Arcini
- The Archaeologists, National Historical Museums, Stockholm, Sweden
| | - Ceri Falys
- Thames Valley Archaeological Services (TVAS), Reading, UK
| | | | | | - Denis Pezhemsky
- Anuchin Research Institute and Museum of Anthropology, Moscow State University, Moscow, Russia
| | - Gordon Turner-Walker
- Department of Cultural Heritage Conservation, National Yunlin University of Science and Technology, Douliou, Taiwan
| | | | - Inge Lundstrøm
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid Gustin
- Department of Archaeology and Ancient History, Lund University, Lund, Sweden
| | - Ingrid Mainland
- UHI Archaeology Institute, University of the Highlands and Islands, Kirkwall, UK
| | - Inna Potekhina
- Department of Bioarchaeology, Institute of Archaeology of National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Italo M Muntoni
- Soprintendenza Archeologia, Belle Arti e Paesaggio per le Province di Barletta, Andria, Trani e Foggia, Foggia, Italy
| | - Jade Cheng
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Stenderup
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jilong Ma
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Julie Gibson
- UHI Archaeology Institute, University of the Highlands and Islands, Kirkwall, UK
| | - Jüri Peets
- Archaeological Research Collection, Tallinn University, Tallinn, Estonia
| | | | - Katrine H Iversen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Section for Bioinformatics, Technical University of Denmark (DTU), Copenhagen, Denmark
| | | | - Lisa Strand
- NTNU University Museum, Department of Archaeology and Cultural History, Trondheim, Norway
| | - Louise Loe
- Heritage Burial Services, Oxford Archaeology, Oxford, UK
| | | | - Marek Florek
- Institute of Archaeology, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | | | - Mark Redknap
- Department of History and Archaeology, Amgueddfa Cymru-National Museum Wales, Cardiff, UK
| | - Monika Bajka
- Trzy Epoki Archaeological Service, Klimontów, Poland
| | | | | | - Natalia Grigoreva
- Department of Slavic-Finnish Archaeology, Institute for the History of Material Culture, Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Ole Kastholm
- Department of Research and Heritage, Roskilde Museum, Roskilde, Denmark
| | | | - Pasquale Favia
- Department of Humanities, University of Foggia, Foggia, Italy
| | - Per Holck
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sabine Sten
- Department of Archaeology and Ancient History, Uppsala University Campus Gotland, Visby, Sweden
| | - Símun V Arge
- Tjóðsavnið - Faroe Islands National Museum, Tórshavn, Faroe Islands
| | - Sturla Ellingvåg
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vayacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Science, St Petersburg, Russia
| | | | | | - Ludovic Orlando
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Peter Pentz
- National Museum of Denmark, Copenhagen, Denmark
| | | | | | - Mark Collard
- Department of Archaeology, Simon Fraser University, Burnaby, British Colombia, Canada
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Marie Louise Jørkov
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jette Arneborg
- National Museum of Denmark, Copenhagen, Denmark.,School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Niels Lynnerup
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Neil Price
- Department of Archaeology and Ancient History, Uppsala University, Uppsala, Sweden
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Natural History, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Jan Bill
- Museum of Cultural History, University of Oslo, Oslo, Norway
| | - Søren M Sindbæk
- Centre for Urban Network Evolutions (UrbNet), School of Culture and Society, Aarhus University, Højbjerg, Denmark
| | - Lotte Hedeager
- Institute of Archaeology, Conservation and History, Oslo, Norway
| | | | - Rasmus Nielsen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. .,Department of Integrative Biology, UC Berkeley, Berkeley, CA, USA. .,Department of Statistics, UC Berkeley, Berkeley, CA, USA.
| | - Thomas Werge
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. .,Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen, Denmark. .,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark.
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. .,Department of Zoology, University of Cambridge, Cambridge, UK. .,The Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark. .,The Wellcome Trust Sanger Institute, Cambridge, UK.
| |
Collapse
|
32
|
Wang Q, Li XP, Zhou X, Yang CF, Zhu Z. A single-nucleotide polymorphism in lnc-LAMC2-1:1 interferes with its interaction with miR-128 to alter the expression of deleted in colorectal cancer and its effect on the survival rate of subjects with ovarian cancer. J Cell Biochem 2020; 121:4108-4119. [PMID: 31898842 DOI: 10.1002/jcb.29597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
This study aimed to identify the association between lnc-LAMC2-1:1 polymorphism rs2147578 and the recurrence of ovary cancer, as well as to study the underlying mechanism of rs2147578 in ovary cancer. Real-time polymerase chain reaction, Western blot analysis, immunohistochemistry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Logrank test, and Kaplan-Meier analysis were carried out to explore the role of rs2147578 in ovary cancer. No obvious difference was observed concerning all clinical characteristics among 90 patients genotyped as CC (N = 28), CG (N = 38), and GG (N = 24) in their rs2147578 polymorphism. In addition, the subjects carrying the CC genotype had longer recurrence-free survival time and showed a lower level of malignancy compared with those carrying CG and GG genotypes. Lnc-LAMC2-1:1 and miR-128 were lowly expressed in the CC group, while deleted in colorectal cancer (DCC) was highly expressed in the CC group. Furthermore, DCC was identified as a target gene of miR-128, and miR-128 mimics decreased the luciferase activity of cells cotransfected with wild-type DCC 3'-untranslated region. Lnc-LAMC2:1-1 directly targeted and affected miR-128 expression, and the G allele in lnc-LAMC2-1:1 rs2147578 upregulated miR-128 expression. Transfection with a miR-128 precursor evidently downregulated the expression of lnc-LAMC2-1:1, miR-128, and DCC expression, but did not affect the expression of ABCC5 and body mass index. Finally, miR-128 precursor promoted cell proliferation and inhibited cell apoptosis. Compared with lnc-LAMC2-1:1 rs2147578C allele, the G allele increases the risk of ovarian cancer by reducing the binding between lnc-LAMC2-1:1 and miR-128-3p, which in turn further decreases the expression of DCC and inhibits cell apoptosis.
Collapse
Affiliation(s)
- Qian Wang
- The Center for Reproductive Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiao-Ping Li
- The Center for Reproductive Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xi Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Chun-Fen Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zhu Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
33
|
Sagi-Dain L, Kurolap A, Ilivitzki A, Mory A, Paperna T, Kedar R, Gonzaga-Jauregui C, Peleg A, Baris Feldman H. A novel heterozygous loss-of-function DCC Netrin 1 receptor variant in prenatal agenesis of corpus callosum and review of the literature. Am J Med Genet A 2019; 182:205-212. [PMID: 31697046 DOI: 10.1002/ajmg.a.61404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 11/12/2022]
Abstract
Agenesis of the corpus callosum (ACC) is a common prenatally-detected brain anomaly. Recently, an association between mutations in the DCC Netrin 1 receptor (DCC) gene and ACC, with or without mirror movements, has been demonstrated. In this manuscript, we present a family with a novel heterozygous frameshift mutation in DCC, review the available literature, and discuss the challenges involved in the genetic counseling for recently discovered disorders with paucity of medical information. We performed whole exome sequencing in a healthy nonconsanguineous couple that underwent two pregnancy terminations due to prenatal diagnosis of ACC. A heterozygous variant c.2774dupA (p.Asn925Lysfs*17) in the DCC gene was demonstrated in fetal and paternal DNA samples, as well as in a healthy 4-year-old offspring. When directly questioned, both father and child reported having mirror movements not affecting quality of life. Segregation analysis demonstrated the variant in three paternal siblings, two of them having mirror movements. Brain imaging revealed normal corpus callosum. Summary of literature data describing heterozygous loss-of-function variants in DCC (n = 61) revealed 63.9% penetrance for mirror movements, 9.8% for ACC, and 5% for both. No significant neurodevelopmental abnormalities were reported among the seven published patients with DCC loss-of-function variants and ACC. Prenatal diagnosis of ACC should prompt a specific anamnesis regarding any neurological disorder, as well as intentional physical examination of both parents aimed to detect mirror movements. In suspicious cases, detection of DCC pathogenic variants might markedly improve the predicted prognosis, alleviate the parental anxiety, and possibly prevent pregnancy termination.
Collapse
Affiliation(s)
- Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Anat Ilivitzki
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Pediatric Radiology Unit, Radiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | | | - Reuven Kedar
- Obstetrics and Gynecology department, Carmel Medical Center, Haifa, Israel
| | | | - Amir Peleg
- Genetics Institute, Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
34
|
Comer JD, Alvarez S, Butler SJ, Kaltschmidt JA. Commissural axon guidance in the developing spinal cord: from Cajal to the present day. Neural Dev 2019; 14:9. [PMID: 31514748 PMCID: PMC6739980 DOI: 10.1186/s13064-019-0133-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
During neuronal development, the formation of neural circuits requires developing axons to traverse a diverse cellular and molecular environment to establish synaptic contacts with the appropriate postsynaptic partners. Essential to this process is the ability of developing axons to navigate guidance molecules presented by specialized populations of cells. These cells partition the distance traveled by growing axons into shorter intervals by serving as intermediate targets, orchestrating the arrival and departure of axons by providing attractive and repulsive guidance cues. The floor plate in the central nervous system (CNS) is a critical intermediate target during neuronal development, required for the extension of commissural axons across the ventral midline. In this review, we begin by giving a historical overview of the ventral commissure and the evolutionary purpose of decussation. We then review the axon guidance studies that have revealed a diverse assortment of midline guidance cues, as well as genetic and molecular regulatory mechanisms required for coordinating the commissural axon response to these cues. Finally, we examine the contribution of dysfunctional axon guidance to neurological diseases.
Collapse
Affiliation(s)
- J D Comer
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - S Alvarez
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Molecular Biology Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - S J Butler
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - J A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
35
|
Zhou W, Triche TJ, Laird PW, Shen H. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res 2019; 46:e123. [PMID: 30085201 PMCID: PMC6237738 DOI: 10.1093/nar/gky691] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
We report a new class of artifacts in DNA methylation measurements from Illumina HumanMethylation450 and MethylationEPIC arrays. These artifacts reflect failed hybridization to target DNA, often due to germline or somatic deletions and manifest as incorrectly reported intermediate methylation. The artifacts often survive existing preprocessing pipelines, masquerade as epigenetic alterations and can confound discoveries in epigenome-wide association studies and studies of methylation-quantitative trait loci. We implement a solution, P-value with out-of-band (OOB) array hybridization (pOOBAH), in the R package SeSAMe. Our method effectively masks deleted and hyperpolymorphic regions, reducing or eliminating spurious reports of epigenetic silencing at oft-deleted tumor suppressor genes such as CDKN2A and RB1 in cases with somatic deletions. Furthermore, our method substantially decreases technical variation whilst retaining biological variation, both within and across HM450 and EPIC platform measurements. SeSAMe provides a light-weight, modular DNA methylation data analysis suite, with a performant implementation suitable for efficient analysis of thousands of samples.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Epigenetics, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503 USA
| | - Timothy J Triche
- Center for Epigenetics, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503 USA
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503 USA
| | - Hui Shen
- Center for Epigenetics, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503 USA
| |
Collapse
|
36
|
Li HP, Su W, Shu Y, Yuan XC, Lin LX, Hou TF, Xiang HC, Zhu H, Hu XF, Pan L, Wu JN, Meng XF, Pan HL, Wu CH, Li M. Electroacupuncture decreases Netrin-1-induced myelinated afferent fiber sprouting and neuropathic pain through μ-opioid receptors. J Pain Res 2019; 12:1259-1268. [PMID: 31118749 PMCID: PMC6499485 DOI: 10.2147/jpr.s191900] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: We determined whether electroacupuncture (EA) reduces Netrin-1-induced myelinated primary afferent nerve fiber sprouting in the spinal cord and pain hypersensitivity associated with postherpetic neuralgia (PHN) through activation of μ-opioid receptors. Methods: PHN was induced by systemic injection of resiniferatoxin (RTX) in rats. Thirty-six days after RTX injection, a μ-opioid receptor antagonist, beta-funaltrexamine (β-FNA) or a κ-opioid receptor antagonist, nor Binaltorphimine (nor-BNI), was injected intrathecally 30 mins before EA, once every other day for 4 times. Mechanical allodynia was tested with von Frey filaments. The protein expression level of Netrin-1 and its receptors (DCC and UNC5H2) were quantified by using western blotting. The myelinated primary afferent nerve fiber sprouting was mapped with the transganglionic tracer cholera toxin B-subunit (CTB). Results: Treatment with 2 Hz EA at “Huantiao” (GB30) and “Yanglingquan” (GB34) decreased the mechanical allodynia at 22 days and the myelinated primary afferent nerve fiber preternatural sprouting into the lamina II of the spinal dorsal horn at 42 days after RTX injection. Also, treatment with 2 Hz EA reduced the protein levels of DCC and Netrin-1 and promoted the expression of UNC5H2 in the spinal dorsal horn 42 days after RTX injection. Furthermore, the μ-opioid receptor antagonist β-FNA, but not the κ-opioid receptor antagonist nor-BNI, reversed the effect of EA on neuropathic pain caused by RTX. In addition, morphine inhibited the Netrin-1 protein level induced by RTX in SH-SY5Y cells. Conclusions: Through activation of μ-opioid receptors, treatment with EA reduces the expression level of DCC and Netrin-1 and changes a growth-permissive environment in spinal dorsal horn into an inhibitory environment by increasing UNC5H2, thus decreasing RTX-caused primary afferent nerve sprouting in the spinal dorsal horn and neuropathic pain.
Collapse
Affiliation(s)
- Hong-Ping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wen Su
- Department of Acupuncture, Wuhan First Hospital, Wuhan, People's Republic of China
| | - Yang Shu
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, People's Republic of China
| | - Xiao-Cui Yuan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li-Xue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Teng-Fei Hou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hong-Chun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xue-Fei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Pan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing-Nan Wu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xian-Fang Meng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cai-Hua Wu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Acupuncture, Wuhan First Hospital, Wuhan, People's Republic of China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
37
|
Rodrigues-Junior DM, Biassi TP, de Albuquerque GE, Carlin V, Buri MV, Machado-Junior J, Vettore AL. Downregulation of DCC sensitizes multiple myeloma cells to bortezomib treatment. Mol Med Rep 2019; 19:5023-5029. [PMID: 31059005 DOI: 10.3892/mmr.2019.10142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is an incurable disease; a better understanding of the molecular aspects of this hematological malignancy could contribute to the development of new treatment strategies and help to improve the survival rates of patients with MM. Previously, the methylation status of the deleted in colorectal cancer (DCC) gene was correlated with the survival rate of patients with MM, thus the main goal of this study was to understand DCC contribution to MM tumorigenesis, and to assess the impact of DCC inhibition in the MM response to treatment with bortezomib. Our results demonstrated that hypermethylation of the DCC promoter inhibits gene expression, and DCC silencing is significantly correlated with a reduction in cell viability and an increase in cell death induced by bortezomib. In conclusion, our results suggested that hypermethylation is an important mechanism of DCC expression regulation in MM and that the absence of DCC contributes to the enhanced sensitivity to treatment with bortezomib.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Department of Biological Sciences, Laboratório de Biologia Molecular do Câncer, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo 04039‑032, Brazil
| | - Thaís Priscila Biassi
- Department of Biological Sciences, Laboratório de Biologia Molecular do Câncer, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo 04039‑032, Brazil
| | - Gabriela Estrela de Albuquerque
- Department of Biological Sciences, Laboratório de Biologia Molecular do Câncer, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo 04039‑032, Brazil
| | - Viviane Carlin
- Department of Biological Sciences, Laboratório de Biologia Molecular do Câncer, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo 04039‑032, Brazil
| | - Marcus Vinicius Buri
- Department of Biochemistry, Insitute of Pharmacology, Universidade Federal de São Paulo, Campus São Paulo, São Paulo 04044‑020, Brazil
| | - Joel Machado-Junior
- Department of Biological Sciences, Laboratório de Biologia Molecular do Câncer, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo 04039‑032, Brazil
| | - Andre Luiz Vettore
- Department of Biological Sciences, Laboratório de Biologia Molecular do Câncer, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo 04039‑032, Brazil
| |
Collapse
|
38
|
Vacante M, Borzì AM, Basile F, Biondi A. Biomarkers in colorectal cancer: Current clinical utility and future perspectives. World J Clin Cases 2018; 6:869-881. [PMID: 30568941 PMCID: PMC6288499 DOI: 10.12998/wjcc.v6.i15.869] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer death worldwide. CRC has poor prognosis and there is a crucial need for new diagnostic and prognostic biomarkers to avoid CRC-related deaths. CRC can be considered a sporadic disease in most cases (75%-80%), but it has been suggested that crosstalk between gene mutations (i.e., mutations of BRAF, KRAS, and p53 as well as microsatellite instability) and epigenetic alterations (i.e., DNA methylation of CpG island promoter regions) could play a pivotal role in cancer development. A number of studies have focused on molecular testing to guide targeted and conventional treatments for patients with CRC, sometimes with contrasting results. Some of the most useful innovations in the management of CRC include the possibility to detect the absence of KRAS, BRAF, NRAS and PIK3CA gene mutations with the subsequent choice to administer targeted adjuvant therapy with anti-epidermal growth factor receptor antibodies. Moreover, CRC patients can benefit from tests for microsatellite instability and for the detection of loss of heterozygosity of chromosome 18q that can be helpful in guiding therapeutic decisions as regards the administration of 5-FU. The aim of this review was to summarize the most recent evidence on the possible use of genetic or epigenetic biomarkers for diagnosis, prognosis and response to therapy in CRC patients.
Collapse
Affiliation(s)
- Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Antonio Maria Borzì
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Francesco Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
| |
Collapse
|
39
|
Nakayama H, Kusumoto C, Nakahara M, Fujiwara A, Higashiyama S. Semaphorin 3F and Netrin-1: The Novel Function as a Regulator of Tumor Microenvironment. Front Physiol 2018; 9:1662. [PMID: 30532711 PMCID: PMC6265511 DOI: 10.3389/fphys.2018.01662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023] Open
Abstract
Axon guidance molecules play an important role in regulating proper neuronal networking during neuronal development. They also have non-neuronal properties, which include angiogenesis, inflammation, and tumor development. Semaphorin 3F (SEMA3F), a member of the class 3 semaphorins, was initially identified as an axon guidance factor, that repels axons and collapses growth cones. However, SEMA3F has similar effects on endothelial cells (ECs) and tumor cells. In this review, we discuss the novel molecular mechanisms underlying SEMA3F activity in vascular and tumor biology. Recent evidence suggests that SEMA3F functions as a PI3K-Akt-mTOR inhibitor in mammalian cells, including T cells, ECs, and tumor cells. Therefore, SEMA3F may have broad therapeutic implications. We also discuss the key role of axon guidance molecules as regulators of the tumor microenvironment. Netrin-1, a chemoattractant factor in the neuronal system, promotes tumor progression by enhancing angiogenesis and metastasis. Moreover, our recent studies demonstrate that netrin-1/neogenin interactions augment CD4+ T cell chemokinesis and elicit pro-inflammatory responses, suggesting that netrin-1 plays a key role in modulating the function of a tumor and its surrounding cells in the tumor microenvironment. Overall, this review focuses on SEMA3F and netrin-1 signaling mechanisms to understand the diverse biological functions of axon guidance molecules.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Chiaki Kusumoto
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Masako Nakahara
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Akira Fujiwara
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| |
Collapse
|
40
|
Wang H, Boussouar A, Mazelin L, Tauszig-Delamasure S, Sun Y, Goldschneider D, Paradisi A, Mehlen P. The Proto-oncogene c-Kit Inhibits Tumor Growth by Behaving as a Dependence Receptor. Mol Cell 2018; 72:413-425.e5. [DOI: 10.1016/j.molcel.2018.08.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 04/20/2018] [Accepted: 08/23/2018] [Indexed: 11/15/2022]
|
41
|
Negulescu A, Mehlen P. Dependence receptors – the dark side awakens. FEBS J 2018; 285:3909-3924. [DOI: 10.1111/febs.14507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Ana‐Maria Negulescu
- Apoptosis, Cancer and Development Laboratory – Equipe labelisée “La Ligue” LabEx DEVweCAN INSERM U1052 – CNRS UMR5286 Centre de Cancérologie de Lyon Centre Léon Bérard Université Claude Bernard Lyon‐1 Université de Lyon France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory – Equipe labelisée “La Ligue” LabEx DEVweCAN INSERM U1052 – CNRS UMR5286 Centre de Cancérologie de Lyon Centre Léon Bérard Université Claude Bernard Lyon‐1 Université de Lyon France
| |
Collapse
|
42
|
Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett 2018; 16:9-18. [PMID: 29928381 DOI: 10.3892/ol.2018.8679] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) results from the progressive accumulation of multiple genetic and epigenetic aberrations within cells. The progression from colorectal adenoma to carcinoma is caused by three major pathways: Microsatellite instability, chromosomal instability and CpG island methylator phenotype. A growing body of scientific evidences suggests that CRC is a heterogeneous disease, and genetic characteristics of the tumors determine their prognostic outcome and response to targeted therapies. Early diagnosis and effective targeted therapies based on a current knowledge of the molecular characteristics of CRC are essential to the successful treatment of CRC. Therefore, the present review summarized the current understanding of the molecular characteristics of CRC, and discussed its implications for diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Hong-Quan Duong
- Department of Cancer Research, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi 100000, Vietnam
| |
Collapse
|
43
|
The role of netrin-1 in metastatic renal cell carcinoma treated with sunitinib. Oncotarget 2018; 9:22631-22641. [PMID: 29854303 PMCID: PMC5978253 DOI: 10.18632/oncotarget.25201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 03/17/2018] [Indexed: 01/20/2023] Open
Abstract
Introduction Clear-cell renal cell carcinoma (ccRCC) is the sixth most common malignancy in men in North America. Since ccRCC is a malignancy dependent on neovascularization, current first line systemic therapies like sunitinib, target the formation of new vessels allowing nutrient deprivation and cell death. However, recent studies have shown that patients develop resistance after approximately 1 year of treatment and show disease progression while on therapy. Therefore, we propose to identify the protein(s) responsible for increased migration with the aim of developing a new therapy that will target the identified protein and potentially slow down the progression of the disease. Material and Methods Human renal cancer cell lines (Caki-1, Caki-2, ACHN) were treated with increasing doses of sunitinib to develop a sunitinib-conditioned renal cell carcinoma cell line. mRNA microarray and qPCR were performed to compare the differences in gene expression between Caki-1 sunitinib-conditioned and non-conditioned cells. NTN1 was assessed in our in vivo sunitinib-conditioned mouse model using immunostaining. xCELLigence and scratch assays were used to evaluate migration and MTS was used to evaluate cell viability. Results Human renal cell carcinoma sunitinib-conditioned cell lines showed upregulation of netrin-1 in microarray and q-PCR. Increased migration was demonstrated in Caki-1 sunitinib-conditioned cells when compared to the non-treated ones as well as, increased endothelial cell migration. Silencing of netrin-1 in sunitinib-conditioned Caki-1 cells did not demonstrate a significant reduction in cell migration. Conclusion Netrin-1 is highly upregulated in renal cell carcinoma treated with sunitinib, but has no influence on cell viability or cell migration in metastatic RCC.
Collapse
|
44
|
Baltaci V, Sardas S, Aytac B, Cakar S, Karakaya AE. Assessment of Cytogenetic Aberrations and Comet Assay in Colorectal Adenocarcinomas. TUMORI JOURNAL 2018; 89:305-10. [PMID: 12908788 DOI: 10.1177/030089160308900314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aims, Background and Study Design Few studies have investigated the karyotypes of colorectal carcinomas with emphasis on the correlation between cytogenetic findings and clinicopathologic features. The aim of our study involving 20 colorectal adenocarcinomas was to determine their genomic alterations at the chromosomal level by correlating the cytogenetic findings with the extent of DNA damage and clinicopathologic parameters and to compare the results with those of healthy controls. Results Cytogenetic evaluation of patients and controls revealed 10 abnormal karyotypes in patients with adenocarcinomas located in the rectum, sigmoid and rectosigmoid regions. Four had numerical and six had structural abnormalities. Conclusions Statistical analysis revealed a significant difference compared with controls (P <0.01). The karyotypes and the extent of DNA damage assessed by the comet assay were also significantly correlated with tumor stage (P <0.01) using the Kruskal-Wallis non-parametric test, while no statistical significance was observed in relation to patient age and smoking.
Collapse
Affiliation(s)
- Volkan Baltaci
- Department of Obstetrics and Gynecology-Infertility Center, Ankara University School of Medicine, Turkey.
| | | | | | | | | |
Collapse
|
45
|
Kopnin B. Genetic Events Responsible for Colorectal Tumorigenesis: Achievements and Challenges. TUMORI JOURNAL 2018; 79:235-43. [PMID: 8249174 DOI: 10.1177/030089169307900401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Colorectal carcinogenesis is a multistep process that is accompanied by accumulation of changes in proto-oncogenes and tumor-suppressor genes. APC/MCC, RAS, DCC, p53 mutations and/or allelic losses, hyperexpression of c-MYC and RB genes, as well as other genomic alterations appear at characteristic stages of tumor development and are observed in most neoplasms. However, consideration of each of these abnormalities leaves many unanswered questions. The striking data on recurrent amplification of the RB tumor-suppressor gene as well as suppressive activities of protein kinase C and activated RAS genes, at least in some colon carcinoma cell lines, suggest the unusual effects of some signalling pathways in colonic epithelial cells. The results obtained to date indicate that distinct sets of genetic changes may underlie the development of colorectal tumors.
Collapse
Affiliation(s)
- B Kopnin
- Institute of Carcinogenesis, Cancer Research Center, Moscow
| |
Collapse
|
46
|
Golenkina S, Chaturvedi V, Saint R, Murray MJ. Frazzled can act through distinct molecular pathways in epithelial cells to regulate motility, apical constriction, and localisation of E-Cadherin. PLoS One 2018; 13:e0194003. [PMID: 29518139 PMCID: PMC5843272 DOI: 10.1371/journal.pone.0194003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 01/11/2023] Open
Abstract
Netrin receptors of the DCC/NEO/UNC-40/Frazzled family have well established roles in cell migration and axon guidance but can also regulate epithelial features such as adhesion, polarity and adherens junction (AJ) stability. Previously, we have shown that overexpression of Drosophila Frazzled (Fra) in the peripodial epithelium (PE) inhibits wing disc eversion and also generates cellular protrusions typical of motile cells. Here, we tested whether the molecular pathways by which Fra inhibits eversion are distinct from those driving motility. We show that in disc proper (DP) epithelial cells Fra, in addition to inducing F-Actin rich protrusions, can affect localization of AJ components and columnar cell shape. We then show that these phenotypes have different requirements for the three conserved Fra cytoplasmic P-motifs and for downstream genes. The formation of protrusions required the P3 motif of Fra, as well as integrins (mys and mew), the Rac pathway (Rac1, wave and, arpc3) and myosin regulatory light chain (Sqh). In contrast, apico-basal cell shape change, which was accompanied by increased myosin phosphorylation, was critically dependent upon the P1 motif and was promoted by RhoGef2 but inhibited by Rac1. Fra also caused a loss of AJ proteins (DE-Cad and Arm) from basolateral regions of epithelial cells. This phenotype required all 3 P-motifs, and was dependent upon the polarity factor par6. par6 was not required for protrusions or cell shape change, but was required to block eversion suggesting that control of AJ components may underlie the ability of Fra to promote epithelial stability. The results imply that multiple molecular pathways act downstream of Fra in epithelial cells.
Collapse
Affiliation(s)
- Sofia Golenkina
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Vishal Chaturvedi
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Saint
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J. Murray
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Sato Y, Matsuo A, Kudoh S, Fang L, Hasegawa K, Shinmyo Y, Ito T. Expression of Draxin in Lung Carcinomas. Acta Histochem Cytochem 2018; 51:53-62. [PMID: 29622850 PMCID: PMC5880803 DOI: 10.1267/ahc.17035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Guidance molecules, such as Netrin-1, and their receptors have important roles in controlling axon pathfinding, modulate biological activities of various cancer cells, and may be a useful target for cancer therapy. Dorsal repulsive axon guidance protein (Draxin) is a novel guidance molecule that binds not only common guidance molecule receptors with Netrin-1, but also directly binds the EGF domain of Netrin-1 through a 22-amino-acid peptide (22aa). By immunostaining, Draxin was positively expressed in small cell carcinoma, adenocarcinoma (ADC), and squamous cell carcinoma of the lung. In addition, western blot analysis revealed that Draxin was expressed in all histological types of lung cancer cell lines examined. Knockdown of Draxin in an ADC cell line H358 resulted in altered expression of molecules associated with proliferation and apoptosis. The Ki-67 labeling index of Draxin-knockdown ADC cells was increased compared to that of control ADC cells. In H358 cells, treatment of 22aa induced phosphorylation of histone H3, but did not change apoptosis-associated enzymes. These data suggest that Draxin might be involved in cell proliferation and apoptosis in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Younosuke Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Liu Fang
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
- Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University
| | - Koki Hasegawa
- Center for Instrumental Analysis, Kyoto Pharmaceutical University
| | - Yohei Shinmyo
- Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
48
|
Mahid S, Minor K, Brangers B, Cobbs G, Galandiuk S. SMAD2 and the Relationship of Colorectal Cancer to Inflammatory Bowel Disease. Int J Biol Markers 2018. [DOI: 10.1177/172460080802300306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel diseases (IBDs) affecting the colon [Crohn's disease (CD) and ulcerative colitis (UC)] are associated with an increased risk of colorectal cancer (CRC). Our previous work using oligonucleotide array data indicated that SMAD2 was significantly underexpressed in UC dysplastic tissue compared to benign UC. The aim of this current study was to determine whether single nucleotide polymorphisms (SNPs) within the SMAD2 gene are associated with IBD dysplasia/cancer. We performed an SNP haplotype-based case-control association study. Leukocyte DNA was obtained from 489 unrelated Caucasians (158 UC, 175 CD, 71 CRC, 85 controls). Eleven SNPs were genotyped. All 11 SNPs were in Hardy-Weinberg equilibrium in the control population. Strong linkage disequilibrium was observed among nearly all SMAD2 SNPs. There were no significant associations between SMAD2 allele or haplotype frequencies. Power calculations indicated good power for single-marker analysis (>0.8) and reasonably good power against effects of 0.1–0.15 for haplotype analysis. SMAD2 SNPs were not associated with the development of IBD dysplasia/cancer. This incongruity between our previous microarray data and the findings from this genotype study may be attributed to mechanisms such as alternative splicing of pre-mRNA SMAD2 and/or cross talk with other cellular pathways.
Collapse
Affiliation(s)
- S.S. Mahid
- Price Institute of Surgical Research and the Section of Colorectal Surgery, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| | - K.S. Minor
- Price Institute of Surgical Research and the Section of Colorectal Surgery, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| | - B.C. Brangers
- Price Institute of Surgical Research and the Section of Colorectal Surgery, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| | - G.A. Cobbs
- Department of Biology, University of Louisville, Kentucky - USA
| | - S. Galandiuk
- Price Institute of Surgical Research and the Section of Colorectal Surgery, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
49
|
Chong A, Teo JX, Ban KHK. Distinct epigenetic signatures elucidate enhancer-gene relationships that delineate CIMP and non-CIMP colorectal cancers. Oncotarget 2018; 7:28027-39. [PMID: 27049830 PMCID: PMC5053707 DOI: 10.18632/oncotarget.8473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Epigenetic changes, like DNA methylation, affect gene expression and in colorectal cancer (CRC), a distinct phenotype called the CpG island methylator phenotype (“CIMP”) has significantly higher levels of DNA methylation at so-called “Type C loci” within the genome. We postulate that enhancer-gene pairs are coordinately controlled through DNA methylation in order to regulate the expression of key genes/biomarkers for a particular phenotype. Firstly, we found 24 experimentally-validated enhancers (VISTA enhancer browser) that contained statistically significant (FDR-adjusted q-value of <0.01) differentially methylated regions (DMRs) (1000bp) in a study of CIMP versus non-CIMP CRCs. Of these, the methylation of 2 enhancers, 1702 and 1944, were found to be very well correlated with the methylation of the genes Wnt3A and IGDCC3, respectively, in two separate and independent datasets. We show for the first time that there are indeed distinct and dynamic changes in the methylation pattern of specific enhancer-gene pairs in CRCs. Such a coordinated epigenetic event could be indicative of an interaction between (1) enhancer 1702 and Wnt3A and (2) enhancer 1944 and IGDCC3. Moreover, our study shows that the methylation patterns of these 2 enhancer-gene pairs can potentially be used as biomarkers to delineate CIMP from non-CIMP CRCs.
Collapse
Affiliation(s)
- Allen Chong
- Department of Pathology, National University of Singapore, 119074 Singapore.,Present address: Shanxi Guoxin Caregeno Medical Laboratories, Taiyuan, Shanxi Province, 030006 China
| | - Jing Xian Teo
- Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Kenneth H K Ban
- Department of Biochemistry, National University of Singapore, 117596 Singapore.,Institute of Molecular and Cell Biology, 138673 Singapore
| |
Collapse
|
50
|
Sepulveda AR, J. Del Portillo A. Molecular Basis of Diseases of the Gastrointestinal Tract. MOLECULAR PATHOLOGY 2018:387-415. [DOI: 10.1016/b978-0-12-802761-5.00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|