1
|
Wijayasiri P, Astbury S, Needham G, Kaye P, Bhat M, Piccinini AM, Aravinthan AD. Role of hepatocellular senescence in the development of hepatocellular carcinoma and the potential for therapeutic manipulation. Hum Cell 2025; 38:70. [PMID: 40100482 PMCID: PMC11920335 DOI: 10.1007/s13577-025-01201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Accumulation of senescent hepatocytes is universal in chronic liver disease (CLD). This study investigates an association between hepatocyte senescence and hepatocellular carcinoma (HCC) and explores the therapeutic role of sirolimus. Background liver biopsies from 15 patients with cirrhosis and HCC and 45 patients with cirrhosis were stained for p16, a marker of cell senescence. STAM™ mice were randomized into 3 groups of 5 at 4 weeks of age and administered vehicle ± sirolimus intraperitoneally, thrice weekly, from 4 to 18 weeks of age. Placebo group was an administered vehicle, early sirolimus group was an administered vehicle with sirolimus, late sirolimus group was an administered vehicle from 4 to 12 weeks then vehicle with sirolimus from 12 to 18 weeks. The primary outcome was HCC nodule development. Senescent hepatocyte burden and senescence-associated secretory phenotype (SASP) factors were assessed in mice livers. In the human study, age (OR 1.282, 95% CI 1.086-1.513, p = 0.003) and p16 (OR 1.429, 95% CI 1.112-1.838, p = 0.005) were independently associated with HCC. In the animal study, all three groups exhibited similar MASLD activity scores (p = 0.39) and fibrosis area (p = 0.92). The number and the maximum diameter of HCC nodules were significantly lower in the early sirolimus group compared to placebo and late sirolimus group. The gene expression of SASP factors was similar in all groups. Protein levels of some SASP factors (TNFα, IL1β, IL-2, CXCL15) were significantly lower in sirolimus administered groups compared to placebo group. The study demonstrates an independent association between senescent hepatocyte burden and HCC. It indicates a potential chemoprophylactic role for sirolimus through SASP factor inhibition. These early results could inform a future human clinical trial.
Collapse
Affiliation(s)
- Pramudi Wijayasiri
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, E Floor, West Block, QMC Campus, Derby Road, Nottingham, NG7 2UH, UK
| | - Stuart Astbury
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, E Floor, West Block, QMC Campus, Derby Road, Nottingham, NG7 2UH, UK
| | - Grace Needham
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Philip Kaye
- Department of Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Mamatha Bhat
- Multiorgan Transplant Program, Toronto General Hospital, University of Toronto, Toronto, Canada
| | | | - Aloysious D Aravinthan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, E Floor, West Block, QMC Campus, Derby Road, Nottingham, NG7 2UH, UK.
| |
Collapse
|
2
|
Song G, Zhao HQ, Liu Q, Fan Z. A review on biodegradable biliary stents: materials and future trends. Bioact Mater 2022; 17:488-495. [PMID: 35415292 PMCID: PMC8968460 DOI: 10.1016/j.bioactmat.2022.01.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Biliary stricture is defined as the reduction and narrowing of the bile duct lumen, which can be caused by many factors such as cancer and inflammation. Biliary stent placement can effectively alleviate benign and malignant biliary strictures. However, the commonly used plastic or metallic biliary stents are far from ideal and do not satisfy all clinical requirements,although several types of biodegradable biliary stents have been developed and used clinically. In this review, we summarized current development status of biodegradable stents with the emphasis on the stent materials. We also presented the future development trends based on the published literature.
Summary of current development status of bioresorbable biliary stents with the emphasis on the stent materials. The future development trends based on the published literature. The advantages of bioresorbable biliary stents compared with metallic and plastic biliary stents.
Collapse
|
3
|
Novel therapeutics for portal hypertension and fibrosis in chronic liver disease. Pharmacol Ther 2020; 215:107626. [DOI: 10.1016/j.pharmthera.2020.107626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
|
4
|
Chang CC, Chuang CL, Hsin IF, Hsu SJ, Huang HC, Lee FY, Lee SD. A high-dose rapamycin treatment alleviates hepatopulmonary syndrome in cirrhotic rats. J Chin Med Assoc 2020; 83:32-40. [PMID: 31567652 DOI: 10.1097/jcma.0000000000000194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rapamycin is a type of immunosuppressive agent that acts through inhibition of mammalian target of rapamycin (mTOR). Hepatopulmonary syndrome (HPS) is a lethal complication in cirrhotic patients. It is characterized by hypoxia and increased intrapulmonary shunts, in which pulmonary inflammation and angiogenesis play important roles. The current study aimed to evaluate the effect of rapamycin on HPS using the experimental model of common bile duct ligation (CBDL)-induced cirrhosis in rats. METHODS The rats received low-dose (0.5 mg/kg), high-dose (2 mg/kg) rapamycin, or vehicle from the 15th to the 28th day post CBDL. Then the mortality rate, hemodynamics, biochemistry parameters, arterial blood gas and plasma levels of vascular endothelial growth factor (VEGF) and tumor necrosis factor (TNF)-α were evaluated on the 28th day post CBDL. Pulmonary histopathological stains were performed, and protein expression was examined. In parallel groups, the intrapulmonary shunts of CBDL rats were measured. RESULTS Compared with the control, a high-dose rapamycin treatment decreased portal pressure and improved hypoxia in CBDL rats. It also reduced the plasma level of VEGF and TNF-α and decreased intrapulmonary shunts. Meanwhile, it ameliorated pulmonary inflammation and angiogenesis and downregulated the protein expression of mTOR, P70S6K, nuclear factor kappa B (NFκB), VEGF, and VEGF receptor 2. In contrast, low-dose rapamycin did not attenuate intrapulmonary shunts despite ameliorating portal hypertension. CONCLUSION High-dose rapamycin ameliorates HPS in cirrhotic rats as evidenced by the alleviated hypoxia and decreased intrapulmonary shunts. Downregulation of the mTOR/P70S6K, NFκB, and VEGF signaling pathways might play a key role.
Collapse
Affiliation(s)
- Ching-Chih Chang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Chiao-Lin Chuang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - I-Fang Hsin
- Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Endoscopy Center for Diagnosis and Treatment, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shao-Jung Hsu
- Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Hui-Chun Huang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Fa-Yauh Lee
- Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Expression of neuropeptide Y is increased in an activated human HSC cell line. Sci Rep 2019; 9:9500. [PMID: 31263154 PMCID: PMC6602956 DOI: 10.1038/s41598-019-45932-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023] Open
Abstract
Neuropeptide Y (NPY) is an abundant neuropeptide in the mammalian central and peripheral nervous systems. Transgenic mice overexpressing NPY in noradrenergic neurons have increased level of hepatic triglycerides, fatty acids and cholesterol, which contributed to the development of hepatosteatosis. However, the roles of NPY in the activation of hepatic stellate cells (HSCs) and the underlying mechanisms remain unclear. This study aimed to investigate the expression and secretion of NPY in human immortalized HSC LX-2 cells and the regulatory function of NPY on the fibrogenic response in LX-2 cells, to explore the potential association between NPY and LX-2 activation. The results showed an increase in the expression and secretion of NPY(1–36) in activated LX-2 cells. Both endogenous and exogenous NPY(1–36) induced the phosphorylation of mTOR, p70S6K, and 4EBP1 and promoted the fibrogenic response via NPY Y1 receptor subtype (NPY1R), as these responses were blocked by either an NPY1R antagonist (BIBP3226) or NPY1R knockdown. Moreover, NPY(1–36) serum levels were increased in patients with liver cirrhosis (LC) and hepatocellular carcinoma (HCC) and presented a positive relationship with MELD scores in LC patients. These findings suggest that immortalized HSCs LX-2 have the potential to produce NPY(1–36). High serum levels of NPY(1–36) is correlated with hepatic dysfunction in cirrhotic patients.
Collapse
|
6
|
Vilaseca M, Guixé-Muntet S, Fernández-Iglesias A, Gracia-Sancho J. Advances in therapeutic options for portal hypertension. Therap Adv Gastroenterol 2018; 11:1756284818811294. [PMID: 30505350 PMCID: PMC6256317 DOI: 10.1177/1756284818811294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023] Open
Abstract
Portal hypertension represents one of the major clinical consequences of chronic liver disease, having a deep impact on patients' prognosis and survival. Its pathophysiology defines a pathological increase in the intrahepatic vascular resistance as the primary factor in its development, being subsequently aggravated by a paradoxical increase in portal blood inflow. Although extensive preclinical and clinical research in the field has been developed in recent decades, no effective treatment targeting its primary mechanism has been defined. The present review critically summarizes the current knowledge in portal hypertension therapeutics, focusing on those strategies driven by the disease pathophysiology and underlying cellular mechanisms.
Collapse
Affiliation(s)
- Marina Vilaseca
- Hepatic Hemodynamic Laboratory, IDIBAPS
Biomedical Research Institute, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Department of Biomedical Research, University of
Bern, Bern, Switzerland
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona
Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute,
CIBEREHD, Rosselló 149, 4th floor, 08036 Barcelona, Spain
| |
Collapse
|
7
|
Grouix B, Sarra-Bournet F, Leduc M, Simard JC, Hince K, Geerts L, Blais A, Gervais L, Laverdure A, Felton A, Richard J, Ouboudinar J, Gagnon W, Leblond FA, Laurin P, Gagnon L. PBI-4050 Reduces Stellate Cell Activation and Liver Fibrosis through Modulation of Intracellular ATP Levels and the Liver Kinase B1/AMP-Activated Protein Kinase/Mammalian Target of Rapamycin Pathway. J Pharmacol Exp Ther 2018; 367:71-81. [PMID: 30093459 DOI: 10.1124/jpet.118.250068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022] Open
Abstract
Hepatic fibrosis is a major cause of morbidity and mortality for which there is currently no effective therapy. We previously showed that 2-(3-pentylphenyl)acetic acid (PBI-4050) is a dual G protein-coupled receptor GPR40 agonist/GPR84 antagonist that exerts antifibrotic, anti-inflammatory, and antiproliferative action. We evaluated PBI-4050 for the treatment of liver fibrosis in vivo and elucidated its mechanism of action on human hepatic stellate cells (HSCs). The antifibrotic effect of PBI-4050 was evaluated in carbon tetrachloride (CCl4)- and bile duct ligation-induced liver fibrosis rodent models. Treatment with PBI-4050 suppressed CCl4-induced serum aspartate aminotransferase levels, inflammatory marker nitric oxide synthase, epithelial to mesenchymal transition transcription factor Snail, and multiple profibrotic factors. PBI-4050 also decreased GPR84 mRNA expression in CCl4-induced injury, while restoring peroxisome proliferator-activated receptor γ (PPARγ) to the control level. Collagen deposition and α-smooth muscle actin (α-SMA) protein levels were also attenuated by PBI-4050 treatment in the bile duct ligation rat model. Transforming growth factor-β-activated primary HSCs were used to examine the effect of PBI-4050 and its mechanism of action in vitro. PBI-4050 inhibited HSC proliferation by arresting cells in the G0/G1 cycle phase. Subsequent analysis demonstrated that PBI-4050 signals through a reduction of intracellular ATP levels, activation of liver kinase B1 (LKB1) and AMP-activated protein kinase (AMPK), and blockade of mammalian target of rapamycin (mTOR), resulting in reduced protein and mRNA levels of α-SMA and connective tissue growth factor and restored PPARγ mRNA expression. Our findings suggest that PBI-4050 may exert antifibrotic activity in the liver through a novel mechanism of action involving modulation of intracellular ATP levels and the LKB1/AMPK/mTOR pathway in stellate cells, and PBI-4050 may be a promising agent for treating liver fibrosis.
Collapse
Affiliation(s)
| | | | - Martin Leduc
- Prometic BioSciences Inc., Laval, Québec, Canada
| | | | - Kathy Hince
- Prometic BioSciences Inc., Laval, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | - Lyne Gagnon
- Prometic BioSciences Inc., Laval, Québec, Canada
| |
Collapse
|
8
|
Wu Y, Wang W, Peng XM, He Y, Xiong YX, Liang HF, Chu L, Zhang BX, Ding ZY, Chen XP. Rapamycin Upregulates Connective Tissue Growth Factor Expression in Hepatic Progenitor Cells Through TGF-β-Smad2 Dependent Signaling. Front Pharmacol 2018; 9:877. [PMID: 30135653 PMCID: PMC6092675 DOI: 10.3389/fphar.2018.00877] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Rapamycin (sirolimus) is a mTOR kinase inhibitor and is widely used as an immunosuppressive drug to prevent graft rejection in organ transplantation currently. However, some recent investigations have reported that it had profibrotic effect in the progression of organ fibrosis, and its precise role in the liver fibrosis is still poorly understood. Here we showed that rapamycin upregulated connective tissue growth factor (CTGF) expression at the transcriptional level in hepatic progenitor cells (HPCs). Using lentivirus-mediated small hairpin RNA (shRNA) we demonstrated that knockdown of mTOR, Raptor, or Rictor mimicked the effect of rapamycin treatment. Mechanistically, inhibition of mTOR activity with rapamycin resulted in a hyperactive PI3K-Akt pathway, whereas this activation inhibited the expression of CTGF in HPCs. Besides, rapamycin activated the TGF-β-Smad signaling, and TGF-β receptor type I (TGFβRI) serine/threonine kinase inhibitors completely blocked the effects of rapamycin on HPCs. Moreover, Smad2 was involved in the induction of CTGF through rapamycin-activated TGF-β-Smad signaling as knockdown completely blocked CTGF induction, while knockdown of Smad4 expression partially inhibited induction, whereas Smad3 knockdown had no effect. Rapamycin also induced ROS generation and latent TGF-β activation which contributed to TGF-β-Smad signaling. In conclusion, this study demonstrates that rapamycin upregulates CTGF in HPCs and suggests that rapamycin has potential fibrotic effect in liver.
Collapse
Affiliation(s)
- Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-mei Peng
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-xiao Xiong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze-yang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Effect of sirolimus on liver cirrhosis and hepatic encephalopathy of common bile duct-ligated rats. Eur J Pharmacol 2018; 824:133-139. [PMID: 29444470 DOI: 10.1016/j.ejphar.2018.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 01/16/2023]
Abstract
Cirrhosis is often associated with portal hypertension and portal-systemic collateral vessels formation attributed to angiogenesis, which leads to severe complications as hepatic encephalopathy. Sirolimus has anti-fibrosis and anti-angiogenesis effects, but whether it influences the severity of portal-systemic collaterals and hepatic encephalopathy is unknown. This study was thus designed to address this issue in rats with common bile duct ligation-induced liver cirrhosis. Sham-operated rats were surgical controls. Rats were intraperitoneally administered with 0.5 and 2 mg/kg/day sirolimus or vehicle for 2 weeks. Four weeks post operations, motor activities, body weight, biochemistry and hemodynamic data were measured. The liver was dissected for histopathology, immunohistochemical stains and protein analysis. On the parallel cirrhotic groups, the portal-systemic shunting was determined. The results showed that the body weight gain was significantly lower in sirolimus-treated rats. Sirolimus reduced portal pressure and plasma levels of alanine aminotransferase, aspartate aminotransferase and ammonia, and attenuated hepatic inflammation and fibrosis in cirrhotic rats. In addition, the hepatic phosphorylated mammalian target of rapamycin (mTOR) and P70S6K protein expressions were significantly downregulated and endothelial nitric oxide synthase (eNOS) expression upregulated by sirolimus. Sirolimus did not influence portal-systemic shunting and motor activities of cirrhotic rats. In conclusion, sirolimus significantly improved hepatic inflammation and fibrosis accompanied by portal pressure reduction in cirrhotic rats, in which down-regulated mTOR/P70S6K and up-regulated eNOS expressions might play a role. However, sirolimus did not significantly change the severity of portal-systemic collaterals and motor activities, suggesting that the multifactorial pathogenesis of hepatic encephalopathy could not be fully overcome by sirolimus.
Collapse
|
10
|
Activation of Insulin-PI3K/Akt-p70S6K Pathway in Hepatic Stellate Cells Contributes to Fibrosis in Nonalcoholic Steatohepatitis. Dig Dis Sci 2017; 62:968-978. [PMID: 28194671 DOI: 10.1007/s10620-017-4470-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/20/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Hyperinsulinemia and insulin resistance are hallmark features of nonalcoholic fatty liver disease and steatohepatitis (NASH). It remains unclear whether and how insulin contributes to the development of fibrosis in NASH. In this study, we explored insulin signaling in the regulation of hepatic stellate cell (HSC) activation and the progression of NASH-fibrosis. METHODS Phosphorylation of Akt and p70S6K were examined in primary HSC and in a rat model of NASH-fibrosis induced by high-fat and high-cholesterol diet for 24 weeks. HSC activation was analyzed for the changes in cell morphology, intracellular lipid droplets, expression of α-SMA and cell proliferation. The serum markers and histology for NASH-fibrosis were also characterized in animals. RESULTS Insulin enhanced the expression of smooth muscle actin-α in quiescent but not in activated HSC in culture. Insulin-mediated activation of the PI3K/Akt-p70S6K pathway was involved in the regulation of profibrogenic effects of insulin. Although insulin did not stimulate HSC proliferation directly, the insulin-PI3K/Akt-p70S6K pathway was necessary for serum-enhanced cell proliferation during initial HSC activation. In a rat model of NASH-fibrosis induced by high-fat and high-cholesterol diet, hyperinsulinemia is associated with the activation of p70S6K and enhanced fibrosis. CONCLUSION The insulin-PI3K/Akt-p70S6K pathway plays an important role in the early activation of HSC. The profibrogenic effect of insulin is dependent on the activation stage of HSC. Dysregulation of the insulin pathway likely correlates with the development of fibrosis in NASH, suggesting a potentially novel antifibrotic target of inhibiting insulin signaling in HSC.
Collapse
|
11
|
Ma R, Chen J, Liang Y, Lin S, Zhu L, Liang X, Cai X. Sorafenib: A potential therapeutic drug for hepatic fibrosis and its outcomes. Biomed Pharmacother 2017; 88:459-468. [PMID: 28122312 DOI: 10.1016/j.biopha.2017.01.107] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/16/2022] Open
|
12
|
Rackayova V, Braissant O, McLin VA, Berset C, Lanz B, Cudalbu C. 1H and 31P magnetic resonance spectroscopy in a rat model of chronic hepatic encephalopathy: in vivo longitudinal measurements of brain energy metabolism. Metab Brain Dis 2016; 31:1303-1314. [PMID: 26253240 DOI: 10.1007/s11011-015-9715-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022]
Abstract
Chronic liver disease (CLD) leads to a spectrum of neuropsychiatric disorders named hepatic encephalopathy (HE). Even though brain energy metabolism is believed to be altered in chronic HE, few studies have explored energy metabolism in CLD-induced HE, and their findings were inconsistent. The aim of this study was to characterize for the first time in vivo and longitudinally brain metabolic changes in a rat model of CLD-induced HE with a focus on energy metabolism, using the methodological advantages of high field proton and phosphorus Magnetic Resonance Spectroscopy (1H- and 31P-MRS). Wistar rats were bile duct ligated (BDL) and studied before BDL and at post-operative weeks 4 and 8. Glutamine increased linearly over time (+146 %) together with plasma ammonium (+159 %). As a compensatory effect, other brain osmolytes decreased: myo-inositol (-36 %), followed by total choline and creatine. A decrease in the neurotransmitters glutamate (-17 %) and aspartate (-28 %) was measured only at week 8, while no significant changes were observed for lactate and phosphocreatine. Among the other energy metabolites measured by 31P-MRS, we observed a non-significant decrease in ATP together with a significant decrease in ADP (-28 %), but only at week 8 after ligation. Finally, brain glutamine showed the strongest correlations with changes in other brain metabolites, indicating its importance in type C HE. In conclusion, mild alterations in some metabolites involved in energy metabolism were observed but only at the end stage of the disease when edema and neurological changes are already present. Therefore, our data indicate that impaired energy metabolism is not one of the major causes of early HE symptoms in the established model of type C HE.
Collapse
Affiliation(s)
- Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olivier Braissant
- Service of Biomedicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Valérie A McLin
- Swiss Center for Liver Disease in Children, Department of Pediatrics, University Hospitals Geneva, Geneva, Switzerland
| | - Corina Berset
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bernard Lanz
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
13
|
Saeedi Saravi SS, Ghazi-Khansari M, Ejtemaei Mehr S, Nobakht M, Mousavi SE, Dehpour AR. Contribution of mammalian target of rapamycin in the pathophysiology of cirrhotic cardiomyopathy. World J Gastroenterol 2016; 22:4685-4694. [PMID: 27217700 PMCID: PMC4870075 DOI: 10.3748/wjg.v22.i19.4685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/27/2016] [Accepted: 03/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the role of mammalian target of rapamycin (mTOR) in the pathogenesis of cirrhotic cardiomyopathy and the potential of rapamycin to improve this pathologic condition. METHODS Male albino Wistar rats weighing 100-120 g were treated with tetrachloride carbon (CCl4) for 8 wk to induce cirrhosis. Subsequently, animals were administered rapamycin (2 mg/kg per day). The QTc intervals were calculated in a 5-min electrocardiogram. Then, the left ventricular papillary muscles were isolated to examine inotropic responsiveness to β-adrenergic stimulation using a standard organ bath equipped by Powerlab system. Phosphorylated-mTOR localization in left ventricles was immunohistochemically assessed, and ventricular tumor necrosis factor (TNF)-α was measured. Western blot was used to measure levels of ventricular phosphorylated-mTOR protein. RESULTS Cirrhosis was confirmed by hematoxylin and eosin staining of liver tissues, visual observation of lethargy, weight loss, jaundice, brown urine, ascites, liver stiffness, and a significant increase of spleen weight (P < 0.001). A significant prolongation in QTc intervals occurred in cirrhotic rats exposed to CCl4 (P < 0.001), while this prolongation was decreased with rapamycin treatment (P < 0.01). CCl4-induced cirrhosis caused a significant decrease of contractile responsiveness to isoproterenol stimulation and a significant increase in cardiac TNF-α. These findings were correlated with data from western blot and immunohistochemical studies on phosphorylated-mTOR expression in left ventricles. Phosphorylated-mTOR was significantly enhanced in cirrhotic rats, especially in the endothelium, compared to controls. Rapamycin treatment significantly increased contractile force and myocardial localization of phosphorylated-mTOR and decreased cardiac TNF-α concentration compared to cirrhotic rats with no treatment. CONCLUSION In this study, we demonstrated a potential role for cardiac mTOR in the pathophysiology of cirrhotic cardiomyopathy. Rapamycin normalized the inotropic effect and altered phosphorylated-mTOR expression and myocardial localization in cirrhotic rats.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Mahmoud Ghazi-Khansari
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Shahram Ejtemaei Mehr
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Maliheh Nobakht
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Seyyedeh Elaheh Mousavi
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Ahmad Reza Dehpour
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| |
Collapse
|
14
|
Chen Y, Wang W, Wang H, Li Y, Shi M, Li H, Yan J. Rapamycin Attenuates Splenomegaly in both Intrahepatic and Prehepatic Portal Hypertensive Rats by Blocking mTOR Signaling Pathway. PLoS One 2016; 11:e0141159. [PMID: 26734934 PMCID: PMC4703391 DOI: 10.1371/journal.pone.0141159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/03/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spleen enlargement is often detected in patients with liver cirrhosis, but the precise pathogenetic mechanisms behind the phenomenon have not been clearly elucidated. We investigated the pathogenetic mechanisms of splenomegaly in both portal hypertensive patients and rats, and tried to identify the possible therapy for this disease. METHODS Spleen samples were collected from portal hypertensive patients after splenectomy. Rat models of portal hypertension were induced by common bile duct ligation and partial portal vein ligation. Spleen samples from patients and rats were used to study the characteristics of splenomegaly by histological, immunohistochemical, and western blot analyses. Rapamycin or vehicle was administered to rats to determine the contribution of mTOR signaling pathway in the development of splenomegaly. RESULTS We found that not only spleen congestion, but also increasing angiogenesis, fibrogenesis, inflammation and proliferation of splenic lymphoid tissue contributed to the development of splenomegaly in portal hypertensive patients and rats. Intriguingly, splenomegaly developed time-dependently in portal hypertensive rat that accompanied with progressive activation of mTOR signaling pathway. mTOR blockade by rapamycin profoundly ameliorated splenomegaly by limiting lymphocytes proliferation, angiogenesis, fibrogenesis and inflammation as well as decreasing portal pressure. CONCLUSIONS This study provides compelling evidence indicating that mTOR signaling activation pathway plays a key role in the pathogenesis of splenomegaly in both portal hypertensive patients and rats. Therapeutic intervention targeting mTOR could be a promising strategy for patients with portal hypertension and splenomegaly.
Collapse
Affiliation(s)
- Yunyang Chen
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weijie Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Huakai Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongjian Li
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minmin Shi
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongwei Li
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiqi Yan
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
15
|
Shao X, Li M, Luo C, Wang YY, Lu YY, Feng S, Li H, Lang XB, Wang YC, Lin C, Shen XJ, Zhou Q, Jiang H, Chen JH. Effects of rapamycin against paraquat-induced pulmonary fibrosis in mice. J Zhejiang Univ Sci B 2015; 16:52-61. [PMID: 25559956 DOI: 10.1631/jzus.b1400229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND AIMS Ingestion of paraquat (PQ), a widely used herbicide, can cause severe toxicity in humans, leading to a poor survival rate and prognosis. One of the main causes of death by PQ is PQ-induced pulmonary fibrosis, for which there are no effective therapies. The aim of this study was to evaluate the effects of rapamycin (RAPA) on inhibiting PQ-induced pulmonary fibrosis in mice and to explore its possible mechanisms. METHODS Male C57BL/6J mice were exposed to either saline (control group) or PQ (10 mg/kg body weight, intraperitoneally; test group). The test group was divided into four subgroups: a PQ group (PQ-exposed, non-treated), a PQ+RAPA group (PQ-exposed, treated with RAPA at 1 mg/kg intragastrically), a PQ+MP group (PQ-exposed, treated with methylprednisolone (MP) at 30 mg/kg intraperitoneally), and a PQ+MP+RAPA group (PQ-exposed, treated with MP at 30 mg/kg intraperitoneally and with RAPA at 1 mg/kg intragastrically). The survival rate and body weight of all the mice were recorded every day. Three mice in each group were sacrificed at 14 d and the rest at 28 d after intoxication. Lung tissues were excised and stained with hematoxylin-eosin (H&E) and Masson's trichrome stain for histopathological analysis. The hydroxyproline (HYP) content in lung tissues was detected using an enzyme-linked immunosorbent assay (ELISA) kit. The expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) in lung tissues was detected by immunohistochemical staining and Western blotting. RESULTS A mice model of PQ-induced pulmonary fibrosis was established. Histological examination of lung tissues showed that RAPA treatment moderated the pathological changes of pulmonary fibrosis, including alveolar collapse and interstitial collagen deposition. HYP content in lung tissues increased soon after PQ intoxication but had decreased significantly by the 28th day after RAPA treatment. Immunohistochemical staining and Western blotting showed that RAPA treatment significantly down-regulated the enhanced levels of TGF-β1 and α-SMA in lung tissues caused by PQ exposure. However, RAPA treatment alone could not significantly ameliorate the lower survival rate and weight loss of treated mice. MP treatment enhanced the survival rate, but had no significant effects on attenuating PQ-induced pulmonary fibrosis or reducing the expression of TGF-β1 and α-SMA. CONCLUSIONS This study demonstrates that RAPA treatment effectively suppresses PQ-induced alveolar collapse and collagen deposition in lung tissues through reducing the expression of TGF-β1 and α-SMA. Thus, RAPA has potential value in the treatment of PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Xue Shao
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Farrar CT, DePeralta DK, Day H, Rietz TA, Wei L, Lauwers GY, Keil B, Subramaniam A, Sinskey AJ, Tanabe KK, Fuchs BC, Caravan P. 3D molecular MR imaging of liver fibrosis and response to rapamycin therapy in a bile duct ligation rat model. J Hepatol 2015; 63:689-96. [PMID: 26022693 PMCID: PMC4543390 DOI: 10.1016/j.jhep.2015.04.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/11/2015] [Accepted: 04/17/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Liver biopsy, the gold standard for assessing liver fibrosis, suffers from limitations due to sampling error and invasiveness. There is therefore a critical need for methods to non-invasively quantify fibrosis throughout the entire liver. The goal of this study was to use molecular Magnetic Resonance Imaging (MRI) of Type I collagen to non-invasively image liver fibrosis and assess response to rapamycin therapy. METHODS Liver fibrosis was induced in rats by bile duct ligation (BDL). MRI was performed 4, 10, or 18 days following BDL. Some BDL rats were treated daily with rapamycin starting on day 4 and imaged on day 18. A three-dimensional (3D) inversion recovery MRI sequence was used to quantify the change in liver longitudinal relaxation rate (ΔR1) induced by the collagen-targeted probe EP-3533. Liver tissue was subjected to pathologic scoring of fibrosis and analyzed for Sirius Red staining and hydroxyproline content. RESULTS ΔR1 increased significantly with time following BDL compared to controls in agreement with ex vivo measures of increasing fibrosis. Receiver operating characteristic curve analysis demonstrated the ability of ΔR1 to detect liver fibrosis and distinguish intermediate and late stages of fibrosis. EP-3533 MRI correctly characterized the response to rapamycin in 11 out of 12 treated rats compared to the standard of collagen proportional area (CPA). 3D MRI enabled characterization of disease heterogeneity throughout the whole liver. CONCLUSIONS EP-3533 allowed for staging of liver fibrosis, assessment of response to rapamycin therapy, and demonstrated the ability to detect heterogeneity in liver fibrosis.
Collapse
Affiliation(s)
- Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA 02129, United States
| | - Danielle K. DePeralta
- Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, WRN 401, 55 Fruit St., Boston, MA 02114, United States
| | - Helen Day
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA 02129, United States
| | - Tyson A. Rietz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA 02129, United States
| | - Lan Wei
- Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, WRN 401, 55 Fruit St., Boston, MA 02114, United States
| | - Gregory Y. Lauwers
- Pathology, Massachusetts General Hospital and Harvard Medical School, WRN 2, 55 Fruit St., Boston, MA 02114, United States
| | - Boris Keil
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA 02129, United States
| | - Arun Subramaniam
- Sanofi Genzyme, 49 New York Ave, Framingham, MA 01701, United States
| | - Anthony J. Sinskey
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, United States
| | - Kenneth K. Tanabe
- Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, WRN 401, 55 Fruit St., Boston, MA 02114, United States
| | - Bryan C. Fuchs
- Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, WRN 401, 55 Fruit St., Boston, MA 02114, United States, Corresponding authors: Tel: + 1 617 643 0193; fax: + 1 617 726 2422. (P. Caravan) or Tel: + 1 617 726 4174; fax: 617-726-4442. (B.C. Fuchs)
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St., Suite 2301, Charlestown, MA 02129, United States.
| |
Collapse
|
17
|
San-Miguel B, Crespo I, Sánchez DI, González-Fernández B, Ortiz de Urbina JJ, Tuñón MJ, González-Gallego J. Melatonin inhibits autophagy and endoplasmic reticulum stress in mice with carbon tetrachloride-induced fibrosis. J Pineal Res 2015; 59:151-62. [PMID: 25958928 DOI: 10.1111/jpi.12247] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/05/2015] [Indexed: 01/05/2023]
Abstract
This study aimed to investigate whether inhibition of autophagy and endoplasmic reticulum (ER stress) associates with the antifibrogenic effect of melatonin in mice treated with carbon tetrachloride (CCl4 ). Mice received CCl4 5 μL/g body wt i.p. twice a week for 4 wk or 6 wk. Melatonin was given at 5 or 10 mg/kg/day i.p, beginning 2 wk after the start of CCl4 administration. Treatment with CCl4 resulted in fibrosis evidenced by the staining of α-smooth muscle actin (α-SMA)-positive cells. CCl4 induced an autophagic response measured as the presence of autophagic vesicles, protein 1 light chain 3 (LC3) staining, conversion of LC3-I to autophagosome-associated LC3-II, changes in expression of beclin-1, UV radiation resistance-associated gene (UVRAG), ubiquitin-like autophagy-related (Atg5), Atg12, Atg16L1, sequestosome 1 (p62/SQSTM1), and lysosome-associated membrane protein (LAMP)-2, and increased phosphorylation of the mammalian target of rapamycin (mTOR). There was an increase in the expression of the ER stress chaperones CCAAT/enhancer-binding protein homologous protein (CHOP), immunoglobulin-heavy-chain-binding protein (BiP/GRP78), and 94-kDa glucose-regulated protein (GRP94), and in the mRNA levels of pancreatic ER kinase (PERK), activating transcription factor 6 (ATF6), ATF4, inositol-requiring enzyme 1 (IRE1), and spliced X-box-binding protein-1 (XBP1). Phospho-IRE1, ATF6, and phospho-PERK protein concentration also increased significantly. Immunohistochemical staining of α-SMA indicated an abrogation of hepatic stellate cells activation by melatonin. Furthermore, treatment with the indole resulted in significant inhibition of the autophagic flux and the unfolded protein response. Findings from this study give new insight into molecular pathways accounting for the protective effect of melatonin in fibrogenesis.
Collapse
Affiliation(s)
| | - Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Diana I Sánchez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | | | - María J Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
18
|
Moini M, Schilsky ML, Tichy EM. Review on immunosuppression in liver transplantation. World J Hepatol 2015; 7:1355-1368. [PMID: 26052381 PMCID: PMC4450199 DOI: 10.4254/wjh.v7.i10.1355] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/23/2014] [Accepted: 02/10/2015] [Indexed: 02/06/2023] Open
Abstract
The optimal level of immunosuppression in solid organ transplantation, in particular for the liver, is a delicate balance between the benefit of preventing rejection and the adverse side effects of immunosuppression. There is uncertainty about when this level is achieved in any individual recipient. Immunosuppression regimens vary between individual centers and changes with time as new agents and data are available. Presently concerns about the adverse side effects of calcineurin inhibitor, the main class of immunosuppressive agents used in liver transplantation (LT), has led to consideration of the use of antibody induction therapies for patients at higher risk of developing adverse side effects. The longevity of the transplanted organ is potentially improved by better management of rejection episodes and special consideration for tailoring of immunosuppression to the individual with viral hepatitis C, hepatocellular carcinoma or pregnancy. This review provides an overview of the current strategies for post LT immunosuppression and discusses modifications to consider for special patient populations.
Collapse
Affiliation(s)
- Maryam Moini
- Maryam Moini, Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Nemazee Hospital, Shiraz 71935-1311, Iran
| | - Michael L Schilsky
- Maryam Moini, Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Nemazee Hospital, Shiraz 71935-1311, Iran
| | - Eric M Tichy
- Maryam Moini, Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Nemazee Hospital, Shiraz 71935-1311, Iran
| |
Collapse
|
19
|
Bridle KR, Sobbe AL, de Guzman CE, Santrampurwala N, Jaskowski LA, Clouston AD, Campbell CM, Nathan Subramaniam V, Crawford DHG. Lack of efficacy of mTOR inhibitors and ACE pathway inhibitors as antifibrotic agents in evolving and established fibrosis in Mdr2⁻/⁻ mice. Liver Int 2015; 35:1451-63. [PMID: 24517519 DOI: 10.1111/liv.12494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/04/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Mammalian target of rapamycin and angiotensin-converting enzyme inhibition has been shown to have antifibrotic activity in models of liver fibrosis. The aim of our study was to determine the efficacy of rapamycin, everolimus, irbesartan and captopril, alone and in combination, as antifibrotic agents in the Mdr2(-/-) model of cholestasis both in early injury and established disease. METHODS Mdr2(-/-) mice were treated for 4 weeks with vehicle, rapamycin (1 mg/kg) or everolimus (5 mg/kg) every second day or with captopril (30 mg/kg/day), irbesartan (10 mg/kg/day) or vehicle. Further groups of 3-week-old Mdr2(-/-) mice were treated with rapamycin and irbesartan in combination (1 mg/kg/day and 10 mg/kg/day) or with rapamycin (2 mg/kg/day) for 4 weeks. Liver injury and fibrosis were compared between treated and untreated animals. RESULTS There were no significant improvements in liver injury, histology, hepatic hydroxyproline or profibrogenic gene expression following treatment with rapamycin, everolimus, captopril or irbesartan at any time point studied. Likewise, there were no improvements in liver histology or profibrogenic gene expression following combination therapy or high-dose rapamycin treatment. CONCLUSIONS The antifibrotic effects of rapamycin, everolimus, captopril and irbesartan seen in other models of fibrosis were not replicated in the Mdr2(-/-) model in this study. This highlights the clear need to test specific antifibrotic agents in a number of different animal models. We believe this animal model is ideal to study usefulness of antifibrotic agents in cholestatic liver disease because of the similarity in genetics and hepatic histopathology to human cholestatic liver disease.
Collapse
Affiliation(s)
- Kim R Bridle
- The University of Queensland School of Medicine and the Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Envoi Specialist Pathologists and The Queensland Institute of Medical Research, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wei D, Liao S, Wang J, Yang M, Kong L. Cholestatic liver injury model of bile duct ligation and the protection of Huang-Lian-Jie-Du decoction by NMR metabolomic profiling. RSC Adv 2015. [DOI: 10.1039/c5ra12224d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bile duct ligation (BDL) induced cholestasis in rats and the treatment effects of Huang-Lian-Jie-Du decoction (HLJDD) were investigated by NMR-based metabolomics approach: biphasic feature of BDL model and bilateral adjustment of HLJDD were found.
Collapse
Affiliation(s)
- Dandan Wei
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Shanting Liao
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Junsong Wang
- Center for Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing 210094
- PR China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| |
Collapse
|
21
|
Zhao Y, Ma X, Wang J, Zhu Y, Li R, Wang J, He X, Shan L, Wang R, Wang L, Li Y, Xiao X. Paeoniflorin alleviates liver fibrosis by inhibiting HIF-1α through mTOR-dependent pathway. Fitoterapia 2014; 99:318-27. [DOI: 10.1016/j.fitote.2014.10.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 12/18/2022]
|
22
|
Shi F, Sheng Q, Xu X, Huang W, Kang YJ. Zinc supplementation suppresses the progression of bile duct ligation-induced liver fibrosis in mice. Exp Biol Med (Maywood) 2014; 240:1197-204. [PMID: 25432983 DOI: 10.1177/1535370214558026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/27/2014] [Indexed: 02/05/2023] Open
Abstract
Metallothionein (MT) gene therapy leads to resolution of liver fibrosis in mouse model, in which the activation of collagenases is involved in the regression of liver fibrosis. MT plays a critical role in zinc sequestration in the liver suggesting its therapeutic effect would be mediated by zinc. The present study was undertaken to test the hypothesis that zinc supplementation suppresses liver fibrosis. Male Kunming mice subjected to bile duct ligation (BDL) resulted in liver fibrosis as assessed by increased α-smooth muscle actin (α-SMA) and collagen I production/deposition in the liver. Zinc supplementation was introduced 4 weeks after BDL surgery via intragastric administration once daily for 2 weeks resulting in a significant reduction in the collagen deposition in the liver and an increase in the survival rate. Furthermore, zinc suppressed gene expression of α-SMA and collagen I and enhanced the capacity of collagen degradation, as determined by the increased activity of total collagenases and elevated mRNA and protein levels of MMP13. Therefore, the results demonstrate that zinc supplementation suppresses BDL-induced liver fibrosis through both inhibiting collagen production and enhancing collagen degradation.
Collapse
Affiliation(s)
- Fang Shi
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Sheng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinhua Xu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenli Huang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
23
|
Koizumi R, Sasaki N, Nakamura Y, Suzuki N, Sawai T, Yamauchi K. Rapamycin attenuates pulmonary allergic vasculitis in murine model by reducing TGF-β production in the lung. Allergol Int 2014; 63:457-66. [PMID: 24851949 DOI: 10.2332/allergolint.13-oa-0679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/04/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Rapamycin has been reported to inhibit mesenchymal cell proliferation in a murine model of pulmonary fibrosis. In the present study, we examined the effects of rapamycin on vascular remodeling including intraluminal myofibroblast proliferation in a murine model of allergic vasculitis with eosinophil infiltration. METHODS C57BL/6 mice were sensitized with ovalbumin (OVA) and alum. The positive controls were exposed to aerosolized OVA daily for 7 days. The other group of mice was administered with rapamycin (1mg/kg) intraperitoneally, in parallel with daily exposure to aerosolized OVA for 7 days. On the 3rd and 7th day, bronchoalveolar lavage (BAL) was performed and the lungs were excised for pathological analysis. Cell differentials were determined and concentrations of IL-4, IL-5, IL-13 and TGF-β in the BAL fluid (BALF) were measured. Semi-quantitative analysis of pathological changes in the pulmonary arteries was evaluated according to the severity of vasculitis. RESULTS The number of eosinophils in BALF was reduced significantly in the mice treated with rapamycin compared to the positive control. There was a significant decrease in the TGF-β concentration of the BALF in the rapamycin-treated group compared to that of the positive control. The pathological scores were reduced significantly in the rapamycin-treated group compared to the positive control group. Intraluminal myofibroblasts in pulmonary arteries were reduced dramatically in the rapamycin-treated group compared to the positive control group. CONCLUSIONS Rapamycin suppressed pulmonary vascular remodeling in a murine model of allergic vasculitis with eosinophil infiltration through reducing eosinophil infiltration and TGF-β production in the lung and inhibition against biological action of TGF-β.
Collapse
Affiliation(s)
- Rumi Koizumi
- Division of Pulmonary Medicine, Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Nobuhito Sasaki
- Division of Pulmonary Medicine, Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Yutaka Nakamura
- Division of Pulmonary Medicine, Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Naomi Suzuki
- Division of Pulmonary Medicine, Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Takashi Sawai
- Department of Pathology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Kohei Yamauchi
- Division of Pulmonary Medicine, Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| |
Collapse
|
24
|
Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol 2014; 20:7312-7324. [PMID: 24966602 PMCID: PMC4064077 DOI: 10.3748/wjg.v20.i23.7312] [Citation(s) in RCA: 399] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/16/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis is the final pathological result of various chronic liver diseases, and fibrosis is the precursor of cirrhosis. Many types of cells, cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis. Activation of hepatic stellate cells (HSCs) is a pivotal event in fibrosis. Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis. At the molecular level, many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis. Recently, miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis. Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions.
Collapse
|
25
|
Zhang X, Guo L, Niu T, Shao L, Li H, Wu W, Wang W, Lv L, Qin Q, Wang F, Tang D, Wang XL, Cui T. Ubiquitin carboxyl terminal hydrolyase L1-suppressed autophagic degradation of p21WAF1/Cip1 as a novel feedback mechanism in the control of cardiac fibroblast proliferation. PLoS One 2014; 9:e94658. [PMID: 24732420 PMCID: PMC3986084 DOI: 10.1371/journal.pone.0094658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/19/2014] [Indexed: 11/24/2022] Open
Abstract
Aims Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation; however, the potential roles of DUBs in the heart remain to be determined. This study was aimed to explore the role of a DUB, ubiquitin carboxyl terminal hydrolyase L1 (UCH-L1) in maladaptive cardiac remodeling and dysfunction. Methods and Results Maladaptive cardiac remodeling and dysfunction were induced in mice by transverse aortic constriction (TAC). UCH-L1 expression was transiently increased and then declined near to the basal level while impairment of cardiac function proceeded. The upregulation of UCH-L1 was observed in cardiac myocytes and fibroblasts. In primary culture of cardiac fibroblasts, UCH-L1 was upregulated by platelet-derived growth factor (PDGF)-BB and PDGF-DD. Adenoviral overexpession of UCH-L1 inhibited the PDGF-induced cardiac fibroblast proliferation without affecting the activation of mitogen activated protein kinases (MAPKs), Akt, and signal transducers and activators of transcription 3 (STAT3). Further signaling dissection revealed that PDGF-BB posttranscriptional upregulated p21WAF1/Cip1 protein expression, which was inhibited by rapamycin, an activator of autophagy via suppressing mammalian target of rapamycin (mTOR), rather than MG132, a proteasome inhibitor. Overexpression of UCH-L1 enhanced PDGF-BB-induced mTOR phosphorylation and upregulation of p21WAF1/Cip1 protein expression while suppressed autophagic flux in cardiac fibroblasts. Conclusion UCH-L1 facilitates PDGF-BB-induced suppression of autophagic degradation of p21WAF1/Cip1 proteins in cardiac fibroblasts, which may serve as a novel negative feedback mechanism in the control of cardiac fibroblast proliferation contributing to cardiac fibrosis and dysfunction.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Pathophysiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Linlin Guo
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ting Niu
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Shao
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huanjie Li
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Weiwei Wu
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenjuan Wang
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Linmao Lv
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qingyun Qin
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fang Wang
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dongqi Tang
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Xing Li Wang
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
- * E-mail: (XW); (TC)
| | - Taixing Cui
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- * E-mail: (XW); (TC)
| |
Collapse
|
26
|
Saadi M, Yu C, Othman MO. A Review of the Challenges Associated with the Diagnosis and Therapy of Primary Sclerosing Cholangitis. J Clin Transl Hepatol 2014; 2:45-52. [PMID: 26357617 PMCID: PMC4548359 DOI: 10.14218/jcth.2013.00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 12/12/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a chronic and progressive cholestatic liver disease that often leads to the development of cirrhosis. Complications of PSC include pruritus, fatigue, vitamin deficiencies, metabolic bone disease, dominant biliary strictures, gallstones, and hepatobiliary malignancies, most commonly cholangiocarcinoma (CCA). Despite the presumed autoimmune etiology of PSC, a clear benefit from immunosuppressive agents has not yet been established, and their use is limited by their side effects. Endoscopy is required in evaluation of biliary strictures in PSC to rule out the possibility of CCA. Liver transplantation is currently the only life-extending therapy for patients with end-stage disease. However, disease recurrence can be a source of morbidity and mortality as transplanted patients survive longer. Further studies are needed to develop an optimal therapeutic strategy for patients with PSC to decrease the incidence of complications of the disease, to decrease the need for transplantation, and to extend life expectancy.
Collapse
Affiliation(s)
- Mohammed Saadi
- Department of Medicine, Division of Gastroenterology and Hepatology, Texas Tech University Health Science Center-Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Christine Yu
- Department of Medicine, Division of Gastroenterology and Hepatology, Texas Tech University Health Science Center-Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Mohamed O Othman
- Department of Medicine, Division of Gastroenterology and Hepatology, Texas Tech University Health Science Center-Paul L. Foster School of Medicine, El Paso, TX, USA
| |
Collapse
|
27
|
Everolimus is a potent inhibitor of activated hepatic stellate cell functions in vitro and in vivo, while demonstrating anti-angiogenic activities. Clin Sci (Lond) 2014; 126:775-84. [DOI: 10.1042/cs20130081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study demonstrates the therapeutic potential of everolimus for the treatment of hepatocellular carcinomas in the fibrotic liver by inhibiting hepatic stellate cell activation and angiogenesis.
Collapse
|
28
|
Correction of glycogen storage disease type III with rapamycin in a canine model. J Mol Med (Berl) 2014; 92:641-50. [PMID: 24509886 DOI: 10.1007/s00109-014-1127-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/27/2013] [Accepted: 01/23/2014] [Indexed: 01/09/2023]
Abstract
UNLABELLED Recently, we reported that progression of liver fibrosis and skeletal myopathy caused by extensive accumulation of cytoplasmic glycogen at advanced age is the major feature of a canine model of glycogen storage disease (GSD) IIIa. Here, we aim to investigate whether rapamycin, a specific inhibitor of mTOR, is an effective therapy for GSD III. Our data show that rapamycin significantly reduced glycogen content in primary muscle cells from human patients with GSD IIIa by suppressing the expression of glycogen synthase and glucose transporter 1. To test the treatment efficacy in vivo, rapamycin was daily administered to GSD IIIa dogs starting from age 2 (early-treatment group) or 8 months (late-treatment group), and liver and skeletal muscle biopsies were performed at age 12 and 16 months. In both treatment groups, muscle glycogen accumulation was not affected at age 12 months but significantly inhibited at 16 months. Liver glycogen content was reduced in the early-treatment group but not in the late-treatment group at age 12 months. Both treatments effectively reduced liver fibrosis at age 16 months, consistent with markedly inhibited transition of hepatic stellate cells into myofibroblasts, the central event in the process of liver fibrosis. Our results suggest a potential useful therapy for GSD III. KEY MESSAGES Rapamycin inhibited glycogen accumulation in GSD IIIa patient muscle cells. Rapamycin reduced muscle glycogen content in GSD IIIa dogs at advanced age. Rapamycin effectively prevented progression of liver fibrosis in GSD IIIa dogs. Our results suggest rapamycin as potential useful therapy for patients with GSD III.
Collapse
|
29
|
Wang W, Yan J, Wang H, Shi M, Zhang M, Yang W, Peng C, Li H. Rapamycin ameliorates inflammation and fibrosis in the early phase of cirrhotic portal hypertension in rats through inhibition of mTORC1 but not mTORC2. PLoS One 2014; 9:e83908. [PMID: 24404143 PMCID: PMC3880276 DOI: 10.1371/journal.pone.0083908] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/08/2013] [Indexed: 01/18/2023] Open
Abstract
Objective Hepatic stellate cells (HSCs) transdifferentiation and subsequent inflammation are important pathological processes involved in the formation of cirrhotic portal hypertension. This study characterizes the pathogenetic mechanisms leading to cholestatic liver fibrosis and portal hypertension, and focuses on mammalian target of rapamycin (mTOR) pathway as a potential modulator in the early phase of cirrhotic portal hypertension. Methods Early cirrhotic portal hypertension was induced by bile duct ligation (BDL) for three weeks. One week after operation, sham-operated (SHAM) and BDL rats received rapamycin (2 mg/kg/day) by intraperitoneal injection for fourteen days. Vehicle-treated SHAM and BDL rats served as controls. Fibrosis, inflammation, and portal pressure were evaluated by histology, morphometry, and hemodynamics. Expressions of pro-fibrogenic and pro-inflammatory genes in liver were measured by RT-PCR; alpha smooth muscle actin (α-SMA) and antigen Ki67 were detected by immunohistochemistry; expressions of AKT/mTOR signaling molecules, extracellular-signal-regulated kinase 1/2 (ERK1/2), p-ERK1/2, and interleukin-1 beta (IL-1β) were assessed by western blot. Results The AKT/mTOR signaling pathway was markedly activated in the early phase of cirrhotic portal hypertension induced by BDL in rats. mTOR blockade by rapamycin profoundly improved liver function by limiting inflammation, fibrosis and portal pressure. Rapamycin significantly inhibited the expressions of phosphorylated 70KD ribosomal protein S6 kinase (p-P70S6K) and phosphorylated ribosomal protein S6 (p-S6) but not p-AKT Ser473 relative to their total proteins in BDL-Ra rats. Those results suggested that mTOR Complex 1 (mTORC1) rather than mTORC2 was inhibited by rapamycin. Interestingly, we also found that the level of p-ERK1/2 to ERK1/2 was significantly increased in BDL rats, which was little affected by rapamycin. Conclusions The AKT/mTOR signaling pathway played an important role in the early phase of cirrhotic portal hypertension in rats, which could be a potential target for therapeutic intervention in the early phase of such pathophysiological progress.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine verified by Ministry of Education, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiqi Yan
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine verified by Ministry of Education, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| | - Huakai Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine verified by Ministry of Education, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minmin Shi
- Key Laboratory of Systems Biomedicine verified by Ministry of Education, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mingjun Zhang
- Key Laboratory of Systems Biomedicine verified by Ministry of Education, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiping Yang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenghong Peng
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongwei Li
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Karnik GS, Shetty K. Management of recurrent hepatitis C in orthotopic liver transplant recipients. Infect Dis Clin North Am 2013; 27:285-304. [PMID: 23714341 DOI: 10.1016/j.idc.2013.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
End-stage liver disease and hepatocellular carcinoma from chronic hepatitis C are the most common indications for orthotopic liver transplantation and the incidence of both are projected to increase over the next decade. Recurrent hepatitis C virus infection of the allograft is associated with an accelerated progression to cirrhosis, graft loss, and death. This article presents an overview of the natural history of hepatitis C virus recurrence in liver transplant recipients and guidance on optimal management strategies.
Collapse
Affiliation(s)
- Geeta S Karnik
- Department of Infectious Diseases, Georgetown University Hospital, Washington, DC 20007, USA.
| | | |
Collapse
|
31
|
Salvadori M. Antineoplastic effects of mammalian target of rapamycine inhibitors. World J Transplant 2012; 2:74-83. [PMID: 24175199 PMCID: PMC3782237 DOI: 10.5500/wjt.v2.i5.74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/08/2012] [Accepted: 10/20/2012] [Indexed: 02/05/2023] Open
Abstract
Cancer after transplantation is the third cause of death and one of the more relevant comorbidities. Aim of this review is to verify the role of different pathogenetic mechanisms in cancer development in transplant patients and in general population as well. In particular has been outlined the different role exerted by two different families of drug as calcineurin inhibitor and mammalian target of rapamycin (mTOR) inhibitor. The role of mTOR pathways in cell homeostasis is complex but enough clear. As a consequence the mTOR pathway deregulation is involved in the genesis of several cancers. Hence the relevant role of mTOR inhibitors. The authors review the complex mechanism of action of mTOR inhibitors, not only for what concerns the immune system but also other cells as endothelial, smooth muscle and epithelial cells. The mechanism of action is still now not completely defined and understood. It implies the inhibition of mTOR pathway at different levels, but mainly at level of the phosphorylation of several intracellular kinases that contribute to activate mTOR complex. Many prospective and retrospective studies in transplant patients document the antineoplastic role of mTOR inhibition. More recently mTOR inhibitors proven to be effective in the treatment of some cancers also in general population. Kidney cancers, neuroendocrine tumors and liver cancers seem to be the most sensitive to these drugs. Best results are obtained with a combination treatment, targeting the mTOR pathway at different levels.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Maurizio Salvadori, Renal Unit, Careggi University Hospital, Viale Pieraccini 18, Florence 50139, Italy
| |
Collapse
|
32
|
Lian H, Ma Y, Feng J, Dong W, Yang Q, Lu D, Zhang L. Heparin-binding EGF-like growth factor induces heart interstitial fibrosis via an Akt/mTor/p70s6k pathway. PLoS One 2012. [PMID: 22984591 DOI: 10.1371/jour] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is essential for maintaining normal function of the adult heart and is known to play an important role in myocardial remodeling. In the present study, we observed that heart-specific HB-EGF transgenic (TG) mice had systolic dysfunction with decreased fractional shortening (FS%), increased end-systolic diameter (LVIDs) at 5 months of age, increased heart fibrosis, and increased mRNA expression of Col1α1 and Col3α1 at 1, 3, 5 and 7 months of age compared to nontransgenic (NTG) littermates. However, the left ventricular anterior wall thickness at end-systole (LVAWs) of the TG mice was not different than the NTG mice. Phosphorylation levels of Akt, mTor and p70s6k were increased due to HB-EGF expression in TG mice compared with the NTG mice at 3 and 7 months of age. Additionally, activated Akt, mTor and p70s6k were co-localized with vimentin to cardiac fibroblasts isolated from TG mice. Furthermore, HB-EGF significantly increased phosphorylation levels of Akt, mTor and p70s6k and increased expression of type I collagen in cultured primary cardiac fibroblasts. Rapamycin (Rapa) and CRM197, inhibitors of mTor and HB-EGF respectively, could inhibit the expression of type I collagen in the cultured primary cardiac fibroblasts and Rapa suppressed interstitial fibrosis of the heart tissues in vivo. In addition, a BrdU assay showed that HB-EGF increased proliferation of cardiac fibroblasts by 30% compared with cells without HB-EGF treatment. HB-EGF-induced proliferation was completely diminished in the presence of Rapa. These results suggest that HB-EGF induced heart fibrosis and proliferation of cardiac fibroblasts occurs through activation of the Akt/mTor/p70s6k pathway.
Collapse
Affiliation(s)
- Hong Lian
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Lian H, Ma Y, Feng J, Dong W, Yang Q, Lu D, Zhang L. Heparin-binding EGF-like growth factor induces heart interstitial fibrosis via an Akt/mTor/p70s6k pathway. PLoS One 2012; 7:e44946. [PMID: 22984591 PMCID: PMC3440333 DOI: 10.1371/journal.pone.0044946] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 08/14/2012] [Indexed: 01/18/2023] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is essential for maintaining normal function of the adult heart and is known to play an important role in myocardial remodeling. In the present study, we observed that heart-specific HB-EGF transgenic (TG) mice had systolic dysfunction with decreased fractional shortening (FS%), increased end-systolic diameter (LVIDs) at 5 months of age, increased heart fibrosis, and increased mRNA expression of Col1α1 and Col3α1 at 1, 3, 5 and 7 months of age compared to nontransgenic (NTG) littermates. However, the left ventricular anterior wall thickness at end-systole (LVAWs) of the TG mice was not different than the NTG mice. Phosphorylation levels of Akt, mTor and p70s6k were increased due to HB-EGF expression in TG mice compared with the NTG mice at 3 and 7 months of age. Additionally, activated Akt, mTor and p70s6k were co-localized with vimentin to cardiac fibroblasts isolated from TG mice. Furthermore, HB-EGF significantly increased phosphorylation levels of Akt, mTor and p70s6k and increased expression of type I collagen in cultured primary cardiac fibroblasts. Rapamycin (Rapa) and CRM197, inhibitors of mTor and HB-EGF respectively, could inhibit the expression of type I collagen in the cultured primary cardiac fibroblasts and Rapa suppressed interstitial fibrosis of the heart tissues in vivo. In addition, a BrdU assay showed that HB-EGF increased proliferation of cardiac fibroblasts by 30% compared with cells without HB-EGF treatment. HB-EGF-induced proliferation was completely diminished in the presence of Rapa. These results suggest that HB-EGF induced heart fibrosis and proliferation of cardiac fibroblasts occurs through activation of the Akt/mTor/p70s6k pathway.
Collapse
Affiliation(s)
- Hong Lian
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan Feng
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Yang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
34
|
Syed F, Sherris D, Paus R, Varmeh S, Singh S, Pandolfi PP, Bayat A. Keloid disease can be inhibited by antagonizing excessive mTOR signaling with a novel dual TORC1/2 inhibitor. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1642-58. [PMID: 22982188 DOI: 10.1016/j.ajpath.2012.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/22/2012] [Accepted: 08/01/2012] [Indexed: 02/06/2023]
Abstract
Keloid disease (KD) is a fibroproliferative lesion of unknown etiopathogenesis that possibly targets the PI3K/Akt/mTOR pathway. We investigated whether PI3K/Akt/mTOR inhibitor, Palomid 529 (P529), which targets both mammalian target of rapamycin complex 1 (mTORC-1) and mTORC-2 signaling, could exert anti-KD effects in a novel KD organ culture assay and in keloid fibroblasts (KF). Treatment of KF with P529 significantly (P < 0.05) inhibited cell spreading, attachment, proliferation, migration, and invasive properties at a low concentration (5 ng/mL) and induced substantial KF apoptosis when compared with normal dermal fibroblasts. P529 also inhibited hypoxia-inducible factor-1α expression and completely suppressed Akt, GSK3β, mTOR, eukaryotic initiation factor 4E-binding protein 1, and S6 phosphorylation. P529 significantly (P < 0.05) inhibited proliferating cell nuclear antigen and cyclin D and caused considerable apoptosis. Compared with rapamycin and wortmannin, P529 also significantly (P < 0.05) reduced keloid-associated phenotypic markers in KF. P529 caused tissue shrinkage, growth arrest, and apoptosis in keloid organ cultures and substantially inhibited angiogenesis. pS6, pAkt-Ser473, and mTOR phosphorylation were also suppressed in situ. P529 reduced cellularity and expression of collagen, fibronectin, and α-smooth muscle actin (substantially more than rapamycin). These pre-clinical in vitro and ex vivo observations are evidence that the mTOR pathway is a promising target for future KD therapy and that the dual PI3K/Akt/mTOR inhibitor P529 deserves systematic exploration as a candidate agent for the future treatment of KD.
Collapse
Affiliation(s)
- Farhatullah Syed
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
35
|
Imam MH, Lindor KD. Primary sclerosing cholangitis: providing a safe and effective treatment. Expert Rev Gastroenterol Hepatol 2012; 6:255-7. [PMID: 22646247 DOI: 10.1586/egh.12.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Luo L, Sun Z, Luo G. Rapamycin is less fibrogenic than Cyclosporin A as demonstrated in a rat model of chronic allograft nephropathy. J Surg Res 2012; 179:e255-63. [PMID: 22480837 DOI: 10.1016/j.jss.2012.02.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/14/2012] [Accepted: 02/28/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cyclosporin A (CsA) is associated with significant chronic nephrotoxicity, which typically manifests as renal fibrosis. In contrast, rapamycin (RAPA) has been shown to inhibit fibrosis. This study sought to determine the effect of CsA and RAPA on the expression of connective tissue growth factor (CTGF) and E-cadherin in a rat kidney model of chronic allograft nephropathy. MATERIALS AND METHODS Left renal grafts from male Fisher (F344, RT1(1v1)) rats were orthotopically transplanted into Lewis (LEW, RT1(1)) rats. After transplantation, all recipients were given CsA 10 mg/kg(-1) d(-1) for 10 d and divided into three groups (n = 9/group): (1) vehicle, administered orally; (2) CsA, 6 mg/kg(-1) d(-1); (3) RAPA, 0.8 mg/kg(-1) d(-1). At 4, 8, and 12 wk posttransplantation, the kidney allografts were harvested and serum creatinine levels were measured. Connective tissue growth factor expression was determined using real-time polymerase chain reaction and Western blot. Kidney allografts sections also underwent hematoxylin-eosin and Masson trichrome staining, in addition to CTGF and E-cadherin immunostaining. RESULTS The serum creatinine levels were increased at 8 and 12 wk posttransplantation and were significantly lower in the RAPA group (P < 0.05). The Banff score also showed a significant decrease at 4, 8, and 12 wk (P < 0.05). CTGF messenger ribonucleic acid and protein levels were significantly lower in the RAPA group (P < 0.05), whereas E-cadherin expression was higher in the RAPA group at 4, 8, and 12 wk (P < 0.05). Masson's trichrome staining showed a significant decrease in collagen deposition at 8 and 12 wk after RAPA treatment. CONCLUSION RAPA can ameliorate fibrogenesis in kidney allografts by inhibiting epithelial-mesenchymal transition process, whereas CsA did not have this effect.
Collapse
Affiliation(s)
- Lei Luo
- Department of Research and Education, Guizhou Province People's Hospital, Guiyang, China
| | | | | |
Collapse
|
37
|
Karaahmet F, Kılıncalp S, Altınbas A, Coban S, Yuksel O. Intrabiliary rapamycin may slow progression of primary sclerosing cholangitis. Aliment Pharmacol Ther 2012; 35:490-1. [PMID: 22248428 DOI: 10.1111/j.1365-2036.2011.04974.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Sofroniadou S, Goldsmith D. Mammalian target of rapamycin (mTOR) inhibitors: potential uses and a review of haematological adverse effects. Drug Saf 2011; 34:97-115. [PMID: 21247219 DOI: 10.2165/11585040-000000000-00000] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mammalian target of rapamycin (mTOR) inhibitors (mTORis) constitute a relatively new category of immunosuppressive and antineoplastic drugs. These share a unique mechanism of action that is focused on the inhibition of the mTOR. Their clinical applications have recently expanded significantly to cover a wide spectrum of immune and non-immune-mediated disorders, including, apart from solid organ transplantation, various solid organ and haematological malignancies, rheumatological and auto-immune diseases such as rheumatoid arthritis, systemic lupus erythematosus, fibrotic conditions, e.g. pulmonary and hepatic fibrosis, and even metabolic problems such as diabetes mellitus and obesity. The most challenging and frequent adverse effects of the mTORis are the haematological ones, especially anaemia, leukopenia and thrombocytopenia. A unique characteristic of mTORi-induced anaemia is concurrent marked microcytosis. Recently, mechanisms have been proposed to explain the microcytic appearance of this anaemia; these include globin production defect, erythropoietin resistance, chronic inflammation, dysregulation of cellular iron metabolism and hepcidin-mediated iron homeostasis interference. As the differential diagnosis of microcytic anaemia includes pure iron deficiency, functional iron deficiency and haemoglobinopathies, characterization of the anaemia requires significant investigation, time and costs. Therefore, understanding of the likely interaction between mTORis and patients is valuable in clinical practice. Moreover, this could expand the drugs' therapeutic applications to other disorders, and suggest novel targets for further research.
Collapse
Affiliation(s)
- Sofia Sofroniadou
- Department of Renal Medicine and Transplantation, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre (AHSC), London, UK
| | | |
Collapse
|
39
|
Sofroniadou S, Goldsmith D. Mammalian target of rapamycin (mTOR) inhibitors: potential uses and a review of haematological adverse effects. Drug Saf 2011. [PMID: 21247219 DOI: 10.2165/11585040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian target of rapamycin (mTOR) inhibitors (mTORis) constitute a relatively new category of immunosuppressive and antineoplastic drugs. These share a unique mechanism of action that is focused on the inhibition of the mTOR. Their clinical applications have recently expanded significantly to cover a wide spectrum of immune and non-immune-mediated disorders, including, apart from solid organ transplantation, various solid organ and haematological malignancies, rheumatological and auto-immune diseases such as rheumatoid arthritis, systemic lupus erythematosus, fibrotic conditions, e.g. pulmonary and hepatic fibrosis, and even metabolic problems such as diabetes mellitus and obesity. The most challenging and frequent adverse effects of the mTORis are the haematological ones, especially anaemia, leukopenia and thrombocytopenia. A unique characteristic of mTORi-induced anaemia is concurrent marked microcytosis. Recently, mechanisms have been proposed to explain the microcytic appearance of this anaemia; these include globin production defect, erythropoietin resistance, chronic inflammation, dysregulation of cellular iron metabolism and hepcidin-mediated iron homeostasis interference. As the differential diagnosis of microcytic anaemia includes pure iron deficiency, functional iron deficiency and haemoglobinopathies, characterization of the anaemia requires significant investigation, time and costs. Therefore, understanding of the likely interaction between mTORis and patients is valuable in clinical practice. Moreover, this could expand the drugs' therapeutic applications to other disorders, and suggest novel targets for further research.
Collapse
Affiliation(s)
- Sofia Sofroniadou
- Department of Renal Medicine and Transplantation, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre (AHSC), London, UK
| | | |
Collapse
|
40
|
Patsenker E, Schneider V, Ledermann M, Saegesser H, Dorn C, Hellerbrand C, Stickel F. Potent antifibrotic activity of mTOR inhibitors sirolimus and everolimus but not of cyclosporine A and tacrolimus in experimental liver fibrosis. J Hepatol 2011; 55:388-98. [PMID: 21168455 DOI: 10.1016/j.jhep.2010.10.044] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/06/2010] [Accepted: 10/25/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Recurrence of chronic hepatitis C and progressive fibrosis in liver transplants is frequent and impairs both graft and patient survival. Whether or not the choice of immunosuppression affects progression of fibrosis remains unclear. The aim of the present study was to compare the potential of the commonly used immunosuppressants to halt experimental liver fibrosis progression. METHODS To induce liver fibrosis, rats underwent bile duct ligation and treatment with sirolimus (2mg/kg), everolimus (3mg/kg), tacrolimus (1mg/kg), and cyclosporin A (10mg/kg) daily for 5 weeks. Fibrosis, inflammation, and portal pressure were evaluated by histology, hydroxyproline levels, morphometry, hemodynamics, and hepatic gene expression. RESULTS Sirolimus and everolimus decreased fibrosis up to 70%, improved portal pressure, reduced ascites, and showed potent down-regulation of pro-fibrogenic genes, paralleled by a strong increase in matrix degradation (collagenase) activity; in contrast, tacrolimus and cyclosporine A had no or even aggravating effects on liver fibrosis in rats. CONCLUSIONS mTOR inhibition by sirolimus and everolimus in experimental liver fibrosis associates with significantly less fibrosis progression and portal hypertension than treatment with calcineurin inhibitors tacrolimus and cyclosporine A. These data suggest that the selection of the immunosuppressant could impact the recurrence of fibrosis in liver allografts.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
Focus. J Hepatol 2011; 55:243-4. [PMID: 21554907 DOI: 10.1016/j.jhep.2011.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 12/04/2022]
|
42
|
Aleffi S, Navari N, Delogu W, Galastri S, Novo E, Rombouts K, Pinzani M, Parola M, Marra F. Mammalian target of rapamycin mediates the angiogenic effects of leptin in human hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G210-9. [PMID: 21252047 DOI: 10.1152/ajpgi.00047.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leptin modulates the angiogenic properties of hepatic stellate cells (HSC), but the molecular mechanisms involved are poorly understood. We investigated the pathways regulating hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in leptin-stimulated myofibroblastic HSC. Exposure to leptin enhanced the phosphorylation of TSC2 on T1462 residues and of p70 S6 kinase and the translational inhibitor 4E-binding protein-1, indicating the ability of leptin to activate the mammalian target of rapamycin (mTOR) pathway. Similar findings were observed when HSC were exposed to PDGF. Both leptin and PDGF increased the expression of HIF-1α and VEGF in HSC. In the presence of rapamycin, a specific mTOR inhibitor, leptin and PDGF were no longer able to activate mTOR, and expression of VEGF was reduced, whereas HIF-1α abundance was not affected. Moreover, knockdown of Raptor, a component of the mTORC1 complex, reduced the ability of leptin to increase VEGF. mTOR was also necessary for leptin- and PDGF-dependent increase in HSC migration. Leptin increased the generation of reactive oxygen species in HSC, which was reduced by NADP(H) oxidase inhibitors. Both N-acetyl cysteine and diphenylene iodonium, a NADP(H) inhibitor, inhibited the expression of HIF-1α and VEGF stimulated by leptin or PDGF. Finally, conditioned media from HSC treated with leptin or PDGF induced tube formation in cultured human umbilical vein endothelial cells. In conclusion, in HSC exposed to leptin or PDGF, increased expression of VEGF requires both activation of mTOR and generation of reactive oxygen species via NADPH-oxidase. Induction of HIF-1α requires NADP(H) oxidase but not mTOR activation.
Collapse
Affiliation(s)
- Sara Aleffi
- Dipartimento di Medicina Interna, University of Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
A Novel Mechanism of PPARgamma Regulation of TGFbeta1: Implication in Cancer Biology. PPAR Res 2011; 2008:762398. [PMID: 18615188 PMCID: PMC2443397 DOI: 10.1155/2008/762398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/28/2008] [Accepted: 06/09/2008] [Indexed: 02/08/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) and retinoic acid X-receptor (RXR) heterodimer, which regulates cell growth and differentiation, represses the TGFβ1 gene that encodes for the protein involved in cancer biology. This review will introduce the novel mechanism associated with the inhibition of the TGFβ1 gene by PPARγ activation, which regulates the dephosphorylation of Zf9 transcription factor. Pharmacological manipulation of TGFβ1 by PPARγ activators can be applied for treating TGFβ1-induced pathophysiologic disorders such as cancer metastasis and fibrosis. In this article, we will discuss the opposing effects of TGFβ on tumor growth and metastasis, and address the signaling pathways regulated by PPARγ for tumor progression and suppression.
Collapse
|
44
|
Ozturk H, Terzi A, Ozturk H, Kukner A. Effect of sirolimus on renal injury induced by bile duct ligation in rats. Acta Cir Bras 2011; 25:401-6. [PMID: 20877949 DOI: 10.1590/s0102-86502010000500004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 05/25/2010] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To evaluate the effects of sirolimus (SRL) on renal injury in rats with bile duct ligation. METHODS A total of 21 male Sprague-Dawley rats weighing 220-260 g were used. Group 1 (Sham-control, n=7) rats were undergone laparotomy alone and bile duct was just dissected from the surrounding tissue. Group 2 rats (BDL/Untreated, n=7) were subjected to bile duct ligation and no drug was applied. Group 3 rats (BDL/SRL, n =7) received a daily dose of sirolimus (0.5 mg·day(-1) x kg(-1) dissolved 1 ml in saline) by orogastric tube for 14 days after BDL. At the end of the two-week period, biochemical and histological evaluation were processed. RESULTS AST, ALT, AP and TB levels values were decreased in group 3 when compared to group 2. There was no significant difference in serum levels of BUN and creatinine among all the experimental groups. Histological evaluation of the liver of BDL/Untreated group rats demonstrated marked portal fibrosis and signs of major bile duct obstruction with prominent portal and lobular inflammation. In BDL/SRL group, moderate damage was seen. Tubular injury scores were higher in the BDL subgroups; however, group 3 rats showed considerably fewer lesions in the tubules and interstitium compared to the group 2 rats. In group 2 animals, in the epithelial cells of proximal tubules presented vacuoles and hydropic changes, atrophy and inflammatory cell infiltrate in the medullar interstitium. CONCLUSIONS Sirolimus decreased tubulointerstitial lesions in kidney induced by bile duct ligation in rats. The improve effects of sirolimus on renal morphology can be due to improved liver function or due to direct action on the kidney.
Collapse
Affiliation(s)
- Hulya Ozturk
- Department of Pediatric Surgery, Medical School, Duzce University, Duzce, Turkey
| | | | | | | |
Collapse
|
45
|
Chong T, Fu DL, Li HC, Zhang HB, Zhang P, Gan WM, Wang ZM. Rapamycin inhibits formation of urethral stricture in rabbits. J Pharmacol Exp Ther 2011; 338:47-52. [PMID: 21464336 DOI: 10.1124/jpet.110.178624] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rapamycin has been reported to inhibit hepatic fibrosis, lung fibrosis, renal fibrosis, and subglottic stenosis. Fibrosis is also involved in urethral stricture. Therefore, we investigated the effect of rapamycin on the inhibition of urethral stricture formation in a rabbit model. First, models of urethral stricture were successfully established by electrocoagulation of the bulbar urethra in adult New Zealand male rabbits. Forty-six model rabbits were randomly assigned to four groups: high-dose rapamycin (R(H), 1.0 mg/day), low-dose rapamycin (R(L), 0.1 mg/day), dimethyl sulfoxide (DMSO) alone (DMSO, solvent control), and normal saline (NS). Urethral stricture was assessed by a retrograde urethrogram and video-urethroscopy. Urethra pathology was evaluated by hematoxylin and eosin and Sirius red staining. After 28 days of treatment, lumen reduction in the R(H), R(L), DMSO, and NS groups was 36.0, 56.5, 69.1, and 82.9, respectively. Comparison of the rapamycin groups (R(H) and R(L)) and control groups (DMSO and NS) indicated significantly less restriction in the rapamycin groups. Histopathological analysis confirmed the presence of fibroblasts and an increase in collagen at the stricture site in the two control groups but not in the R(H) or R(L) groups. These results indicate that rapamycin inhibits experimentally induced urethral stricture formation in rabbits. This effect may be due to its inhibition of fibroblast proliferation and collagen expression.
Collapse
Affiliation(s)
- Tie Chong
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Sagiroglu T, Sezer A, Altaner S, Umit H, Yalta T, Yagci MA. The effects of sirolimus on target organs during mesenteric ischemia and reperfusion damage in an experimental rat model. Curr Ther Res Clin Exp 2011; 72:79-93. [PMID: 24648578 DOI: 10.1016/j.curtheres.2011.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Mesenteric ischemia and reperfusion (I/R) syndrome (MIRS) has been considered a clinicopathologic entity associated with a variety of clinically severe conditions with decreased intestinal blood flow and has been known to induce I/R damage in various organs. Sirolimus (SRL), a macrolide antibiotic isolated from a strain of Streptomyces hygroscopicus, is a potent and nonnephrotoxic immunosuppressant. OBJECTIVE This study was designed to investigate the potential impact of sirolimus on MIRS-induced I/R damage in renal, intestinal, pulmonary, and hepatic tissues in an experimental rat model. METHODS Twenty-four male Sprague-Dawley rats, aged 6 to 8 weeks and weighing 280 (±20 g), were studied. Using computer-generated random numbers, rats were assigned to 1 of the following 3 groups: group 1 (I/R group, n = 8), group 2 (I/R + sirolimus group, n = 8), and group 3 (control group, n = 8). Sirolimus, in a 1 mg/mL (60 mL) solution, was administered intraperitoneally in a dose of 1.5 mg/kg/d to the rats assigned to group 2 starting from 3 days before the surgical procedure. In surgery, a laparotomy was performed to clamp the superior mesenteric artery and, thus, induce bowel ischemia in groups 1 and 2. After 60 minutes of ischemia, the microvascular clamp on the superior mesenteric artery was removed for 3 hours of reperfusion. Soon after experimental induction of MIRS, bowel, lung, kidney, and liver specimens from each animal were harvested for both biochemical and histopathologic analysis. RESULTS There were statistically significant differences between groups 1 and 3 with regard to degrees of intestinal (P < 0.001), hepatic (P = 0.001), renal (P < 0.001), and pulmonary (P = 0.01) I/R damage. The lung specimens from group 2 had less inflammation and perivascular edema formation compared with specimens from group 1, but no statistical significance was observed between the groups (P < 0.33). There were statistically significant differences between groups 1 and 2 with regard to degrees of intestinal, hepatic, and renal I/R damage (P = 0.001 for all). CONCLUSION The findings of the present study demonstrate the attenuating effects of sirolimus on I/R damage in the intestine and remote organs, including the liver and kidney in the setting of MIRS in an experimental rat model. As a therapeutic implication, the utility of sirolimus may be of clinical value in procedures associated with a high likelihood of I/R damage, including major abdominal operations and renal transplantation. However, whether these results apply to humans is unclear. Additional experimental and clinical studies are warranted to confirm the clinical utility of sirolimus in conditions potentially associated with I/R damage.
Collapse
Affiliation(s)
- Tamer Sagiroglu
- Department of General Surgery, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Atakan Sezer
- Department of General Surgery, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Semsi Altaner
- Department of Pathology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hasan Umit
- Department of Gastroenterology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Tulin Yalta
- Department of Pathology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Mehmet Ali Yagci
- Department of General Surgery, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
47
|
Bellizzi AM, Bloomston M, Zhou XP, Iwenofu OH, Frankel WL. The mTOR Pathway is Frequently Activated in Pancreatic Ductal Adenocarcinoma and Chronic Pancreatitis. Appl Immunohistochem Mol Morphol 2010; 18:442-7. [DOI: 10.1097/pai.0b013e3181de115b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Abstract
Primary sclerosing cholangitis is a cholestatic liver disease characterized by inflammation and fibrosis of intra-/extrahepatic bile ducts, leading to multifocal strictures. Primary sclerosing cholangitis exhibits a progressive course resulting in cirrhosis and the need for liver transplantation over a median period of 12 years. The disease is frequently associated with inflammatory bowel disease and carries an increased risk of colorectal cancer and cholangiocarcinoma. Despite extensive research, there is currently no effective medical treatment. Multiple drugs are shown to be ineffective in halting disease progression, including ursodeoxycholic acid, the most widely evaluated drug. High-dose ursodeoxycholic acid (28-30 mg/kg/day) was recently shown to increase the adverse events rate. Endoscopic or radiological dilatation of a 'dominant' stricture may lead to symptomatic and biochemical improvement. However, liver transplantation is the only life-prolonging treatment for patients with end-stage disease. Studies with promising drugs, such as antibiotics, antifibrotic agents and bile acid derivatives, are eagerly awaited.
Collapse
Affiliation(s)
- Emmanouil Sinakos
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905, USA
| | | |
Collapse
|
49
|
Relevance of the mTOR signaling pathway in the pathophysiology of splenomegaly in rats with chronic portal hypertension. J Hepatol 2010; 52:529-39. [PMID: 20206401 DOI: 10.1016/j.jhep.2010.01.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/25/2009] [Accepted: 10/12/2009] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Splenomegaly is a frequent hallmark of portal hypertension that, in some cases, can be very prominent and cause symptoms like abdominal pain, splenic infarction, and cytopenia. This study characterizes the pathogenetic mechanisms leading to spleen enlargement in portal hypertensive rats and focuses on mTOR pathway as a potential modulator of splenomegaly in portal hypertension. METHODS Characterization of splenomegaly was performed by histological, hematological, immunohistochemical and Western blot analyses in rats with portal hypertension induced by portal vein ligation, and compared with sham-operated animals. The contribution of the mTOR signaling pathway to splenomegaly was determined in rats with fully developed portal hypertension and control rats by treatment with rapamycin or vehicle. RESULTS Our results illustrate that splenomegaly in portal hypertensive rats arises as a consequence of the interplay of several factors, including not only spleen congestion, as traditionally thought, but also enlargement and hyperactivation of the splenic lymphoid tissue, as well as increased angiogenesis and fibrogenesis. Since mTOR signaling plays a central role in immunological processes, angiogenesis and fibrogenesis, we next determined the involvement of mTOR in splenomegaly. Interestingly, mTOR signaling was overactivated in the spleen of portal hypertensive rats, and mTOR blockade by rapamycin profoundly ameliorated splenomegaly, causing a 44% decrease in spleen size. This effect was most likely accounted for the inhibitory action of rapamycin on lymphocyte proliferation, neovascularization and fibrosis. CONCLUSIONS These findings shed light on the pathogenesis of splenomegaly in portal hypertension, and identify mTOR signaling as a potential target for therapeutic intervention in this disease.
Collapse
|
50
|
Rapamycin protects mice from staphylococcal enterotoxin B-induced toxic shock and blocks cytokine release in vitro and in vivo. Antimicrob Agents Chemother 2010; 54:1125-31. [PMID: 20086156 DOI: 10.1128/aac.01015-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Staphylococcal enterotoxins are potent activators for human T cells and cause lethal toxic shock. Rapamycin, an immunosuppressant, was tested for its ability to inhibit staphylococcal enterotoxin B (SEB)-induced activation of human peripheral blood mononuclear cells (PBMC) in vitro and toxin-mediated shock in mice. Stimulation of PMBC by SEB was effectively blocked by rapamycin as evidenced by the inhibition of tumor necrosis factor alpha (TNF-alpha), interleukin 1beta (IL-1beta), IL-6, IL-2, gamma interferon (IFN-gamma), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and T-cell proliferation. In vivo, rapamycin protected 100% of mice from lethal shock, even when administered 24 h after intranasal SEB challenge. The serum levels of MCP-1 and IL-6, after intranasal exposure to SEB, were significantly reduced in mice given rapamycin versus controls. Additionally, rapamycin diminished the weight loss and temperature fluctuations elicited by SEB.
Collapse
|