1
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2025; 99:1-22. [PMID: 39443317 PMCID: PMC11748479 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
3
|
Yamamoto R, Takeshita Y, Tsujiguchi H, Kannon T, Sato T, Hosomichi K, Suzuki K, Kita Y, Tanaka T, Goto H, Nakano Y, Yamashita T, Kaneko S, Tajima A, Nakamura H, Takamura T. Nutrigenetic interaction between apolipoprotein C3 polymorphism and fat intake in people with non-alcoholic fatty liver disease. Curr Dev Nutr 2023. [DOI: 10.1016/j.cdnut.2023.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
4
|
Huang YS, Chang TE, Perng CL, Huang YH. Genetic variations of three important antioxidative enzymes SOD2, CAT, and GPX1 in nonalcoholic steatohepatitis. J Chin Med Assoc 2021; 84:14-18. [PMID: 33009206 DOI: 10.1097/jcma.0000000000000437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is closely related to reactive oxygen species (ROS). Superoxide anion radicals, the main product of ROS, can be reduced by manganese superoxide dismutase (SOD2) to hydrogen peroxide, which is further reduced by catalase (CAT) and glutathione peroxidase (GPX) to water. We aimed to investigate the association between the most important genetic variants of SOD2, CAT, and GPX1 and susceptibility to NASH. METHODS A total of 126 adults with liver tissue-verified NASH, 56 patients with liver tissue-verified nonalcoholic fatty liver (NAFL), and 153 healthy controls were enrolled. Their DNA profiles were retrieved for genotype assessment of SOD2 47T>C (rs4880), CAT -262C>T (rs1001179), and GPX1 593C>T (rs1050450) variation. RESULTS There were statistical differences between the SOD2 and CAT genotypes across the NASH, NAFL, and control groups, but not GPX1. The NASH group had a significantly higher frequency of subjects with SOD2 C allele (38.8%) compared with the NASL group (25.0%) and the controls (22.9%, p = 0.010). Similarly, the NASH group had a significantly higher percentage of subjects with CAT T allele (23.0%) compared with the NAFL group (10.7%) and the controls (7.2%, p = 0.001). For subjects with both the SOD2 C allele and CAT T allele, 88.2% were in the NASH group. After adjusting for confounders, the CAT mutant T allele and SOD2 mutant C allele were still the highest independent risk factors for NASH (odds ratio [OR] 3.10 and 2.36, respectively). In addition, there was a synergistic effect for those two alleles and the occurrence of NASH with an adjusted OR of 8.57 (p = 0.030). CONCLUSION The genetic variations of CAT and SOD2 may increase the risk of NASH, which may aid in the screening of patients who are at high risk of NASH, and offer a potential anti-oxidant targeting route for the treatment of NASH.
Collapse
Affiliation(s)
- Yi-Shin Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, and National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
5
|
Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, Wahli W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020; 10:E1702. [PMID: 33371482 PMCID: PMC7767499 DOI: 10.3390/biom10121702] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is often the hepatic expression of metabolic syndrome and its comorbidities that comprise, among others, obesity and insulin-resistance. NAFLD involves a large spectrum of clinical conditions. These range from steatosis, a benign liver disorder characterized by the accumulation of fat in hepatocytes, to non-alcoholic steatohepatitis (NASH), which is characterized by inflammation, hepatocyte damage, and liver fibrosis. NASH can further progress to cirrhosis and hepatocellular carcinoma. The etiology of NAFLD involves both genetic and environmental factors, including an unhealthy lifestyle. Of note, unhealthy eating is clearly associated with NAFLD development and progression to NASH. Both macronutrients (sugars, lipids, proteins) and micronutrients (vitamins, phytoingredients, antioxidants) affect NAFLD pathogenesis. Furthermore, some evidence indicates disruption of metabolic homeostasis by food contaminants, some of which are risk factor candidates in NAFLD. At the molecular level, several models have been proposed for the pathogenesis of NAFLD. Most importantly, oxidative stress and mitochondrial damage have been reported to be causative in NAFLD initiation and progression. The aim of this review is to provide an overview of the contribution of nutrients and food contaminants, especially pesticides, to oxidative stress and how they may influence NAFLD pathogenesis.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Liu X, Xie ZH, Liu CY, Zhang Y. Effect of Chinese Herbal Monomer Hairy Calycosin on Nonalcoholic Fatty Liver Rats and its Mechanism. Comb Chem High Throughput Screen 2020; 22:194-200. [PMID: 30973105 DOI: 10.2174/1386207322666190411112814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chinese herbal monomer hairy Calycosin is a flavonoid extracted from Radix astragali. Aims and Scope The aim of the research was to investigate the effect and mechanism of Hairy Calycosin on Non-Alcoholic Fatty Liver Dieases (NAFLD) in rats. MATERIALS AND METHODS 60 rats were randomly divided into 6 groups, then NAFLD rat models were prepared and treated with different doses of Hairy Calycosin (0.5, 1.0, 2.0 mg/kg) or Kathyle relatively. RESULTS Both 1.0 mg/kg and 2.0 mg/kg Hairy Calycosin treatment could significantly increase the serum Superoxide Dismutase (SOD) content of the model rats and reduce the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), Free Fatty Acid (FFA), IL-6, tumor necrosis factor-alpha (TNF-α) and liver homogenate malondialdehyde (MDA), while 2.0 mg/kg Hairy Calycosin can down-regulate liver tissue cytochrome p450 2E1 (CYP2E1). In the electron microscope, compared with the model control group, the mitochondrial swelling in the hepatocytes of Hairy Calycosin (1.0, 2.0 mg/kg) treatment group was significantly reduced, the ridge on the inner membrane of mitochondria increased, and the lipid droplets became much smaller. CONCLUSION Hairy Calycosin can effectively control the lipid peroxidation in liver tissues of rats with NAFLD, and reduce the levels of serum TNF-α, IL-6, MDA and FFA, effectively improve the steatosis and inflammation of liver tissue, and down-regulate the expression of CYP2E1, inhibit apoptosis of hepatocytes.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Infectious Diseases, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Zhi-Hong Xie
- Department of Infectious Diseases, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Chen-Yuan Liu
- Department of Infectious Diseases, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Ying Zhang
- Department of Infectious Diseases, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| |
Collapse
|
7
|
Fromenty B. Inhibition of mitochondrial fatty acid oxidation in drug-induced hepatic steatosis. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Kovalic AJ, Banerjee P, Tran QT, Singal AK, Satapathy SK. Genetic and Epigenetic Culprits in the Pathogenesis of Nonalcoholic Fatty Liver Disease. J Clin Exp Hepatol 2018; 8:390-402. [PMID: 30564000 PMCID: PMC6286466 DOI: 10.1016/j.jceh.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/18/2018] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) constitutes a wide spectrum of liver pathology with hepatic steatosis at the core of this pathogenesis. Variations of certain genetic components have demonstrated increased susceptibility for hepatic steatosis. Therefore, these inciting variants must be further characterized in order to ultimately provide effective, targeted therapies for NAFLD and will be the focus of this review. Several genetic variants revealed an association with NAFLD through Genome-wide Association Study, meta-analyses, and retrospective case-control studies. PNPLA3 rs738409 and TM6SF2 rs58542926 are the two genetic variants providing the strongest evidence for association with NAFLD. However, it remains to be determined if these genetic variants serve as the primary culprit which induces the pathogenesis of NAFLD. Prospective and intervention studies are urgently needed to firmly establish a cause-and-effect relationship between the presence of certain genetic variants and risk of NAFLD development and progression.
Collapse
Key Words
- 1H-MRS, Proton Magnetic Resonance Spectroscopy
- ACC2, Acetyl-CoA Carboxylase 2
- ACLY, ATP Citrate Lyase
- BMI, Body Mass Index
- CK-18, Cytokeratin 18
- CT, Computed Tomography
- FASN, Fatty Acid Synthase
- GWAS, Genome-wide Association Study
- HCC, Hepatocellular Carcinoma
- LT, Liver Transplantation
- NAFLD, Nonalcoholic Fatty Liver Disease
- NASH, Nonalcoholic Steatohepatitis
- SCD1, Stearoyl-CoA Desaturase 1
- SNP, Single Nucleotide Polymorphism
- US, Ultrasonography
- epigenetics
- genetic polymorphisms
- genetic variants
- miRNA, MicroRNA
- nonalcoholic fatty liver disease
- single nucleotide polymorphisms
Collapse
Affiliation(s)
- Alexander J. Kovalic
- Wake Forest Baptist Medical Center, Department of Internal Medicine, Winston-Salem, NC, United States
| | - Pratik Banerjee
- University of Memphis, School of Public Health, Division of Epidemiology, Biostatistics, and Environmental Health, Memphis, TN, United States
| | - Quynh T. Tran
- University of Tennessee Health Science Center, Department of Preventive Medicine, Memphis, TN, United States
| | - Ashwani K. Singal
- University of Alabama at Birmingham, Department of Medicine, Division of Gastroenterology and Hepatology, Birmingham, AL, United States
| | - Sanjaya K. Satapathy
- University of Tennessee Health Science Center, Methodist University Hospital Transplant Institute, Memphis, TN, United States
| |
Collapse
|
9
|
Oxidative Stress and First-Line Antituberculosis Drug-Induced Hepatotoxicity. Antimicrob Agents Chemother 2018; 62:AAC.02637-17. [PMID: 29784840 DOI: 10.1128/aac.02637-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatotoxicity induced by antituberculosis drugs is a serious adverse reaction with significant morbidity and even, rarely, mortality. This form of toxicity potentially impacts the treatment outcome of tuberculosis in some patients. Covering only first-line antituberculosis drugs, this review addresses whether and how oxidative stress and, more broadly, disturbance in redox homeostasis alongside mitochondrial dysfunction may contribute to the hepatotoxicity induced by them. Risk factors for such toxicity that have been identified, in addition to genetic factors, principally include old age, malnutrition, alcoholism, chronic hepatitis C and chronic hepatitis B infection, HIV infection, and preexisting liver disease. Importantly, these comorbid conditions are associated with oxidative stress. Thus, the shared pathogenetic mechanism(s) for liver injury might be in operation due to disease-drug interaction. Our current ability to predict, prevent, or treat hepatotoxicity (other than removing potentially hepatotoxic drugs) remains limited. More translational research to unravel the pathogenesis, inclusive of the underlying molecular basis, regarding antituberculosis drug-induced hepatotoxicity is needed, and so is clinical research pertaining to the advances in therapy with antioxidants and drugs related to antioxidants, especially those for management of mitochondrial dysfunction. The role of pharmacogenetics in the clinical management of drug-induced hepatotoxicity also likely merits further evaluation.
Collapse
|
10
|
Vespasiani-Gentilucci U, Dell'Unto C, De Vincentis A, Baiocchini A, Delle Monache M, Cecere R, Pellicelli AM, Giannelli V, Carotti S, Galati G, Gallo P, Valentini F, Del Nonno F, Rosati D, Morini S, Antonelli-Incalzi R, Picardi A. Combining Genetic Variants to Improve Risk Prediction for NAFLD and Its Progression to Cirrhosis: A Proof of Concept Study. Can J Gastroenterol Hepatol 2018; 2018:7564835. [PMID: 29732362 PMCID: PMC5872672 DOI: 10.1155/2018/7564835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/23/2018] [Accepted: 02/15/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND & AIMS Identifying NAFLD patients at risk of progression is crucial to orient medical care and resources. We aimed to verify if the effects determined by different single nucleotide polymorphisms (SNPs) could add up to multiply the risk of NAFLD and NASH-cirrhosis. METHODS Three study populations, that is, patients diagnosed with NASH-cirrhosis or with noncirrhotic NAFLD and healthy controls, were enrolled. PNPLA3 rs738409, TM6SF2 rs58542926, KLF6 rs3750861, SOD2 rs4880, and LPIN1 rs13412852 were genotyped. RESULTS One hundred and seven NASH-cirrhotics, 93 noncirrhotic NAFLD, and 90 controls were enrolled. At least one difference in allele frequency between groups was significant, or nearly significant, for the PNPLA3, TM6SF2, and KLF6 variants (p < 0.001, p < 0.05, and p = 0.06, resp.), and a risk score based on these SNPs was generated. No differences were observed for SOD2 and LPIN1 SNPs. When compared to a score of 0, a score of 1-2 quadrupled, and a score of 3-4 increased 20-fold the risk of noncirrhotic NAFLD; a score of 3-4 quadrupled the risk of NASH-cirrhosis. CONCLUSIONS The effects determined by disease-associated variants at different loci can add up to multiply the risk of NAFLD and NASH-cirrhosis. Combining different disease-associated variants may represent the way for genetics to keep strength in NAFLD diagnostics.
Collapse
Affiliation(s)
| | - Chiara Dell'Unto
- Internal Medicine, Geriatrics, and Hepatology Unit, University Campus Bio-Medico, Rome, Italy
| | - Antonio De Vincentis
- Internal Medicine, Geriatrics, and Hepatology Unit, University Campus Bio-Medico, Rome, Italy
| | - Andrea Baiocchini
- Laboratory of Pathology of The National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | | | - Roberto Cecere
- Hepatology Outpatient Clinic, Colleferro Hospital, Rome, Italy
| | | | | | - Simone Carotti
- Laboratory of Microscopic and Ultrastructural Anatomy, CIR, University Campus Bio-Medico, Rome, Italy
| | - Giovanni Galati
- Internal Medicine, Geriatrics, and Hepatology Unit, University Campus Bio-Medico, Rome, Italy
| | - Paolo Gallo
- Internal Medicine, Geriatrics, and Hepatology Unit, University Campus Bio-Medico, Rome, Italy
| | - Francesco Valentini
- Internal Medicine, Geriatrics, and Hepatology Unit, University Campus Bio-Medico, Rome, Italy
| | - Franca Del Nonno
- Laboratory of Pathology of The National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | | | - Sergio Morini
- Laboratory of Microscopic and Ultrastructural Anatomy, CIR, University Campus Bio-Medico, Rome, Italy
| | | | - Antonio Picardi
- Internal Medicine, Geriatrics, and Hepatology Unit, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
11
|
Machado MV, Diehl AM. Pathogenesis of Nonalcoholic Fatty Liver Disease. ZAKIM AND BOYER'S HEPATOLOGY 2018:369-390.e14. [DOI: 10.1016/b978-0-323-37591-7.00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Huang YS, Wang LY, Chang CH, Perng CL, Lin HC. Superoxide Dismutase 2 Genetic Variation as a Susceptibility Risk Factor for Alcoholic Cirrhosis. Alcohol Alcohol 2016; 51:633-637. [PMID: 26873981 DOI: 10.1093/alcalc/agw004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022] Open
Abstract
AIMS Superoxide dismutase 2 (SOD2) is an important antioxidant phase 2 enzyme. The associations of SOD2 genetic variation and the risk of advanced alcoholic liver diseases are still debatable. We aimed to investigate the association of the main SOD2 genetic variant (47T>C) and the susceptibility to alcoholic cirrhosis. METHODS A total of 80 patients with alcoholic cirrhosis (AC), 80 patients with alcoholic non-cirrhosis (ANC), 80 with viral hepatitis B-related cirrhosis (VC), and 165 healthy controls (HC) were enrolled into this study. A polymerase chain reaction was used to genotype their SOD2 47T>C (rs4880). RESULTS There was no statistical difference in the frequency distribution of the three SOD2 47T>C genotypes among groups. However, if individuals with C variant were grouped together, the AC group had higher frequency of SOD2 C/C or C/T genotype than ANC, VC and HC groups had (38.7% vs. 21.3%, 26.3% and 21.8%, respectively, P = 0.010). After adjustment for confounders, the SOD2 C/C and C/T genotypes remained associated with the risk of AC (adjusted OR: 2.79 and 3.50, respectively, P < 0.03, compared with ANC and HC groups). In contrast, there was no significant difference of SOD2 genetic variation between VC and HC groups. CONCLUSIONS Anti-oxidative enzyme SOD2 47T>C genetic variant may increase the susceptibility to AC. This suggests that oxidative stress plays a role in the development of AC.
Collapse
Affiliation(s)
- Yi-Shin Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Li Yueh Wang
- Division of Gastroenterology, Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Chih-Hao Chang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chin-Lin Perng
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
13
|
Macaluso FS, Maida M, Petta S. Genetic background in nonalcoholic fatty liver disease: A comprehensive review. World J Gastroenterol 2015; 21:11088-11111. [PMID: 26494964 PMCID: PMC4607907 DOI: 10.3748/wjg.v21.i39.11088] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
In the Western world, nonalcoholic fatty liver disease (NAFLD) is considered as one of the most significant liver diseases of the twenty-first century. Its development is certainly driven by environmental factors, but it is also regulated by genetic background. The role of heritability has been widely demonstrated by several epidemiological, familial, and twin studies and case series, and likely reflects the wide inter-individual and inter-ethnic genetic variability in systemic metabolism and wound healing response processes. Consistent with this idea, genome-wide association studies have clearly identified Patatin-like phosholipase domain-containing 3 gene variant I148M as a major player in the development and progression of NAFLD. More recently, the transmembrane 6 superfamily member 2 E167K variant emerged as a relevant contributor in both NAFLD pathogenesis and cardiovascular outcomes. Furthermore, numerous case-control studies have been performed to elucidate the potential role of candidate genes in the pathogenesis and progression of fatty liver, although findings are sometimes contradictory. Accordingly, we performed a comprehensive literature search and review on the role of genetics in NAFLD. We emphasize the strengths and weaknesses of the available literature and outline the putative role of each genetic variant in influencing susceptibility and/or progression of the disease.
Collapse
|