1
|
Lou W, Zhang L, Wang J. Current status of nucleic acid therapy and its new progress in cancer treatment. Int Immunopharmacol 2024; 142:113157. [PMID: 39288629 DOI: 10.1016/j.intimp.2024.113157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Nucleic acid is an essential biopolymer in all living cells, performing the functions of storing and transmitting genetic information and synthesizing protein. In recent decades, with the progress of science and biotechnology and the continuous exploration of the functions performed by nucleic acid, more and more studies have confirmed that nucleic acid therapy for living organisms has great medical therapeutic potential. Nucleic acid drugs began to become independent therapeutic agents. As a new therapeutic method, nucleic acid therapy plays an important role in the treatment of genetic diseases, viral infections and cancers. There are currently 19 nucleic acid drugs approved by the Food and Drug Administration (FDA). In the following review, we start from principles and advantages of nucleic acid therapy, and briefly describe development history of nucleic acid drugs. And then we give examples of various RNA therapeutic drugs, including antisense oligonucleotides (ASO), mRNA vaccines, small interfering RNA (siRNA) and microRNA (miRNA), aptamers, and small activating RNA (saRNA). In addition, we also focused on the current status of nucleic acid drugs used in cancer therapy and the breakthrough in recent years. Clinical trials of nucleic acid drugs for cancer treatment are under way, conventional radiotherapy and chemotherapy combined with the immunotherapies such as checkpoint inhibitors and nucleic acid drugs may be the main prospects for successful cancer treatment.
Collapse
Affiliation(s)
- Wenting Lou
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Leqi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou 310009, China.
| |
Collapse
|
2
|
Eftekhari Z, Zohrabi H, Oghalaie A, Ebrahimi T, Shariati FS, Behdani M, Kazemi-Lomedasht F. Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102313. [PMID: 39281702 PMCID: PMC11402252 DOI: 10.1016/j.omtn.2024.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The use of mRNA and ribonucleoproteins (RNPs) as therapeutic agents is a promising strategy for treating diseases such as cancer and infectious diseases. This review provides recent advancements and challenges in mRNA- and RNP-based therapies, focusing on delivery systems such as lipid nanoparticles (LNPs), which ensure efficient delivery to target cells. Strategies such as microfluidic devices are employed to prepare LNPs loaded with mRNA and RNPs, demonstrating effective genome editing and protein expression in vitro and in vivo. These applications extend to cancer treatment and infectious disease management, with promising results in genome editing for cancer therapy using LNPs encapsulating Cas9 mRNA and single-guide RNA. In addition, tissue-specific targeting strategies offer potential for improved therapeutic outcomes and reduced off-target effects. Despite progress, challenges such as optimizing delivery efficiency and targeting remain. Future research should enhance delivery efficiency, explore tissue-specific targeting, investigate combination therapies, and advance clinical translation. In conclusion, mRNA- and RNP-based therapies offer a promising avenue for treating various diseases and have the potential to revolutionize medicine, providing new hope for patients worldwide.
Collapse
Affiliation(s)
- Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Horieh Zohrabi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Sadat Shariati
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
3
|
Is RNA the working genome in eukaryotes ? The 60 year evolution of a conceptual challenge. Exp Cell Res 2023; 424:113493. [PMID: 36746314 DOI: 10.1016/j.yexcr.2023.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
About 80 years ago, in 1943, after a century of biochemical and genetic research, DNA was established as the carrier of genetic information. At the onset of Molecular Biology around 1960, the genome of living organisms embodied 3 basic, still unknown paradigms: its composition, organisation and expression. Between 1980 and 1990, its replication was understood, and ideas about its 3D-organisation were suggested and finally confirmed by 2010. The basic mechanisms of gene expression in higher organisms, the synthesis of precursor RNAs and their processing into functional RNAs, were also discovered about 60 years ago in 1961/62. However, some aspects were then, and are still now debated, although the latest results in post-genomic research have confirmed the basic principles. When my history-essay was published in 2003, describing the discovery of RNA processing 40 years earlier, the main facts were not yet generally confirmed or acknowledged. The processing of pre-rRNA to 28 S and 18 S rRNA was clearly demonstrated, confirmed by others and generally accepted as a fact. However, the "giant" size of pre-mRNA 10-100 kb-long and pervasive DNA transcription were still to be confirmed by post-genomic methods. It was found, surprisingly, that up to 90% of DNA is transcribed in the life cycle of eukaryotic organisms thus showing that pervasive transcription was the general rule. In this essay, we shall take a journey through the 60-year history of evolving paradigms of gene expression which followed the emergence of Molecular Biology, and we will also evoke some of the "folklore" in research throughout this period. Most important was the growing recognition that although the genome is encoded in DNA, the Working Genome in eukaryotic organisms is RNA.
Collapse
|
4
|
Zhang R, Du J, Cao YY, Thakur K, Tang SM, Hu F, Wei ZJ. Hydrogen sulfide treatment retrieves the inhibition of growth and development characteristics in silkworm (Bombyx mori) via phosphoacetyl glucosamine mutase gene knock down. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21873. [PMID: 35112397 DOI: 10.1002/arch.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Phosphoacetyl glucosamine mutase (PGM) is the key gene for glycolysis of important metabolic pathways in silkworm, and H2 S (7.5 μM) can promote the growth and development of silkworm. Herein, we used body cavity injection of small-interfering RNA (siRNA) to interfere with the PGM gene in H2 S-treated silkworms. After RNA interference (RNAi), we investigated the growth and development of the silkworm. H2 S treatment could significantly recover the inhibition of body weight, cocoon weight, cocoon shell weight, and cocoon shell ratio by knocking down PGM gene in silkworm, without significant effects on eggs laying and production, and then analyzed the mRNA expression of PGM gene. The interference of siRNA significantly decreased the expression of targeted PGM gene and was concentrated in 48 h followed by gradual recovery. Three interference fragments also showed different interference effects, and siRNA of PGM-3 exerted the highest interference effect to the target gene expression. Fat body had the highest mRNA expression of PGM gene, and the best interference effect was observed after siRNA injection. The results showed that the gene based on H2 S treatment may have an important impact on the growth and development of silkworm by affecting its metabolic pathway.
Collapse
Affiliation(s)
- Rui Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
| | - Juan Du
- School of Biological Science and Engineering, North Minzu University, Yinchuan, PR China
| | - Yu-Yao Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
- School of Biological Science and Engineering, North Minzu University, Yinchuan, PR China
| | - Shun-Ming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, PR China
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
- School of Biological Science and Engineering, North Minzu University, Yinchuan, PR China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
- School of Biological Science and Engineering, North Minzu University, Yinchuan, PR China
| |
Collapse
|
5
|
Yang Y, Zhang X, Wu S, Zhang R, Zhou B, Zhang X, Tang L, Tian Y, Men K, Yang L. Enhanced nose-to-brain delivery of siRNA using hyaluronan-enveloped nanomicelles for glioma therapy. J Control Release 2021; 342:66-80. [PMID: 34973309 DOI: 10.1016/j.jconrel.2021.12.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 02/05/2023]
Abstract
Gliomas are the most malignant brain tumors, and their treatment is very challenging because of the presence of the blood-brain barrier (BBB). Intranasal administration has been considered a noninvasive strategy for glioma therapy in recent years, but our explorations of the intranasal delivery of siRNA-based therapies are still clearly inadequate. In this study, the cell-penetrating peptide DP7-C was enveloped with hyaluronic acid (HA) to develop the multifunctional core-shell structure nanomicelle HA/DP7-C. In vitro studies of HA/DP7-C revealed low cytotoxicity and a higher cell uptake efficiency, which was associated with the interaction between HA and CD44. In vivo experiments indicated that HA/DP7-C delivered the siRNA to the central nervous system through the trigeminal nerve pathway within hours after intranasal administration and that the interaction between HA and CD44 also increased its accumulation at the tumor site. Successful intracellular delivery of an antiglioma siRNA inhibited tumor growth and ultimately prolonged the survival time and decreased the tumor volume in GL261 tumor-bearing mice. In addition, toxicity tests on rats showed no adverse effects on the nasal mucosa and trigeminal nerves. In conclusion, HA/DP7-C is a potential intranasal delivery system for siRNAs in glioma therapy.
Collapse
Affiliation(s)
- YuLing Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - XueYan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - SiWen Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - BaiLing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - XiaoYu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
6
|
Fingerhut BP. The mutual interactions of RNA, counterions and water - quantifying the electrostatics at the phosphate-water interface. Chem Commun (Camb) 2021; 57:12880-12897. [PMID: 34816825 PMCID: PMC8640580 DOI: 10.1039/d1cc05367a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
The structure and dynamics of polyanionic biomolecules, like RNA, are decisively determined by their electric interactions with the water molecules and the counterions in the environment. The solvation dynamics of the biomolecules involves a subtle balance of non-covalent and many-body interactions with structural fluctuations due to thermal motion occurring in a femto- to subnanosecond time range. This complex fluctuating many particle scenario is crucial in defining the properties of biological interfaces with far reaching significance for the folding of RNA structures and for facilitating RNA-protein interactions. Given the inherent complexity, suited model systems, carefully calibrated and benchmarked by experiments, are required to quantify the relevant interactions of RNA with the aqueous environment. In this feature article we summarize our recent progress in the understanding of the electrostatics at the biological interface of double stranded RNA (dsRNA) and transfer RNA (tRNA). Dimethyl phosphate (DMP) is introduced as a viable and rigorously accessible model system allowing the interaction strength with water molecules and counterions, their relevant fluctuation timescales and the spatial reach of interactions to be established. We find strong (up to ≈90 MV cm-1) interfacial electric fields with fluctuations extending up to ≈20 THz and demonstrate how the asymmetric stretching vibration νAS(PO2)- of the polarizable phosphate group can serve as the most sensitive probe for interfacial interactions, establishing a rigorous link between simulations and experiment. The approach allows for the direct interfacial observation of interactions of biologically relevant Mg2+ counterions with phosphate groups in contact pair geometries via the rise of a new absorption band imposed by exchange repulsion interactions at short interatomic distances. The systematic extension to RNA provides microscopic insights into the changes of the hydration structure that accompany the temperature induced melting of the dsRNA double helix and quantify the ionic interactions in the folded tRNA. The results show that pairs of negatively charged phosphate groups and Mg2+ ions represent a key structural feature of RNA embedded in water. They highlight the importance of binding motifs made of contact pairs in the electrostatic stabilization of RNA structures that have a strong impact on the surface potential and enable the fine tuning of the local electrostatic properties which are expected to be relevant for mediating the interactions between biomolecules.
Collapse
|
7
|
Prikazchikova TA, Abakumova TO, Sergeeva OV, Zatsepin TS. Design and Validation of siRNA Targeting Gankyrin in the Murine Liver. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Nourbakhsh A, Colbert BM, Nisenbaum E, El-Amraoui A, Dykxhoorn DM, Koehler KR, Chen ZY, Liu XZ. Stem Cells and Gene Therapy in Progressive Hearing Loss: the State of the Art. J Assoc Res Otolaryngol 2021; 22:95-105. [PMID: 33507440 PMCID: PMC7943682 DOI: 10.1007/s10162-020-00781-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Progressive non-syndromic sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment, affecting more than a third of individuals over the age of 65. PNSHL includes noise-induced hearing loss (NIHL) and inherited forms of deafness, among which is delayed-onset autosomal dominant hearing loss (AD PNSHL). PNSHL is a prime candidate for genetic therapies due to the fact that PNSHL has been studied extensively, and there is a potentially wide window between identification of the disorder and the onset of hearing loss. Several gene therapy strategies exist that show potential for targeting PNSHL, including viral and non-viral approaches, and gene editing versus gene-modulating approaches. To fully explore the potential of these therapy strategies, a faithful in vitro model of the human inner ear is needed. Such models may come from induced pluripotent stem cells (iPSCs). The development of new treatment modalities by combining iPSC modeling with novel and innovative gene therapy approaches will pave the way for future applications leading to improved quality of life for many affected individuals and their families.
Collapse
Affiliation(s)
- Aida Nourbakhsh
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
| | - Brett M. Colbert
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Eric Nisenbaum
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Institut Pasteur, INSERM-UMRS1120, Sorbonne Université, 25 rue du Dr. Roux, 75015 Paris, France
| | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Karl Russell Koehler
- Department of Otolaryngology-Head and Neck Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Zheng-yi Chen
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 USA
| | - Xue Z. Liu
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
9
|
Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, Alarcón-Hernández E, Ibáñez-Hernández M. Strategies for Targeting Gene Therapy in Cancer Cells With Tumor-Specific Promoters. Front Oncol 2020; 10:605380. [PMID: 33381459 PMCID: PMC7768042 DOI: 10.3389/fonc.2020.605380] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second cause of death worldwide, surpassed only by cardiovascular diseases, due to the lack of early diagnosis, and high relapse rate after conventional therapies. Chemotherapy inhibits the rapid growth of cancer cells, but it also affects normal cells with fast proliferation rate. Therefore, it is imperative to develop other safe and more effective treatment strategies, such as gene therapy, in order to significantly improve the survival rate and life expectancy of patients with cancer. The aim of gene therapy is to transfect a therapeutic gene into the host cells to express itself and cause a beneficial biological effect. However, the efficacy of the proposed strategies has been insufficient for delivering the full potential of gene therapy in the clinic. The type of delivery vehicle (viral or non viral) chosen depends on the desired specificity of the gene therapy. The first gene therapy trials were performed with therapeutic genes driven by viral promoters such as the CMV promoter, which induces non-specific toxicity in normal cells and tissues, in addition to cancer cells. The use of tumor-specific promoters over-expressed in the tumor, induces specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several cancer- and/or tumor-specific promoters systems have been developed to target cancer cells. This review aims to provide up-to-date information concerning targeting gene therapy with cancer- and/or tumor-specific promoters including cancer suppressor genes, suicide genes, anti-tumor angiogenesis, gene silencing, and gene-editing technology, as well as the type of delivery vehicle employed. Gene therapy can be used to complement traditional therapies to provide more effective treatments.
Collapse
Affiliation(s)
- Mariela Montaño-Samaniego
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Diana M. Bravo-Estupiñan
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Méndez-Guerrero
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Alarcón-Hernández
- Laboratorio de Genética Molecular, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Miguel Ibáñez-Hernández
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
10
|
Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges. J Clin Med 2020; 9:jcm9072309. [PMID: 32708116 PMCID: PMC7408650 DOI: 10.3390/jcm9072309] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
Hearing impairment is the most frequent sensory deficit in humans of all age groups, from children (1/500) to the elderly (more than 50% of the over-75 s). Over 50% of congenital deafness are hereditary in nature. The other major causes of deafness, which also may have genetic predisposition, are aging, acoustic trauma, ototoxic drugs such as aminoglycosides, and noise exposure. Over the last two decades, the study of inherited deafness forms and related animal models has been instrumental in deciphering the molecular, cellular, and physiological mechanisms of disease. However, there is still no curative treatment for sensorineural deafness. Hearing loss is currently palliated by rehabilitation methods: conventional hearing aids, and for more severe forms, cochlear implants. Efforts are continuing to improve these devices to help users to understand speech in noisy environments and to appreciate music. However, neither approach can mediate a full recovery of hearing sensitivity and/or restoration of the native inner ear sensory epithelia. New therapeutic approaches based on gene transfer and gene editing tools are being developed in animal models. In this review, we focus on the successful restoration of auditory and vestibular functions in certain inner ear conditions, paving the way for future clinical applications.
Collapse
|
11
|
Liu S, Li B, Liang Q, Liu A, Qu L, Yang J. Classification and function of RNA-protein interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1601. [PMID: 32488992 DOI: 10.1002/wrna.1601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Almost all RNAs need to interact with proteins to fully exert their functions, and proteins also bind to RNAs to act as regulators. It has now become clear that RNA-protein interactions play important roles in many biological processes among organisms. Despite the great progress that has been made in the field, there is still no precise classification system for RNA-protein interactions, which makes it challenging to further decipher the functions and mechanisms of these interactions. In this review, we propose four different categories of RNA-protein interactions according to their basic characteristics: RNA motif-dependent RNA-protein interactions, RNA structure-dependent RNA-protein interactions, RNA modification-dependent RNA-protein interactions, and RNA guide-based RNA-protein interactions. Moreover, the integration of different types of RNA-protein interactions and the regulatory factors implicated in these interactions are discussed. Furthermore, we emphasize the functional diversity of these four types of interactions in biological processes and disease development and assess emerging trends in this exciting research field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiaoxia Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anrui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
12
|
Justina VD, Giachini FR, Priviero F, Webb RC. Double-stranded RNA and Toll-like receptor activation: a novel mechanism for blood pressure regulation. Clin Sci (Lond) 2020; 134:303-313. [PMID: 31998948 PMCID: PMC7703673 DOI: 10.1042/cs20190913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/24/2022]
Abstract
Toll-like receptors (TLRs), such as TLR4 and 9, recognize pathogen-associated molecular pattern (PAMPs) and danger-associated molecular patterns (DAMPs) and are associated with increased blood pressure (BP). TLR3, residing in the endosomal compartment, is activated by viral double-stranded RNA (dsRNA) leading to activation of TIR receptor domain-containing adaptor inducing IFN-β (TRIF) dependent pathway. Besides foreign pathogens, the immune system responds to endogenous markers of cellular damage such as mitochondrial dsRNA (mtdsRNA). New evidence has shown a link between dsRNA and increased BP. Moreover, TLR3 activation during pregnancy was demonstrated to develop preeclampsia-like symptoms in both rats and mice. Hence, we hypothesize that the dsRNA derived from viral nucleic acids or cellular damage (mtdsRNA) will increase the inflammatory state through activation of TLR3, contributing to vascular dysfunction and increased BP. Therefore, inhibition of TLR3 could be a therapeutic target for the treatment of hypertension with potential improvement in vascular reactivity and consequently, a decrease in BP.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, U.S.A
- Graduate Program in Biological Sciences, Federal University of Goias, Goiânia, Brazil
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goias, Goiânia, Brazil
- RIVATREM - Red Iberoamericana de Alteraciones Vasculares en Transtornos del Embarazo
| | - Fernanda Priviero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, U.S.A
| | - R. Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, U.S.A
| |
Collapse
|
13
|
Bajan S, Hutvagner G. RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs. Cells 2020; 9:E137. [PMID: 31936122 PMCID: PMC7016530 DOI: 10.3390/cells9010137] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
The first therapeutic nucleic acid, a DNA oligonucleotide, was approved for clinical use in 1998. Twenty years later, in 2018, the first therapeutic RNA-based oligonucleotide was United States Food and Drug Administration (FDA) approved. This promises to be a rapidly expanding market, as many emerging biopharmaceutical companies are developing RNA interference (RNAi)-based, and RNA-based antisense oligonucleotide therapies. However, miRNA therapeutics are noticeably absent. miRNAs are regulatory RNAs that regulate gene expression. In disease states, the expression of many miRNAs is measurably altered. The potential of miRNAs as therapies and therapeutic targets has long been discussed and in the context of a wide variety of infections and diseases. Despite the great number of studies identifying miRNAs as potential therapeutic targets, only a handful of miRNA-targeting drugs (mimics or inhibitors) have entered clinical trials. In this review, we will discuss whether the investment in finding potential miRNA therapeutic targets has yielded feasible and practicable results, the benefits and obstacles of miRNAs as therapeutic targets, and the potential future of the field.
Collapse
Affiliation(s)
- Sarah Bajan
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2000, Australia
- Health and Sport Science, University of Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
14
|
Nwokeoji AO, Kumar S, Kilby PM, Portwood DE, Hobbs JK, Dickman MJ. Analysis of long dsRNA produced in vitro and in vivo using atomic force microscopy in conjunction with ion-pair reverse-phase HPLC. Analyst 2019; 144:4985-4994. [PMID: 31328735 DOI: 10.1039/c9an00954j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Long double-stranded (ds) RNA is emerging as a novel alternative to chemical and genetically-modified insect and fungal management strategies. The ability to produce large quantities of dsRNA in either bacterial systems, by in vitro transcription, in cell-free systems or in planta for RNA interference applications has generated significant demand for the development and application of analytical tools for analysis of dsRNA. We have utilised atomic force microscopy (AFM) in conjunction with ion-pair reverse-phase high performance liquid chromatography (IP-RP-HPLC) to provide novel insight into dsRNA for RNAi applications. The AFM analysis enabled direct structural characterisation of the A-form duplex dsRNA and accurate determination of the dsRNA duplex length. Moreover, further analysis under non-denaturing conditions revealed the presence of heterogeneous dsRNA species. IP-RP-HPLC fractionation and AFM analysis revealed that these alternative RNA species do not arise from different lengths of individual dsRNA molecules in the product, but represent misannealed RNA species that present as larger assemblies or multimeric forms of the RNA. These results for the first time provide direct structural insight into dsRNA produced both in vivo in bacterial systems and in vitro, highlighting the structural heterogeneity of RNA produced. These results are the first example of detailed characterisation of the different forms of dsRNA from two production systems and establish atomic force microscopy as an important tool for the characterisation of long dsRNA.
Collapse
Affiliation(s)
- Alison O Nwokeoji
- Department of Chemical and Biological Engineering, Mappin Street, University of Sheffield, S1 3JD, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Scherrer K. Primary transcripts: From the discovery of RNA processing to current concepts of gene expression - Review. Exp Cell Res 2018; 373:1-33. [PMID: 30266658 DOI: 10.1016/j.yexcr.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
The main purpose of this review is to recall for investigators - and in particular students -, some of the early data and concepts in molecular genetics and biology that are rarely cited in the current literature and are thus invariably overlooked. There is a growing tendency among editors and reviewers to consider that only data produced in the last 10-20 years or so are pertinent. However this is not the case. In exact science, sound data and lucid interpretation never become obsolete, and even if forgotten, will resurface sooner or later. In the field of gene expression, covered in the present review, recent post-genomic data have indeed confirmed many of the earlier results and concepts developed in the mid-seventies, well before the start of the recombinant DNA revolution. Human brains and even the most powerful computers, have difficulty in handling and making sense of the overwhelming flow of data generated by recent high-throughput technologies. This was easier when low throughput, more integrative methods based on biochemistry and microscopy dominated biological research. Nowadays, the need for organising concepts is ever more important, otherwise the mass of available data can generate only "building ruins" - the bricks without an architect. Concepts such as pervasive transcription of genomes, large genomic domains, full domain transcripts (FDTs) up to 100 kb long, the prevalence of post-transcriptional events in regulating eukaryotic gene expression, and the 3D-genome architecture, were all developed and discussed before 1990, and are only now coming back into vogue. Thus, to review the impact of earlier concepts on later developments in the field, I will confront former and current data and ideas, including a discussion of old and new methods. Whenever useful, I shall first briefly report post-genomic developments before addressing former results and interpretations. Equally important, some of the terms often used sloppily in scientific discussions will be clearly defined. As a basis for the ensuing discussion, some of the issues and facts related to eukaryotic gene expression will first be introduced. In chapter 2 the evolution in perception of biology over the last 60 years and the impact of the recombinant DNA revolution will be considered. Then, in chapter 3 data and theory concerning the genome, gene expression and genetics will be reviewed. The experimental and theoretical definition of the gene will be discussed before considering the 3 different types of genetic information - the "Triad" - and the importance of post-transcriptional regulation of gene expression in the light of the recent finding that 90% of genomic DNA seems to be transcribed. Some previous attempts to provide a conceptual framework for these observations will be recalled, in particular the "Cascade Regulation Hypothesis" (CRH) developed in 1967-85, and the "Gene and Genon" concept proposed in 2007. A knowledge of the size of primary transcripts is of prime importance, both for experimental and theoretical reasons, since these molecules represent the primary units of the "RNA genome" on which most of the post-transcriptional regulation of gene expression occurs. In chapter 4, I will first discuss some current post-genomic topics before summarising the discovery of the high Mr-RNA transcripts, and the investigation of their processing spanning the last 50 years. Since even today, a consensus concerning the real form of primary transcripts in eukaryotic cells has not yet been reached, I will refer to the viral and specialized cellular models which helped early on to understand the mechanisms of RNA processing and differential splicing which operate in cells and tissues. As a well-studied example of expression and regulation of a specific cellular gene in relation to differentiation and pathology, I will discuss the early and recent work on expression of the globin genes in nucleated avian erythroblasts. An important concept is that the primary transcript not only embodies protein-coding information and regulation of its expression, but also the 3D-structure of the genomic DNA from which it was derived. The wealth of recent post-genomic data published in this field emphasises the importance of a fundamental principle of genome organisation and expression that has been overlooked for years even though it was already discussed in the 1970-80ties. These issues are addressed in chapter 5 which focuses on the involvement of the nuclear matrix and nuclear architecture in DNA and RNA biology. This section will make reference to the Unified Matrix Hypothesis (UMH), which was the first molecular model of the 3D organisation of DNA and RNA. The chapter on the "RNA-genome and peripheral memories" discusses experimental data on the ribonucleoprotein complexes containing pre-mRNA (pre-mRNPs) and mRNA (mRNPs) which are organised in nuclear and cytoplasmic spaces respectively. Finally, "Outlook " will enumerate currently unresolved questions in the field, and will propose some ideas that may encourage further investigation, and comprehension of available experimental data still in need of interpretation. In chapter 8, some propositions and paradigms basic to the authors own analysis are discussed. "In conclusion" the raison d'être of this review is recalled and positioned within the overall framework of scientific endeavour.
Collapse
Affiliation(s)
- Klaus Scherrer
- Institute Jacques Monod, CNRS, University Paris Diderot, Paris, France.
| |
Collapse
|
16
|
Rebelo TM, Vania L, Ferreira E, Weiss SFT. siRNA - Mediated LRP/LR knock-down reduces cellular viability of malignant melanoma cells through the activation of apoptotic caspases. Exp Cell Res 2018; 368:1-12. [PMID: 29653110 DOI: 10.1016/j.yexcr.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
Abstract
The 37 kDa/67 kDa laminin receptor (LRP/LR) is over-expressed in tumor cells and has been implicated in several tumourigenic processes such as metastasis and telomerase activation, however, more importantly the focus of the present study is on the maintenance of cellular viability and the evasion of apoptosis. The aim of the study was to investigate the role of LRP/LR on the cellular viability of early (A375) and late stage (A375SM) malignant melanoma cells. Flow cytometry and western blot analysis revealed that A375SM cells contain more cell-surface and total LRP/LR levels in comparison to the A375 cells, respectively. In order to determine the effect of LRP/LR on cell viability and apoptosis, LRP was down-regulated via siRNA technology. MTT assays revealed that LRP knock-down led to significant reductions in the viability of A375 and A375SM cells. Confocal microscopy indicated nuclear morphological changes suggestive of apoptotic induction in both cell lines and Annexin-V FITC/PI assays confirmed this observation. Additionally, caspase-3 activity assays revealed that apoptosis was induced in both cell lines after siRNA-mediated down-regulation of LRP. Caspase-8 and -9 activity assays suggested that post LRP knock-down; A375 cells undergo apoptosis solely via the extrinsic pathway, while A375SM cells undergo apoptosis via the intrinsic pathway. IMPLICATIONS siRNAs mediated LRP knock-down might represent a powerful alternative therapeutic strategy for the treatment of malignant melanoma through the induction of apoptosis.
Collapse
Affiliation(s)
- Thalia M Rebelo
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa (RSA).
| | - Leila Vania
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa (RSA).
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa (RSA).
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa (RSA).
| |
Collapse
|
17
|
Zeng G, Zhang D, Liu X, Kang Q, Fu Y, Tang B, Guo W, Zhang Y, Wei G, He D. Co-expression of Piwil2/Piwil4 in nucleus indicates poor prognosis of hepatocellular carcinoma. Oncotarget 2018; 8:4607-4617. [PMID: 27894076 PMCID: PMC5354858 DOI: 10.18632/oncotarget.13491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023] Open
Abstract
Purpose This study aimed to explore the localization and expression of P-element-induced wimpy testis-like 2 (piwil2)/Piwil4 in hepatocellular carcinoma (HCC) tissues, and analyze the correlation between co-expression pattern and prognosis of HCC. Results Piwil2 showed 100% positive expression in the cell nucleus, with the intensity higher than in the cytoplasm. Piwil4 showed a lower intensity of expression in the cell nucleus than in the cytoplasm. The molecular chaperone Piwil2/Piwil4 had four co-expression patterns: nuclear co-expression, nuclear and cytoplasmic co-expression, cytoplasmic co-expression, and non-coexpression. The survival rate and the overall survival sequentially increased. The prognostic phenotype of the nuclear co-expression of Piwil2/Piwil4 was worse than that of non-coexpression, and the intracellular localization and expression of Piwil2 and Piwil4 were not significantly different. Methods HCC pathological tissue samples with follow-up information (90 cases) and 2 normal control liver tissues were collected and made into a 92-site microarray. The expression of Piwil2 and Piwil4 was detected using the immunofluorescence double staining method. The differences in the expression and location of Piwil2 and Piwil4 in tumor cells were explored, and the influence of such differences on the long-term survival rate of HCC was studied using Kaplan-Meier survival curve and log-rank test. The clinical staging was analyzed according to the HCC international TNM staging criteria. Conclusions The nuclear co-expression of Piwil2/Piwil4 indicated that patients with HCC had a worse prognostic phenotype. The molecular chaperone Piwil2/Piwil4 seems promising as a molecular marker for prognosis judgment; a single marker (Piwil2/Piwil4) cannot be used for prognosis judgment.
Collapse
Affiliation(s)
- Guangping Zeng
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Qing Kang
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Yiyao Fu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Bo Tang
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Wenhao Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27103, USA
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| |
Collapse
|
18
|
Disney MD, Winkelsas AM, Velagapudi SP, Southern M, Fallahi M, Childs-Disney JL. Inforna 2.0: A Platform for the Sequence-Based Design of Small Molecules Targeting Structured RNAs. ACS Chem Biol 2016; 11:1720-8. [PMID: 27097021 DOI: 10.1021/acschembio.6b00001] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif-small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data. Lead small molecules can then be tested for binding and affecting cellular (dys)function. Herein, we describe Inforna 2.0, which incorporates all known RNA motif-small molecule binding partners reported in the scientific literature, a chemical similarity searching feature, and an improved user interface and is freely available via an online web server. By incorporation of interactions identified by other laboratories, the database has been doubled, containing 1936 RNA motif-small molecule interactions, including 244 unique small molecules and 1331 motifs. Interestingly, chemotype analysis of the compounds that bind RNA in the database reveals features in small molecule chemotypes that are privileged for binding. Further, this updated database expanded the number of cellular RNAs to which lead compounds can be identified.
Collapse
Affiliation(s)
- Matthew D. Disney
- Department of Chemistry and ‡Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Audrey M. Winkelsas
- Department of Chemistry and ‡Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Sai Pradeep Velagapudi
- Department of Chemistry and ‡Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Mark Southern
- Department of Chemistry and ‡Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Mohammad Fallahi
- Department of Chemistry and ‡Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L. Childs-Disney
- Department of Chemistry and ‡Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
19
|
Feng J, Wang X, Liao Y, Feng J, Tang L. A novel conditional gene silencing method using a tumor-specific and heat-inducible siRNA system. J Ind Microbiol Biotechnol 2016; 43:761-770. [PMID: 27033537 DOI: 10.1007/s10295-016-1759-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/15/2016] [Indexed: 12/30/2022]
Abstract
RNAi technology is an invaluable tool for investigating gene function. However, the non-temporal and non-spatial control is the primary limitation, which leads to siRNA leakiness and off-target effects. In this study, we inserted three kinds of HSE into tumor specific promoter hTERT, which aims to construct a temperature-inducible and tumor-specific RNAi plasmid vector. In our system, the expression of mature siRNA is tightly controlled by the heat shock-inducible and tumor-specific promoters. From the expression level of RNA and protein, we determined the efficiency of the inducible siRNA system by targeting SNCG gene in HepG2 and MCF-7 cells. Results showed that the controllable siRNA system could be induced to initiate siRNA expression by heat-induce. The silencing effect of SNCG is on a relative low level (10 %) at 37 °C, while it is significantly increased to 50 or 60 % after heat inducing at 43 °C. This new conditional siRNA system provides a novel approach to drive the siRNA expression by heat-inducible and tumor-specific promoter.
Collapse
Affiliation(s)
- Jing Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yi Liao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jianguo Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
20
|
Zhang H, Zhang P, Liu Y, Lv P, Wang Y, Chen Y. In vitro study of the effect of small interfering ribonucleic acid on the expression of FOXN1 and B cell-attracting chemokine 1 in thymoma cell lines. Thorac Cancer 2015; 6:172-9. [PMID: 26273355 PMCID: PMC4448481 DOI: 10.1111/1759-7714.12160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/27/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND To determine the relationship between FOXN1 (a transcription factor) and B cell-attracting chemokine 1 (BCA1, a chemotactic factor), and their influence on thymoma cell proliferation. METHODS We initially used immunohistochemical methods to compare the expression levels of FOXN1 and BCA1 in thymoma and non-thymomatous tissue samples. Reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were used to compare the expression of FOXN1 and BCA1 in thymoma cells (Thy0517) and normal thymic epithelial cells (CRL7660). We used ribonucleic acid interference (RNAi) to downregulate FOXN1 and BCA1 expression in Thy0517 cells to determine the relationship of the two factors with cell regulation. We also performed methyl thiazolyl tetrazolium (MTT) [3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide] assays to detect the changes in Thy0517 cells after RNAi of FOXN1 and BCA1. RESULTS FOXN1 and BCA1 expression levels were higher in thymoma tissues and Thy0517 cells compared to non-thymomatous tissue and CRL7660 cells (P < 0.05). RT-PCR and Western blot following RNAi showed that FOXN1 controlled BCA1 expression. MTT assay showed that FOXN1 and BCA1 downregulation rapidly inhibited Thy0517 cell proliferation. CONCLUSIONS FOXN1 and BCA1 expression was higher in thymoma tissue samples and cell lines than in non-thymomatous tissue and normal thymic epithelial cells. FOXN1 acts upstream of BCA1 and both FOXN1 and BCA1 promote thymoma cell proliferation.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiac and Thoracic Surgery, Tianjin Medical University Affiliated General Hospital Tianjin, China
| | - Peng Zhang
- Department of Cardiac and Thoracic Surgery, Tianjin Medical University Affiliated General Hospital Tianjin, China
| | - Yimei Liu
- Department of Cardiac and Thoracic Surgery, Tianjin Medical University Affiliated General Hospital Tianjin, China
| | - Peng Lv
- Department of Cardiac and Thoracic Surgery, Tianjin Medical University Affiliated General Hospital Tianjin, China
| | - Yuanguo Wang
- Department of Cardiac and Thoracic Surgery, Tianjin Medical University Affiliated General Hospital Tianjin, China
| | - Yuan Chen
- Department of Cardiac and Thoracic Surgery, Tianjin Medical University Affiliated General Hospital Tianjin, China
| |
Collapse
|
21
|
Watanabe K, Arumugam S, Sreedhar R, Thandavarayan RA, Nakamura T, Nakamura M, Harima M, Yoneyama H, Suzuki K. Small interfering RNA therapy against carbohydrate sulfotransferase 15 inhibits cardiac remodeling in rats with dilated cardiomyopathy. Cell Signal 2015; 27:1517-24. [PMID: 25778904 DOI: 10.1016/j.cellsig.2015.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/17/2015] [Accepted: 03/08/2015] [Indexed: 02/07/2023]
Abstract
Carbohydrate sulfotransferase 15 (CHST15) is a sulfotransferase responsible for biosynthesis of chondroitin sulfate E (CS-E), which plays important roles in numerous biological events such as biosynthesis of proinflammatory cytokines. However, the effects of CHST15 siRNA in rats with chronic heart failure (CHF) after experimental autoimmune myocarditis (EAM) have not yet been investigated. CHF was elicited in Lewis rats by immunization with cardiac myosin, and after immunization, the rats were divided into two groups and treated with either CHST15 siRNA (2μg/week) or vehicle. Age matched normal rats without immunizations were also included in this study. After 7weeks of treatment, we investigated the effects of CHST15 siRNA on cardiac function, proinflammatory cytokines, and cardiac remodeling in EAM rats. Myocardial functional parameters measured by hemodynamic and echocardiographic studies were significantly improved by CHST15 siRNA treatment in rats with CHF compared with that of vehicle-treated CHF rats. CHST15 siRNA significantly reduced cardiac fibrosis, and hypertrophy and its marker molecules (left ventricular (LV) mRNA expressions of transforming growth factor beta1, collagens I and III, and atrial natriuretic peptide) compared with vehicle-treated CHF rats. CHF-induced increased myocardial mRNA expressions of proinflammatory cytokines [interleukin (IL)-6, IL-1β], monocyte chemoattractant protein-1, and matrix metalloproteinases (MMP-2 and -9), and CHST15 were also suppressed by the treatment with CHST15 siRNA. Western blotting study has confirmed the results obtained from mRNA analysis as CHST15 siRNA treated rats expressed reduced levels of inflammatory and cardiac remodeling marker proteins. Our results demonstrate for the first time, that CHST15 siRNA treatment significantly improved LV function and ameliorated the progression of cardiac remodeling in rats with CHF after EAM.
Collapse
Affiliation(s)
- Kenichi Watanabe
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Remya Sreedhar
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | | | - Takashi Nakamura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Masahiko Nakamura
- Department of Cardiology, Yamanashi Prefectural Central Hospital, Kofu-city, Yamanashi, Japan
| | - Meilei Harima
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | | | - Kenji Suzuki
- Department of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
22
|
Takahashi M, Suzuki M, Fukuoka M, Fujikake N, Watanabe S, Murata M, Wada K, Nagai Y, Hohjoh H. Normalization of Overexpressed α-Synuclein Causing Parkinson's Disease By a Moderate Gene Silencing With RNA Interference. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e241. [PMID: 25965551 DOI: 10.1038/mtna.2015.14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Abstract
The α-synuclein (SNCA) gene is a responsible gene for Parkinson's disease (PD); and not only nucleotide variations but also overexpression of SNCA appears to be involved in the pathogenesis of PD. A specific inhibition against mutant SNCA genes carrying nucleotide variations may be feasible by a specific silencing such as an allele-specific RNA interference (RNAi); however, there is no method for restoring the SNCA overexpression to a normal level. Here, we show that an atypical RNAi using small interfering RNAs (siRNAs) that confer a moderate level of gene silencing is capable of controlling overexpressed SNCA genes to return to a normal level; named "expression-control RNAi" (ExCont-RNAi). ExCont-RNAi exhibited little or no significant off-target effects in its treated PD patient's fibroblasts that carry SNCA triplication. To further assess the therapeutic effect of ExCont-RNAi, PD-model flies that carried the human SNCA gene underwent an ExCont-RNAi treatment. The treated PD-flies demonstrated a significant improvement in their motor function. Our current findings suggested that ExCont-RNAi might be capable of becoming a novel therapeutic procedure for PD with the SNCA overexpression, and that siRNAs conferring a moderate level of gene silencing to target genes, which have been abandoned as useless siRNAs so far, might be available for controlling abnormally expressed disease-causing genes without producing adverse effects.
Collapse
Affiliation(s)
- Masaki Takahashi
- 1] Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Tokyo, Japan [2] Present address: Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mari Suzuki
- Department of Degenerative Neurological Disease, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Masashi Fukuoka
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Nobuhiro Fujikake
- Department of Degenerative Neurological Disease, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | | | - Miho Murata
- National Center Hospital, NCNP, Tokyo, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Disease, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Disease, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| |
Collapse
|
23
|
Basu P, Kumar GS. Structural and thermodynamic basis of interaction of the putative anticancer agent chelerythrine with single, double and triple-stranded RNAs. RSC Adv 2015. [DOI: 10.1039/c5ra00660k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interaction of chl with poly(uau), poly(au) and poly(u).
Collapse
Affiliation(s)
- Pritha Basu
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| |
Collapse
|
24
|
Shen J, Kim HC, Mu C, Gentile E, Mai J, Wolfram J, Ji LN, Ferrari M, Mao ZW, Shen H. Multifunctional gold nanorods for siRNA gene silencing and photothermal therapy. Adv Healthc Mater 2014; 3:1629-37. [PMID: 24692076 DOI: 10.1002/adhm.201400103] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/05/2014] [Indexed: 11/08/2022]
Abstract
Cancer is a complex disease that usually requires several treatment modalities. A multifunctional nanotherapeutic system is designed, incorporating small interfering RNA (siRNA) and gold nanorods (Au NRs) for photothermal therapy. Surface-engineered Au NRs with polyethylenimine are synthesized using a layer-by-layer assembly and siRNA is absorbed on the surface. The siRNA is efficiently delivered into breast cancer cells, resulting in subsequent gene silencing. Cells are then irradiated with near-infrared (NIR) light, causing heat-induced anticancer activity. The combination of gene silencing and photothermal therapy results in effective inhibition of cell proliferation.
Collapse
Affiliation(s)
- Jianliang Shen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou 510275 China
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
| | - Han-Cheon Kim
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
| | - Chaofeng Mu
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
| | - Emanuela Gentile
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
| | - Junhua Mai
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
| | - Joy Wolfram
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
| | - Liang-nian Ji
- MOE Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou 510275 China
| | - Mauro Ferrari
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
- Department of Medicine; Weill Cornell Medical College; New York 10065 USA
| | - Zong-wan Mao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou 510275 China
| | - Haifa Shen
- Department of Nanomedicine; Houston Methodist Research Institute; Houston 77030 USA
- Department of Cell and Developmental Biology; Weill Cornell Medical College; New York 10065 USA
| |
Collapse
|
25
|
Wei J, Chamberlain JR. Systemic RNAi delivery to the muscles of ROSA26 mice reduces lacZ expression. PLoS One 2014; 9:e102053. [PMID: 25127128 PMCID: PMC4134137 DOI: 10.1371/journal.pone.0102053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/14/2014] [Indexed: 12/19/2022] Open
Abstract
RNAi has potential for therapeutically downregulating the expression of dominantly inherited genes in a variety of human genetic disorders. Here we used the ROSA26 mouse, which constitutively expresses the bacterial lacZ gene in tissues body wide, as a model to test the ability to downregulate gene expression in striated muscles. Recombinant adeno-associated viral vectors (rAAVs) were generated that express short hairpin RNAs (shRNAs) able to target the lacZ mRNA. Systemic delivery of these rAAV6 vectors led to a decrease of β-galactosidase expression of 30-50-fold in the striated muscles of ROSA26 mice. However, high doses of vectors expressing 21 nucleotide shRNA sequences were associated with significant toxicity in both liver and cardiac muscle. This toxicity was reduced in cardiac muscle using lower vector doses. Furthermore, improved knockdown in the absence of toxicity was obtained by using a shorter (19 nucleotide) shRNA guide sequence. These results support the possibility of using rAAV vectors to deliver RNAi sequences systemically to treat dominantly inherited disorders of striated muscle.
Collapse
Affiliation(s)
- Jessica Wei
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Joel R. Chamberlain
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
26
|
Mansur JF, Alvarenga ESL, Figueira-Mansur J, Franco TA, Ramos IB, Masuda H, Melo ACA, Moreira MF. Effects of chitin synthase double-stranded RNA on molting and oogenesis in the Chagas disease vector Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 51:110-121. [PMID: 24398146 DOI: 10.1016/j.ibmb.2013.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
In this study, we provided the demonstration of the presence of a single CHS gene in the Rhodnius prolixus (a blood-sucking insect) genome that is expressed in adults (integument and ovary) and in the integument of nymphs during development. This CHS gene appears to be essential for epidermal integrity and egg formation in R. prolixus. Because injection of CHS dsRNA was effective in reducing CHS transcript levels, phenotypic alterations in the normal course of ecdysis occurred. In addition, two phenotypes with severe cuticle deformations were observed, which were associated with loss of mobility and lifetime. The CHS dsRNA treatment in adult females affected oogenesis, reducing the size of the ovary and presenting a greater number of atresic oocytes and a smaller number of chorionated oocytes compared with the control. The overall effect was reduced oviposition. The injection of CHS dsRNA modified the natural course of egg development, producing deformed eggs that were dark in color and unable to hatch, distinct from the viable eggs laid by control females. The ovaries, which were examined under fluorescence microscopy using a probe for chitin detection, showed a reduced deposition on pre-vitellogenic and vitellogenic oocytes compared with control. Taken together, these data suggest that the CHS gene is fundamentally important for ecdysis, oogenesis and egg hatching in R. prolixus and also demonstrated that the CHS gene is a good target for controlling Chagas disease vectors.
Collapse
Affiliation(s)
- Juliana F Mansur
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Evelyn S L Alvarenga
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Janaina Figueira-Mansur
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Thiago A Franco
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Isabela B Ramos
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Hatisaburo Masuda
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mônica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Gujrati M, Malamas A, Shin T, Jin E, Sun Y, Lu ZR. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm 2014; 11:2734-44. [PMID: 25020033 DOI: 10.1021/mp400787s] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems.
Collapse
Affiliation(s)
- Maneesh Gujrati
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | | | | | | | | | | |
Collapse
|
28
|
Genome wide functional genetics in haploid cells. FEBS Lett 2014; 588:2415-21. [PMID: 24950427 DOI: 10.1016/j.febslet.2014.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 01/02/2023]
Abstract
Some organisms such as yeast or males of social insects are haploid, i.e. they carry a single set of chromosomes, while haploidy in mammals is exclusively restricted to mature germ cells. A single copy of the genome provides the basis for genetic analyses where any recessive mutation of essential genes will show a clear phenotype due to the absence of a second gene copy. Most prominently, haploidy in yeast has been utilized for recessive genetic screens that have markedly contributed to our understanding of development, basic physiology, and disease. Somatic mammalian cells carry two copies of chromosomes (diploidy) that obscure genetic analysis. Near haploid human leukemic cells however have been developed as a high throughput screening tool. Although deemed impossible, we and others have generated mammalian haploid embryonic stem cells from parthenogenetic mouse embryos. Haploid stem cells open the possibility of combining the power of a haploid genome with pluripotency of embryonic stem cells to uncover fundamental biological processes in defined cell types at a genomic scale. Haploid genetics has thus become a powerful alternative to RNAi or CRISPR based screens.
Collapse
|
29
|
Yao J, Yang M, Duan Y. Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem Rev 2014; 114:6130-78. [DOI: 10.1021/cr200359p] [Citation(s) in RCA: 592] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Yao
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mei Yang
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yixiang Duan
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Research
Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
30
|
First knockdown gene expression in bat (Hipposideros armiger) brain mediated by lentivirus. Mol Biotechnol 2013; 54:564-71. [PMID: 22965420 DOI: 10.1007/s12033-012-9596-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lentivirus-mediated RNA interference (RNAi) is a potent experimental tool for investigating gene functions in vitro and in vivo. It has advantages that transgenic technology lacks. However, in vivo applications are difficult to apply in the central nervous system of non-model organisms due to the lack of a standard brain atlas and genetic information. Here, we report the development of an in vivo gene delivery system used in bat brain tissue for the first time, based on lentivirus (LV) vectors expressing short hairpin RNA (shRNA) targeting Hipposideros armiger forkhead box P2 (FoxP2). In vitro transfection into HEK 293T cell with the vector bearing the cassettes encoding FoxP2 shRNA verified the knockdown efficiency. Pseudovirus particles were administered via stereotactic intracerebral microinjection into the anterior cingulate cortex of H. armiger. FoxP2 is of major interest because of its role in sensorimotor coordination and probably in echolocation. Subsequent in situ hybridization validated the in vivo silencing of the target gene. This report demonstrates that LV-mediated expression of RNAi could achieve effective gene silencing in bats, a non-model organism, and will assist in elucidating the functions of bat genes.
Collapse
|
31
|
Lin G, Hu R, Law WC, Chen CK, Wang Y, Li Chin H, Nguyen QT, Lai CK, Yoon HS, Wang X, Xu G, Ye L, Cheng C, Yong KT. Biodegradable nanocapsules as siRNA carriers for mutant K-Ras gene silencing of human pancreatic carcinoma cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2757-63. [PMID: 23427041 DOI: 10.1002/smll.201201716] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/27/2012] [Indexed: 06/01/2023]
Abstract
The application of small interfering RNA (siRNA)-based RNA interference (RNAi) for cancer gene therapy has attracted great attention. Gene therapy is a promising strategy for cancer treatment because it is relatively non-invasive and has a higher therapeutic specificity than chemotherapy. However, without the use of safe and efficient carriers, siRNAs cannot effectively penetrate the cell membranes and RNAi is impeded. In this work, cationic poly(lactic acid) (CPLA)-based degradable nanocapsules (NCs) are utilized as novel carriers of siRNA for effective gene silencing of pancreatic cancer cells. These CPLA-NCs can readily form nanoplexes with K-Ras siRNA and over 90% transfection efficiency is achieved using the nanoplexes. Cell viability studies show that the nanoparticles are highly biocompatible and non-toxic, indicating that CPLA-NC is a promising potential candidate for gene therapy in a clinical setting.
Collapse
Affiliation(s)
- Guimiao Lin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee JM, Yoon TJ, Cho YS. Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:782041. [PMID: 23844368 PMCID: PMC3703404 DOI: 10.1155/2013/782041] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/30/2013] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) is a gene regulation mechanism initiated by RNA molecules that enables sequence-specific gene silencing by promoting degradation of specific mRNAs. Molecular therapy using small interfering RNA (siRNA) has shown great therapeutic potential for diseases caused by abnormal gene overexpression or mutation. The major challenges to application of siRNA therapeutics include the stability and effective delivery of siRNA in vivo. Important progress in nanotechnology has led to the development of efficient siRNA delivery systems. In this review, the authors discuss recent advances in nanoparticle-mediated siRNA delivery and the application of siRNA in clinical trials for cancer therapy. This review will also offer perspectives on future applications of siRNA therapeutics.
Collapse
Affiliation(s)
- Jong-Min Lee
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea College of Medicine, Uijeongbu 480717, Republic of Korea
| | - Tae-Jong Yoon
- Department of Applied BioScience, CHA University, Sungnam 463836, Republic of Korea
| | - Young-Seok Cho
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea College of Medicine, Uijeongbu 480717, Republic of Korea
| |
Collapse
|
33
|
De Silva L, Yao L, Wang Y, Xu S. Well-Defined and Sequence-Specific Noncovalent Binding Forces of DNA. J Phys Chem B 2013; 117:7554-8. [DOI: 10.1021/jp403817b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lashan De Silva
- Department
of Chemistry and ‡Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, United
States
| | - Li Yao
- Department
of Chemistry and ‡Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, United
States
| | - Yuhong Wang
- Department
of Chemistry and ‡Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, United
States
| | - Shoujun Xu
- Department
of Chemistry and ‡Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, United
States
| |
Collapse
|
34
|
Lu N, Du E, Liu Y, Qiao H, Yao L, Pan Z, Lu S, Qi Y. p13 from group II baculoviruses is a killing-associated gene. BMB Rep 2013; 45:730-5. [PMID: 23261060 PMCID: PMC4133818 DOI: 10.5483/bmbrep.2012.45.12.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p13 gene was first described in Leucania separata multinuclear polyhedrosis virus (Ls-p13) several years ago, but the function of P13 protein has not been experimentally investigated to date. In this article, we indicated that the expression of p13 from Heliothis armigera single nucleocapsid nucleopolyhedrovirus (Ha-p13) was regulated by both early and late promoter. Luciferase assay demonstrated that the activity of Ha-p13 promoter with hr4 enhancer was more than 100 times in heterologous Sf9 cells than that in nature host Hz-AM1 cells. Both Ls-P13 and Ha-P13 are transmembrane proteins. Confocal microscopic analysis showed that both mainly located in the cytoplasm membrane at 48 h. Results of RNA interference indicated that Ha-p13 was a killing-associated gene for host insects H. armigera. The AcMNPV acquired the mentioned killing activity and markedly accelerate the killing rate when expressing Ls-p13. In conclusion, p13 is a killing associated gene in both homologous and heterologous nucleopolyhedrovirus. [BMB Reports 2012; 45(12): 730-735]
Collapse
Affiliation(s)
- Nan Lu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Disease-causing allele-specific silencing by RNA interference. Pharmaceuticals (Basel) 2013; 6:522-35. [PMID: 24276122 PMCID: PMC3816697 DOI: 10.3390/ph6040522] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 12/19/2022] Open
Abstract
Small double-stranded RNAs (dsRNAs) of approximately 21-nucleotides in size, referred to as small interfering RNA (siRNA) duplexes, can induce sequence-specific posttranscriptional gene silencing, or RNA interference (RNAi). Since chemically synthesized siRNA duplexes were found to induce RNAi in mammalian cells, RNAi has become a powerful reverse genetic tool for suppressing the expression of a gene of interest in mammals, including human, and its application has been expanding to various fields. Recent studies further suggest that synthetic siRNA duplexes have the potential for specifically inhibiting the expression of an allele of interest without suppressing the expression of other alleles, i.e., siRNA duplexes likely confer allele-specific silencing. Such gene silencing by RNAi is an advanced technique with very promising applications. In this review, I would like to discuss the potential utility of allele-specific silencing by RNAi as a therapeutic method for dominantly inherited diseases, and describe possible improvements in siRNA duplexes for enhancing their efficacy.
Collapse
|
36
|
Katoch R, Thakur N. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants. Appl Biochem Biotechnol 2013; 169:1579-605. [PMID: 23322250 DOI: 10.1007/s12010-012-0046-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/17/2012] [Indexed: 12/11/2022]
Abstract
This review highlights the advances in the knowledge of RNA interference (RNAi) and discusses recent progress on the functionality of different components RNAi machinery operating in the organisms. The silencing of genes by RNA interference has become the technology of choice for investigation of gene functions in different organisms. The refinement in the knowledge of the endogenous RNAi pathways in plants along with the development of new strategies and applications for the improvement of nutritional value of important agricultural crops through suppression of genes in different plants have opened new vistas for nutritional security. The improvement in the nutritional status of the plants and reduction in the level of toxins or antinutrients was desired for long, but the available technology was not completely successful in achieving the tissue specific regulation of some genes. In the recent years, a number of economically important crop plants have been tested successfully for improving plant nutritional value through metabolic engineering using RNAi. The implications of this technology for crop improvement programs, including nutritional enrichment, reduction of antinutrients, disease, and insect control have been successfully tested in variety of crops with commercial considerations. The enhancement of the nutraceutical traits for the desired health benefits in common crop plants through manipulation of gene expression has been elaborated in this article. The tremendous potential with RNAi technology is expected to revolutionize the modern agriculture for meeting the growing challenges is discussed.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Crop Improvement, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India 176062.
| | | |
Collapse
|
37
|
Sun M, Zheng J, Xue H, Jiang Y, Li C, Li J, Jin W, Shen M, Yang X, Ni Q. Silencing P12CDK²AP¹ with a lentivirus promotes HaCaT cell proliferation. Mol Med Rep 2012; 7:471-5. [PMID: 23229879 DOI: 10.3892/mmr.2012.1205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/15/2012] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor P12CDK2AP1 negatively regulates cyclin-dependent kinase 2 (CDK2) activities and suppresses DNA replication. Notably, P12CDK2AP1 is known to be downregulated in head and neck squamous cell carcinomas (HNSCCs). Silencing of specific gene expression by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) using expression vectors and retroviruses has become a powerful tool for the genetic analysis of mammalian cells. In the present study, we utilized lentivirus‑mediated shRNA for functional gene knockdown in normal human skin keratinocytes (HaCaT) cells in order to assess the potential role of P12CDK2AP1 in HNSCCs. Lentivirus‑mediated RNA interference (RNAi) effectively reduced endogenous P12CDK2AP1 expression in HaCaT cells and significantly promoted HaCaT cell proliferation in vitro. Lentiviral vectors have the ability to infect dividing and non-dividing cells as well as to achieve long‑term multilineage gene expression. Thus, additional studies are needed to investigate the use of such vectors as a therapeutic tool for the delivery of siRNAs.
Collapse
Affiliation(s)
- Moyi Sun
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lee DF, Su J, Sevilla A, Gingold J, Schaniel C, Lemischka IR. Combining competition assays with genetic complementation strategies to dissect mouse embryonic stem cell self-renewal and pluripotency. Nat Protoc 2012; 7:729-48. [PMID: 22441292 DOI: 10.1038/nprot.2012.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Substantial scientific interest has been dedicated recently to the crucial factors that control the pluripotent state of stem cells. To gain a comprehensive understanding of the molecular mechanisms regulating mouse embryonic stem cell (mESC) self-renewal and lineage differentiation, we have developed a robust method for studying the role of a particular gene in these processes. This protocol describes detailed procedures for the design and generation of the complementation rescue system and its application in dissecting the network of pluripotency-associated factors, using mESCs as a model. Specifically, three main procedures are described: (i) screening pluripotency-associated factors by competition assay; (ii) setting up an inducible complementation rescue system; and (iii) dynamically studying the pluripotency network response to target depletion. Completion of the competition assay and complementation rescue system takes 35 and 30 d, respectively, and an additional 16 d to study the dynamic molecular effects of a gene of interest in the pluripotency network.
Collapse
Affiliation(s)
- Dung-Fang Lee
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Darniot M, Schildgen V, Schildgen O, Sproat B, Kleines M, Ditt V, Pitoiset C, Pothier P, Manoha C. RNA interference in vitro and in vivo using DsiRNA targeting the nucleocapsid N mRNA of human metapneumovirus. Antiviral Res 2012; 93:364-73. [PMID: 22285728 DOI: 10.1016/j.antiviral.2012.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/19/2011] [Accepted: 01/12/2012] [Indexed: 01/04/2023]
Abstract
Human metapneumovirus causes respiratory diseases with outcomes that can be severe in children, the immunocompromised, and the elderly. Synthetic small interfering RNAs (siRNAs) that silence targeted genes can be used as therapeutic agents. Currently, there is no specific therapy for hMPV. In this study, we designed Dicer-substrate siRNAs (DsiRNAs) that target metapneumovirus sequences on the mRNAs of the N, P, and L genes. In vitro, six DsiRNAs were shown to inhibit virus replication using cell proliferation tests. Of those, the DsiRNA that targets the most conserved mRNA sequence was then resynthesized in Evader™ format with heavy 2'-O-methyl modification of the guide strand. In a murine model, the prophylactic administration of this Evader™ DsiRNA was effective at partially inhibiting viral replication of hMPV (13×10(3) vs. 29×10(3)PFU/g of lung; p<0.01), which was not the case for the control, a mismatched DsiRNA. Inhibition was achieved without inducing cytokines or off-target effects. Moreover, the specificity of the siRNA mechanism of action was demonstrated in vitro and in vivo using 5'-RACE methodology. This in vivo approach of using a DsiRNA against hMPV is an important step in the development of synthetic siRNA as a therapeutic agent for this virus.
Collapse
Affiliation(s)
- Magali Darniot
- Laboratoire de Virologie, CHU Dijon, 2 Rue Angélique Ducoudray, 21070 Dijon cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Yang L, Cho YS, Sajja HK, Karna P, Yoon TJ, Cao Z. WITHDRAWN: Quantum dot-tumor targeting peptide conjugates for in vivo imaging of siRNA expression constructs delivery and silencing in tumors. Biomaterials 2011:S0142-9612(11)01393-7. [PMID: 22169827 DOI: 10.1016/j.biomaterials.2011.11.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/16/2011] [Indexed: 01/12/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Lily Yang
- Department of Surgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
RNA interference (RNAi) is a powerful research tool that has enabled molecular insights into gene activity, pathway analysis, partial loss-of-function phenotypes, and large-scale genomic discovery of gene function. While RNAi works extremely well in the non-parasitic nematode C. elegans, it is also especially useful in organisms that lack facile genetic analysis. Extensive genetic analysis of the mechanisms, delivery and regulation of RNAi in C. elegans has provided mechanistic and phenomenological insights into why RNAi is so effective in this species. These insights are useful for the testing and development of RNAi in other nematodes, including parasitic nematodes where more effective RNAi would be extremely useful. Here, we review the current advances in C. elegans for RNA delivery methods, regulation of cell autonomous and systemic RNAi phenomena, and implications of enhanced RNAi mutants. These discussions, with a focus on mechanism and cross-species application, provide new perspectives for optimizing RNAi in other species.
Collapse
|
43
|
Li W, Saraiya AA, Wang CC. Gene regulation in Giardia lambia involves a putative microRNA derived from a small nucleolar RNA. PLoS Negl Trop Dis 2011; 5:e1338. [PMID: 22028939 PMCID: PMC3196473 DOI: 10.1371/journal.pntd.0001338] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/15/2011] [Indexed: 12/21/2022] Open
Abstract
Two core microRNA (miRNA) pathway proteins, Dicer and Argonaute, are found in Giardia lamblia, a deeply branching parasitic protozoan. There are, however, no apparent homologues of Drosha or Exportin5 in the genome. Here, we report a 26 nucleotide (nt) RNA derived from a 106 nt Box C/D snoRNA, GlsR2. This small RNA, designated miR5, localizes to the 3' end of GlsR2 and has a 75 nt hairpin precursor. GlsR2 is processed by the Dicer from Giardia (GlDcr) and generated miR5. Immunoprecipitation of the Argonaute from Giardia (GlAgo) brought down miR5. When a Renilla Luciferase transcript with a 26 nt miR5 antisense sequence at the 3'-untranslated region (3' UTR) was introduced into Giardia trophozoites, Luciferase expression was reduced ∼25% when synthetic miR5 was also introduced. The Luciferase mRNA level remained, however, unchanged, suggesting translation repression by miR5. This inhibition was fully reversed by introducing also a 2'-O-methylated antisense inhibitor of miR5, suggesting that miR5 acts by interacting specifically with the antisense sequence in the mRNA. A partial antisense knock down of GlDcr or GlAgo in Giardia indicated that the former is needed for miR5 biogenesis whereas the latter is required for miR5-mediated translational repression. Potential targets for miR5 with canonical seed sequences were predicted bioinformatically near the stop codon of Giardia mRNAs. Four out of the 21 most likely targets were tested in the Luciferase reporter assay. miR5 was found to inhibit Luciferase expression (∼20%) of transcripts carrying these potential target sites, indicating that snoRNA-derived miRNA can regulate the expression of multiple genes in Giardia.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
44
|
Kim YI, Kim HJ, Kwon YM, Kang YJ, Lee IH, Jin BR, Han YS, Kim I, Cheon HM, Ha NG, Seo SJ. RNA interference mediated knockdown of apolipophorin-III leads to knockdown of manganese superoxide dismutase in Hyphantria cunea. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:303-12. [PMID: 21458580 DOI: 10.1016/j.cbpa.2011.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 11/27/2022]
Abstract
Apolipophorin-III (apoLp-III), a hemolymph protein that facilitates lipid transport in aqueous media in insects was recently shown to play a role in insect immune activation. Here, we report another novel possible function of apoLp-III in insects. To identify genes affected by apoLp-III expression in larvae, we decreased endogenous apoLp-III mRNA in Hyphantria cunea (Hc) through RNA interference; subsequently, we observed lower levels of antioxidant enzymes, including manganese superoxide dismutase (MnSOD), glutathione S-transferase, and immune proteins. Knockdown of Hc apoLp-III led to decreased MnSOD expression in fat body tissues and elevated superoxide anion levels in Hc fat body cells, suggesting that Hc apoLp-III is involved in the action and/or expression of antioxidant enzymes, especially MnSOD.
Collapse
Affiliation(s)
- Yong Il Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Huang HY, Jiang ZF, Li QX, Liu JY, Wang T, Zhang R, Zhao J, Xu YM, Bao W, Zhang Y, Jia LT, Yang AG. Inhibition of human breast cancer cell invasion by siRNA against urokinase-type plasminogen activator. Cancer Invest 2010; 28:689-697. [PMID: 20636107 DOI: 10.3109/07357901003735642] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urokinase plasminogen activator (uPA) correlates closely with breast cancer metastasis via triggering the degradation of divergent matrix proteins. Here, uPA was selectively knocked down in breast carcinoma MDA-MB-231 cells by siRNAs. The in vitro migration of MDA-MB-231 cells was effectively suppressed accompanied by a decrease in extracellular MMP-9 activities. The colony formation ability of MDA-MB-231 cells was inhibited following uPA knockdown, while the proliferation was not affected. The uPA knockdown in MDA-MB-231 cells caused significantly suppressed tumor metastasis in nude mice. Thus, siRNAs targeted to uPA have implications in the development of novel approaches to preventing breast cancer metastasis.
Collapse
Affiliation(s)
- Hong-Yan Huang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang JH, Valanne S, Rämet M. Drosophila as a model for antiviral immunity. World J Biol Chem 2010; 1:151-9. [PMID: 21541000 PMCID: PMC3083956 DOI: 10.4331/wjbc.v1.i5.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/04/2010] [Accepted: 05/17/2010] [Indexed: 02/05/2023] Open
Abstract
The fruit fly Drosophila melanogaster has been successfully used to study numerous biological processes including immune response. Flies are naturally infected with more than twenty RNA viruses making it a valid model organism to study host-pathogen interactions during viral infections. The Drosophila antiviral immunity includes RNA interference, activation of the JAK/STAT and other signaling cascades and other mechanisms such as autophagy and interactions with other microorganisms. Here we review Drosophila as an immunological research model as well as recent advances in the field of Drosophila antiviral immunity.
Collapse
Affiliation(s)
- Jing-Huan Wang
- Jing-Huan Wang, Susanna Valanne, Mika Rämet, Institute of Medical Technology, University of Tampere, 33520 Tampere, Finland
| | | | | |
Collapse
|
47
|
Chowdhury SR, Islam MM, Kumar GS. Binding of the anticancer alkaloid sanguinarine to double stranded RNAs: insights into the structural and energetics aspects. MOLECULAR BIOSYSTEMS 2010; 6:1265-76. [PMID: 20442937 DOI: 10.1039/b927001a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Elucidation of the molecular aspects of small molecule-RNA complexation is of prime importance for rational RNA targeted drug design strategies. Towards this, the interaction of the cytotoxic plant alkaloid sanguinarine to three double stranded ribonucleic acids, poly (A).poly(U), poly(I).poly(C) and poly(C).poly(G) was studied using various biophysical and thermodynamic techniques. Absorbance and fluorescence studies showed that the alkaloid bound cooperatively to these RNAs with binding affinities of the order 10(4) M(-1). Fluorescence quenching and hydrodynamic studies gave evidence for intercalation of sanguinarine to these RNA duplexes. Isothermal titration calorimetric studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the affinity constants derived were in agreement with the overall binding affinity values obtained from spectroscopic data. The binding of sanguinarine stabilized the melting of poly(A). poly(U) and poly(I).poly(C) and the binding data evaluated from the melting data were in agreement with that obtained from other techniques. The overall binding affinity of sanguinarine to these double stranded RNAs varied in the order, poly(A).poly(U) > poly(I).poly(C) >> poly(C).poly(G). The temperature dependence of the enthalpy changes afforded negative values of heat capacity changes for the binding of sanguinarine to poly(A).poly(U) and poly(I).poly(C), suggesting substantial hydrophobic contribution in the binding process. Further, enthalpy-entropy compensation phenomena was also seen in poly(A).poly(U) and poly(I).poly(C) systems that correlated to the strong binding involving a multiplicity of weak noncovalent interactions compared to the weak binding with poly(C).poly(G). These results further advance our understanding on the binding of small molecules that are specific binders to double stranded RNA sequences.
Collapse
Affiliation(s)
- Sebanti Roy Chowdhury
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (CSIR), 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | |
Collapse
|
48
|
von Eije KJ, ter Brake O, Berkhout B. Stringent testing identifies highly potent and escape-proof anti-HIV short hairpin RNAs. J Gene Med 2009; 11:459-67. [PMID: 19384894 DOI: 10.1002/jgm.1329] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND RNA interference (RNAi) is a cellular mechanism that can be induced by small interfering RNAs to mediate sequence-specific gene silencing by cleavage of the targeted mRNA. RNAi can be used as an antiviral approach to silence the human immunodeficiency virus type 1 (HIV-1) through stable expression of short hairpin RNAs (shRNAs). Previously, we used a co-transfection assay in which shRNA constructs were transfected with an HIV-1 molecular clone to identify 20 shRNA inhibitors that target highly conserved HIV-1 sequences. METHODS In the present study, we selected the most potent shRNAs to formulate a combinatorial shRNA therapy and determine the best and easiest method for antiviral shRNA selection. We performed transient inhibition assays with either a luciferase reporter or HIV-1 molecular clone and also infected shRNA-expressing T cell lines with HIV-1 and monitored virus replication. The latter assay allows detection of viral escape. In addition, we also tested shRNA-expressing T cells upon challenge with increasing dosages of HIV-1, and measured the dose required to result in massive virus-induced syncytia formation in this 2-week assay. RESULTS Extended culturing selected three highly effective shRNAs that do not allow viral replication for more than 100 days. This difference in potency was not observed in the transient co-transfection assays. The use of increased dosages of HIV-1 selected the same highly potent shRNAs as the laborious and extended escape study. CONCLUSIONS These highly potent shRNAs could be used for a clinical vector and the comparison of the developed assays might help other researchers in their search for antiviral shRNAs.
Collapse
Affiliation(s)
- Karin J von Eije
- Laboratory of Experimental Virology, Department of Medical Microbiology and Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
49
|
Gupta S, Maitra R, Young D, Gupta A, Sen S. Silencing the myotrophin gene by RNA interference leads to the regression of cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2009; 297:H627-36. [PMID: 19502558 DOI: 10.1152/ajpheart.00294.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Myotrophin-induced activation of NF-kappaB has been shown to be associated with cardiac hypertrophy (CH) that progresses to heart failure (HF). In the present study, we examined the cause-and-effect relationship between myotrophin and NF-kappaB activation using small hairpin RNA (shRNA) against myotrophin both in vitro (using neonatal rat myocytes) and in vivo [using myotrophin transgenic (Myo-Tg) mice, which overexpress myotrophin in the heart, develop CH, and gradually progress to HF]. Among several lentiviral vectors expressing myotrophin shRNAs, L-sh-109 showed the best silencing effect at both the mRNA (155.3 +/- 5.9 vs. 32.5 +/- 5.5, P < 0.001) and protein levels associated with a significant reduction of atrial natriuretic factor (ANF) and NF-kappaB. In vivo, when L-sh-109 was delivered directly into the hearts of 10-wk-old Myo-Tg mice, we observed a significant regression of cardiac mass (8.0 vs. 5.7 mg/g, P < 0.001) and myotrophin gene expression (54.5% over untreated Myo-Tg mice, P < 0.001) associated with a reduction in ANF and NF-kappaB signaling components. Our data suggest that using RNA interference to silence the myotrophin gene prevents NF-kappaB activation, associated with an attenuation of CH. This strategy could be an excellent therapeutic means for the treatment of CH and HF.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
50
|
Herrero-Martín D, Osuna D, Ordóñez JL, Sevillano V, Martins AS, Mackintosh C, Campos M, Madoz-Gúrpide J, Otero-Motta AP, Caballero G, Amaral AT, Wai DH, Braun Y, Eisenacher M, Schaefer KL, Poremba C, de Alava E. Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target. Br J Cancer 2009; 101:80-90. [PMID: 19491900 PMCID: PMC2694277 DOI: 10.1038/sj.bjc.6605104] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ewing sarcoma is a paradigm of solid tumour -bearing chromosomal translocations resulting in fusion proteins that act as deregulated transcription factors. Ewing sarcoma translocations fuse the EWS gene with an ETS transcription factor, mainly FLI1. Most of the EWS-FLI1 target genes still remain unknown and many have been identified in heterologous model systems. METHODS We have developed a stable RNA interference model knocking down EWS-FLI1 in the Ewing sarcoma cell line TC71. Gene expression analyses were performed to study the effect of RNA interference on the genetic signature of EWS-FLI1 and to identify genes that could contribute to tumourigenesis. RESULTS EWS-FLI1 inhibition induced apoptosis, reduced cell migratory and tumourigenic capacities, and caused reduction in tumour growth. IGF-1 was downregulated and the IGF-1/IGF-1R signalling pathway was impaired. PBK/TOPK (T-LAK cell-originated protein kinase) expression was decreased because of EWS-FLI1 inhibition. We showed that TOPK is a new target gene of EWS-FLI1. TOPK inhibition prompted a decrease in the proliferation rate and a dramatic change in the cell's ability to grow in coalescence. CONCLUSION This is the first report of TOPK activity in Ewing sarcoma and suggests a significant role of this MAPKK-like protein kinase in the Ewing sarcoma biology.
Collapse
Affiliation(s)
- D Herrero-Martín
- Molecular Pathology Program, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Campus Unamuno s/n, Salamanca, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|