1
|
Schafer RM, Giancotti LA, Chrivia JC, Li Y, Mufti F, Kufer TA, Zhang J, Doyle TM, Salvemini D. CARTp/GPR160 mediates behavioral hypersensitivities in mice through NOD2. Pain 2025; 166:902-915. [PMID: 39356206 DOI: 10.1097/j.pain.0000000000003418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024]
Abstract
ABSTRACT Neuropathic pain is a debilitating chronic condition that remains difficult to treat. More efficacious and safer therapeutics are needed. A potential target for therapeutic intervention recently identified by our group is the G-protein coupled receptor 160 (GPR160) and the cocaine- and amphetamine-regulated transcript peptide (CARTp) as a ligand for GPR160. Intrathecal administration of CARTp in rodents causes GPR160-dependent behavioral hypersensitivities. However, the molecular and biochemical mechanisms underpinning GPR160/CARTp-induced behavioral hypersensitivities in the spinal cord remain poorly understood. Therefore, we performed an unbiased RNA transcriptomics screen of dorsal horn spinal cord (DH-SC) tissues harvested at the time of peak CARTp-induced hypersensitivities and identified nucleotide-binding oligomerization domain-containing protein 2 ( Nod2 ) as a gene that is significantly upregulated. Nucleotide-binding oligomerization domain-containing protein 2 is a cytosolic pattern-recognition receptor involved in activating the immune system in response to bacterial pathogens. While NOD2 is well studied under pathogenic conditions, the role of NOD2-mediated responses in nonpathogenic settings is still not well characterized. Genetic and pharmacological approaches reveal that CARTp-induced behavioral hypersensitivities are driven by NOD2, with co-immunoprecipitation studies indicating an interaction between GPR160 and NOD2. Cocaine- and amphetamine-regulated transcript peptide-induced behavioral hypersensitivities are independent of receptor-interacting protein kinase 2 (RIPK2), a common adaptor protein to NOD2. Immunofluorescence studies found NOD2 co-expressed with endothelial cells rather than glial cells, implicating potential roles for CARTp/NOD2 signaling in these cells. While these findings are based only on studies with male mice, our results identify a novel pathway by which CARTp causes behavioral hypersensitivities in the DH-SC through NOD2 and highlights the importance of NOD2-mediated responses in nonpathogenic settings.
Collapse
Affiliation(s)
- Rachel M Schafer
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - John C Chrivia
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Ying Li
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Fatma Mufti
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
2
|
Moustafa HAM, Elsakka EGE, Abulsoud AI, Elshaer SS, Rashad AA, El-Dakroury WA, Sallam AAM, Rizk NI, Zaki MB, Gomaa RM, Elesawy AE, Mohammed OA, Abdel Mageed SS, Eleragi AMS, ElBoghdady JA, El-Fayoumi SH, Abdel-Reheim MA, Doghish AS. The miRNA Landscape in Crohn's disease: Implications for novel therapeutic approaches and interactions with Existing therapies. Exp Cell Res 2024; 442:114234. [PMID: 39233267 DOI: 10.1016/j.yexcr.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
MicroRNAs (miRNAs), which are non-coding RNAs consisting of 18-24 nucleotides, play a crucial role in the regulatory pathways of inflammatory diseases. Several recent investigations have examined the potential role of miRNAs in forming Crohn's disease (CD). It has been suggested that miRNAs serve as diagnostics for both fibrosis and inflammation in CD due to their involvement in the mechanisms of CD aggravation and fibrogenesis. More information on CD pathophysiology could be obtained by identifying the miRNAs concerned with CD and their target genes. These findings have prompted several in vitro and in vivo investigations into the putative function of miRNAs in CD treatment. Although there are still many unanswered questions, the growing body of evidence has brought miRNA-based therapy one step closer to clinical practice. This extensive narrative study offers a concise summary of the most current advancements in CD. We go over what is known about the diagnostic and therapeutic benefits of miRNA mimicry and inhibition so far, and we see what additional miRNA family targets could be useful for treating CD-related inflammation and fibrosis.
Collapse
Affiliation(s)
- Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Al-Aliaa M Sallam
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo P.O. Box 11829, Egypt
| | - Ahmed E Elesawy
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jasmine A ElBoghdady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaimaa H El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Ahmed S Doghish
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
3
|
Ramadan YN, Kamel AM, Medhat MA, Hetta HF. MicroRNA signatures in the pathogenesis and therapy of inflammatory bowel disease. Clin Exp Med 2024; 24:217. [PMID: 39259390 PMCID: PMC11390904 DOI: 10.1007/s10238-024-01476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Inflammatory bowel disease (IBD) is a persistent inflammatory illness of the gastrointestinal tract (GIT) triggered by an inappropriate immune response to environmental stimuli in genetically predisposed persons. Unfortunately, IBD patients' quality of life is negatively impacted by the symptoms associated with the disease. The exact etiology of IBD pathogenesis is not fully understood, but the emerging research indicated that the microRNA (miRNA) plays an important role. miRNAs have been documented to possess a significant role in regulating pro- and anti-inflammatory pathways, in addition to their roles in several physiological processes, including cell growth, proliferation, and apoptosis. Variations in the miRNA profiles might be a helpful prognostic indicator and a valuable tool in the differential diagnosis of IBD. Most interestingly, these miRNAs have a promising therapeutic target in several pre-clinical animal studies and phase 2 clinical studies to alleviate inflammation and improve patient's quality of life. This comprehensive review discusses the current knowledge about the significant physiological role of different miRNAs in the health of the intestinal immune system and addresses the role of the most relevant differentially expressed miRNAs in IBD, identify their potential targets, and emphasize their diagnostic and therapeutic potential for future research.
Collapse
Affiliation(s)
- Yasmin N Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt.
| | - Ayat M Kamel
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt
| | - Mohammed A Medhat
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| |
Collapse
|
4
|
Álvarez-Rodríguez M, Martinez-Serrano CA, Gardela J, Nieto H, de Mercado E, Rodríguez-Martínez H. MicroRNA expression in specific segments of the pig periovulatory internal genital tract is differentially regulated by semen or by seminal plasma. Res Vet Sci 2024; 168:105134. [PMID: 38194892 DOI: 10.1016/j.rvsc.2023.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
microRNAs play pivotal roles during mammalian reproduction, including the cross-talk between gametes, embryos and the maternal genital tract. Mating induces changes in the expression of mRNA transcripts in the female, but whether miRNAs are involved remains to be elucidated. In the current study, we mapped 181 miRNAs in the porcine peri-ovulatory female reproductive tract: Cervix (Cvx), distal and proximal uterus (Dist-Ut, Prox-Ut), Utero-tubal-junction (UTJ), isthmus (Isth), ampulla (Amp), and infundibulum (Inf) when exposed to semen (natural mating (NM) or artificial insemination (AI-P1)) or to infusions of sperm-free seminal plasma (SP): the first 10 mL of the sperm rich fraction (SP-P1) or the entire ejaculate (SP-E). Among the most interesting findings, NM decreased mir-671, implicated in uterine development and pregnancy loss prior to embryo implantation, in Cvx, Dist-UT, Prox-UT, Isth, and Inf, while it increased in Amp. NM and SP-E induced the downregulation of miR-let7A-1 (Dist-UT, Prox-UT), a regulator of immunity during pregnancy. miR-34C-1, a regulator of endometrial receptivity gene expression, was increased in Dist-UT, UTJ and Amp (NM), in Prox-UT (AI-P1), and in Amp (SP-P1). miR-296, a modulator of the inflammatory response and apoptosis, was upregulated in the UTJ (all treatments). NM elicited the highest miRNA activity in the sperm reservoir (UTJ), suggesting that key-regulators such as miR-34c or miR-296 may modulate the metabolic processes linked to the adequate preparation for gamete encounter in the oviduct. Our results suggest that SP should be maintained in AI to warrant miRNA regulation within the female genital tract for reproductive success.
Collapse
Affiliation(s)
- Manuel Álvarez-Rodríguez
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Cristina A Martinez-Serrano
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Jaume Gardela
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Helena Nieto
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Eduardo de Mercado
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Heriberto Rodríguez-Martínez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden.
| |
Collapse
|
5
|
Macias-Ceja DC, Barrachina MD, Ortiz-Masià D. Autophagy in intestinal fibrosis: relevance in inflammatory bowel disease. Front Pharmacol 2023; 14:1170436. [PMID: 37397491 PMCID: PMC10307973 DOI: 10.3389/fphar.2023.1170436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Chronic inflammation is often associated with fibrotic disorders in which an excessive deposition of extracellular matrix is a hallmark. Long-term fibrosis starts with tissue hypofunction and finally ends in organ failure. Intestinal fibrosis is not an exception, and it is a frequent complication of inflammatory bowel disease (IBD). Several studies have confirmed the link between deregulated autophagy and fibrosis and the presence of common prognostic markers; indeed, both up- and downregulation of autophagy are presumed to be implicated in the progression of fibrosis. A better knowledge of the role of autophagy in fibrosis may lead to it becoming a potential target of antifibrotic therapy. In this review we explore novel advances in the field that highlight the relevance of autophagy in fibrosis, and give special focus to fibrosis in IBD patients.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| | - María D. Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
6
|
Alfaifi J, Germain A, Heba AC, Arnone D, Gailly L, Ndiaye NC, Viennois E, Caron B, Peyrin-Biroulet L, Dreumont N. Deep Dive Into MicroRNAs in Inflammatory Bowel Disease. Inflamm Bowel Dis 2023; 29:986-999. [PMID: 36545755 DOI: 10.1093/ibd/izac250] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 06/02/2023]
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is thought to develop in genetically predisposed individuals as a consequence of complex interactions between dysregulated inflammatory stimuli, immunological responses, and environmental factors. The pathogenesis of IBD has yet to be fully understood. The global increase in the incidence of IBD suggests a gap in the current understanding of the disease. The development of a new diagnostic tool for inflammatory bowel disease that is both less invasive and more cost-effective would allow for better management of this condition. MicroRNAs (miRNAs) are a class of noncoding RNAs with important roles as posttranscriptional regulators of gene expression, which has led to new insights into understanding IBD. Using techniques such as microarrays and real-time polymerase chain reactions, researchers have investigated the patterns in which patients with Crohn's disease and ulcerative colitis show alterations in the expression of miRNA in tissue, blood, and feces. These miRNAs are found to be differentially expressed in IBD and implicated in its pathogenesis through alterations in autophagy, intestinal barrier, and immune homeostasis. In this review, we discuss the miRNA expression profiles associated with IBD in tissue, peripheral blood, and feces and provide an overview of the miRNA mechanisms involved in IBD.
Collapse
Affiliation(s)
- Jaber Alfaifi
- Department of Hepatobiliary, Colorectal, and Digestive Surgery, Nancy University Hospital, University of Lorraine, Nancy, France
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Adeline Germain
- Department of Hepatobiliary, Colorectal, and Digestive Surgery, Nancy University Hospital, University of Lorraine, Nancy, France
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Djésia Arnone
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Laura Gailly
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Emilie Viennois
- INSERM U1149, Center of Research on Inflammation, Université de Paris, Paris, France
| | - Bénédicte Caron
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, Nancy, France
| | - Laurent Peyrin-Biroulet
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, Nancy, France
| | - Natacha Dreumont
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| |
Collapse
|
7
|
Innocenti T, Bigagli E, Lynch EN, Galli A, Dragoni G. MiRNA-Based Therapies for the Treatment of Inflammatory Bowel Disease: What Are We Still Missing? Inflamm Bowel Dis 2023; 29:308-323. [PMID: 35749310 DOI: 10.1093/ibd/izac122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 02/05/2023]
Abstract
Micro-RNAs (miRNAs) are noncoding RNAs usually 24-30 nucleotides long that play a central role in epigenetic mechanisms of inflammatory diseases and cancers. Recently, several studies have assessed the involvement of miRNAs in the pathogenesis of inflammatory bowel disease (IBD) and colitis-associated neoplasia. Particularly, it has been shown that many members of miRNAs family are involved in the pathways of inflammation and fibrogenesis of IBD; therefore, their use as inflammatory and fibrosis biomarkers has been postulated. In light of these results, the role of miRNAs in IBD therapy has been proposed and is currently under investigation with many in vitro and in vivo studies, murine models, and a phase 2a trial. The accumulating data have pushed miRNA-based therapy closer to clinical practice, although many open questions remain. With this systematic review, we discuss the current knowledge about the therapeutic effects of miRNAs mimicking and inhibition, and we explore the new potential targets of miRNA family for the treatment of inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Tommaso Innocenti
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Erica Nicola Lynch
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gabriele Dragoni
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
8
|
Park JM, Kim J, Lee YJ, Bae SU, Lee HW. Inflammatory bowel disease-associated intestinal fibrosis. J Pathol Transl Med 2023; 57:60-66. [PMID: 36623814 PMCID: PMC9846010 DOI: 10.4132/jptm.2022.11.02] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 01/11/2023] Open
Abstract
Fibrosis is characterized by a proliferation of fibroblasts and excessive extracellular matrix following chronic inflammation, and this replacement of organ tissue with fibrotic tissue causes a loss of function. Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract, and intestinal fibrosis is common in IBD patients, resulting in several complications that require surgery, such as a stricture or penetration. This review describes the pathogenesis and various factors involved in intestinal fibrosis in IBD, including cytokines, growth factors, epithelial-mesenchymal and endothelial-mesenchymal transitions, and gut microbiota. Furthermore, histopathologic findings and scoring systems used for stenosis in IBD are discussed, and differences in the fibrosis patterns of ulcerative colitis and Crohn's disease are compared. Biomarkers and therapeutic agents targeting intestinal fibrosis are briefly mentioned at the end.
Collapse
Affiliation(s)
- Ji Min Park
- Department of Pathology, Keimyung University School of Medicine, Daegu,
Korea
| | - Jeongseok Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu,
Korea
| | - Yoo Jin Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu,
Korea
| | - Sung Uk Bae
- Division of Colorectal Surgery, Department of Surgery, Keimyung University School of Medicine, Daegu,
Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu,
Korea
| |
Collapse
|
9
|
Ghafouri-Fard S, Askari A, Hussen BM, Rasul MF, Hatamian S, Taheri M, Kiani A. A review on the role of miR-671 in human disorders. Front Mol Biosci 2022; 9:1077968. [PMID: 36545507 PMCID: PMC9760869 DOI: 10.3389/fmolb.2022.1077968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
miR-671 is encoded by a gene on 7q36.1 and contributes to the pathogenesis of a variety of disorders, including diverse types of cancers, atherosclerosis, ischemic stroke, liver fibrosis, osteoarthritis, Parkinson's disease, rheumatoid arthritis, acute myocardial infarction and Crohn's disease. In the context of cancer, different studies have revealed opposite roles for this miRNA. In brief, it has been shown to be down-regulated in pancreatic ductal carcinoma, ovarian cancer, gastric cancer, osteosarcoma, esophageal squamous cell carcinoma and myelodysplastic syndromes. Yet, miR-671 has been up-regulated in glioma, colorectal cancer, prostate cancer and hepatocellular carcinoma. Studies in breast, lung and renal cell carcinoma have reported inconsistent results. The current review aims at summarization of the role of miR-671 in these disorders focusing on its target mRNA in each context and dysregulated signaling pathways. We also provide a summary of the role of this miRNA as a prognostic factor in malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Iraq,Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Sevak Hatamian
- Department of Anesthesia, Shahid Madani Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany,*Correspondence: Mohammad Taheri, ; Arda Kiani,
| | - Arda Kiani
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Mohammad Taheri, ; Arda Kiani,
| |
Collapse
|
10
|
The role of NOD2 in intestinal immune response and microbiota modulation: A therapeutic target in inflammatory bowel disease. Int Immunopharmacol 2022; 113:109466. [DOI: 10.1016/j.intimp.2022.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
|
11
|
Dhuppar S, Murugaiyan G. miRNA effects on gut homeostasis: therapeutic implications for inflammatory bowel disease. Trends Immunol 2022; 43:917-931. [PMID: 36220689 PMCID: PMC9617792 DOI: 10.1016/j.it.2022.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Inflammatory bowel disease (IBD) spans a range of chronic conditions affecting the gastrointestinal (GI) tract, which are marked by intermittent flare-ups and remissions. IBD results from microbial dysbiosis or a defective mucosal barrier in the gut that triggers an inappropriate immune response in a genetically susceptible person, altering the immune-microbiome axis. In this review, we discuss the regulatory roles of miRNAs, small noncoding RNAs with gene regulatory functions, in the stability and maintenance of the gut immune-microbiome axis, and detail the challenges and recent advances in the use of miRNAs as putative therapeutic agents for treating IBD.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Current address: Centre for Business Innovation, The Indian School of Business, Hyderabad 500111, India
| | - Gopal Murugaiyan
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Chen X, Li W, Chen T, Ren X, Zhu J, Hu F, Luo J, Xing L, Zhou H, Sun J, Jiang Q, Zhang Y, Xi Q. miR-146a-5p promotes epithelium regeneration against LPS-induced inflammatory injury via targeting TAB1/TAK1/NF-κB signaling pathway. Int J Biol Macromol 2022; 221:1031-1040. [PMID: 36096257 DOI: 10.1016/j.ijbiomac.2022.09.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Intestinal inflammation often restricts the health and production of animals. MiR-146a has been proved to be an anti-inflammatory molecule in inflammatory disorders, but its role in the intestinal injury and regeneration remains unclear. The study aimed to explore the inflammatory response of intestinal epithelial cells (IECs) in intestinal tissue-specific miR-146a-5p knockout mouse models. We identified the role of miR-146a-5p in inhibiting inflammatory response and promoting proliferation under lipopolysaccharide (LPS) stimulation in vitro and vivo. LPS stimulation significantly increased the expression of TNF-α, IL6 and inhibited IPEC-J2 cell proliferation. Overexpression of miR-146a-5p can reverse the effect of LPS stimulation, and promote the proliferation of intestinal epithelial cells. In the LPS challenge experiment in intestine-specific miR-146a knock-out mice (CKO) and Floxp+/+ mice (CON), CKO mice were more sensitive to LPS stimulation, with more weight loss and more severe intestinal morphological damage than CON mice. Also, miR-146a-5p regulated LPS-induced intestinal injury, inflammation by targeting TAB1. Taken together, miR-146a may function as an anti-inflammatory factor in IECs by targeting TAB1/TAK1-IKK-NF-κB signaling pathway. miR-146a-5p may represent a promising biomarker for inflammatory disorders, and may provide an effective therapeutic method to alleviate weaning stress in piglets and some experimental basis to improve the intestinal health of livestock.
Collapse
Affiliation(s)
- Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Weite Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Xiaohui Ren
- Ocean College of Hebei Agricultural University, Qinhuangdao 066003, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Fangxin Hu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Lipeng Xing
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Hao Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China.
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
13
|
Abdulla M, Mohammed N. A Review on Inflammatory Bowel Diseases: Recent Molecular Pathophysiology Advances. Biologics 2022; 16:129-140. [PMID: 36118798 PMCID: PMC9481278 DOI: 10.2147/btt.s380027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022]
Abstract
Inflammatory bowel diseases are considered immune disorders with a complex genetic architecture involving constantly changing endogenous and exogenous factors. The rapid evolution of genomic technologies and the emergence of newly discovered molecular actors are compelling the research community to reevaluate the knowledge and molecular processes. The human intestinal tract contains intestinal human microbiota consisting of commensal, pathogenic, and symbiotic strains leading to immune responses that can contribute and lead to both systemic and intestinal disorders including IBD. In this review, we attempted to highlight some updates of the new IBD features related to genomics, microbiota, new emerging therapies and some major established IBD risk factors.
Collapse
Affiliation(s)
- Maheeba Abdulla
- Internal Medicine Department, Ibn AlNafees Hospital, Arabian Gulf University, Manama, Bahrain
- Correspondence: Maheeba Abdulla, Consultant Gastroenterologist, Internal Medicine Department, Ibn AlNafees Hospital, Arabian Gulf University, Manama, Bahrain, Email
| | | |
Collapse
|
14
|
Dong Y, Xu T, Xiao G, Hu Z, Chen J. Opportunities and challenges for synthetic biology in the therapy of inflammatory bowel disease. Front Bioeng Biotechnol 2022; 10:909591. [PMID: 36032720 PMCID: PMC9399643 DOI: 10.3389/fbioe.2022.909591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex, chronic intestinal inflammatory disorder that primarily includes Crohn’s disease (CD) and ulcerative colitis (UC). Although traditional antibiotics and immunosuppressants are known as the most effective and commonly used treatments, some limitations may be expected, such as limited efficacy in a small number of patients and gut flora disruption. A great many research studies have been done with respect to the etiology of IBD, while the composition of the gut microbiota is suggested as one of the most influential factors. Along with the development of synthetic biology and the continuing clarification of IBD etiology, broader prospects for novel approaches to IBD therapy could be obtained. This study presents an overview of the currently existing treatment options and possible therapeutic targets at the preclinical stage with respect to microbial synthesis technology in biological therapy. This study is highly correlated to the following topics: microbiota-derived metabolites, microRNAs, cell therapy, calreticulin, live biotherapeutic products (LBP), fecal microbiota transplantation (FMT), bacteriophages, engineered bacteria, and their functional secreted synthetic products for IBD medical implementation. Considering microorganisms as the main therapeutic component, as a result, the related clinical trial stability, effectiveness, and safety analysis may be the major challenges for upcoming research. This article strives to provide pharmaceutical researchers and developers with the most up-to-date information for adjuvant medicinal therapies based on synthetic biology.
Collapse
Affiliation(s)
- Yumeng Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Suzhou U-Synbio Co., Ltd., Suzhou, China
| | - Tiangang Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guozheng Xiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ziyan Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingyu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Jingyu Chen,
| |
Collapse
|
15
|
MicroRNAs in Inflammatory Bowel Disease and Its Complications. Int J Mol Sci 2022; 23:ijms23158751. [PMID: 35955886 PMCID: PMC9369281 DOI: 10.3390/ijms23158751] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD), classified primarily between Crohn's disease and ulcerative colitis, is a collection of chronic gastrointestinal inflammatory conditions that cause multiple complications because of systemic alterations in the immune response. One major player is microRNA (miRNA), which is found to be associated with multiple pathways in mediating inflammation, especially those of a chronic nature in IBD, as well as irritable bowel syndrome. Although there have been studies linking miRNA alterations in IBD, even differentiating Crohn's disease and ulcerative colitis, this review focuses mainly on how miRNAs cause and mechanistically influence the pathologic complications of IBD. In addition to its role in the well-known progression towards colorectal cancer, we also emphasize how miRNA manifests the many extraintestinal complications in IBD such as cardiovascular diseases; neuropsychiatric conditions such as depression and anxiety disorders; and others, including various musculoskeletal, dermatologic, ocular, and hepatobiliary complications. We conclude through a description of its potential use in bettering diagnostics and the future treatment of IBD and its systemic symptoms.
Collapse
|
16
|
Yang L, Yue W, Zhang H, Zhang Z, Xue R, Dong C, Liu F, Chang N, Yang L, Li L. Dual Targeting of Angipoietin-1 and von Willebrand Factor by microRNA-671-5p Attenuates Liver Angiogenesis and Fibrosis. Hepatol Commun 2022; 6:1425-1442. [PMID: 35014213 PMCID: PMC9134804 DOI: 10.1002/hep4.1888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022] Open
Abstract
Angipoietin-1 (Angpt1) and von Willebrand factor (VWF) are two important angiogenic molecules that can drive pathologic angiogenesis and progression of liver fibrosis in our previous study. MicroRNAs (miRs) participate in a variety of physiological and pathological processes, including angiogenesis. However, the critical miRs targeting Angpt1 or VWF and potential molecular mechanism underlying liver fibrosis-associated angiogenesis is not clear yet. Human liver tissues were obtained from patients with different chronic liver diseases. Mouse models of liver fibrosis were induced by injection of CCl4 or bile duct ligation (BDL) operation. MiR-671-5p was predicted to target Angpt1 and VWF from three databases (miRanda, RNA22v2, and miRwalk). MiR-671-5p expression was decreased in the fibrotic liver of human and mice, with a negative correlation with the levels of Angpt1, VWF, sphingosine kinase-1 (SphK1, the rate-limiting enzyme for sphingosine 1-phosphate [S1P] formation), transforming growth factor β1 (TGFβ1), hypoxia inducible factor (Hif)1α, Hif2α, and fibrosis markers. Importantly, miR-671-5p expression was down-regulated in fluorescence-activated cell sorted liver sinusoidal endothelial cells and hepatic stellate cells (HSCs) in CCl4 mice compared with control mice. In vitro miR-671-5p expression was also decreased in S1P-stimulated HSCs and TGFβ1-activated liver sinusoidal endothelial cells, negatively correlated with Angpt1 and VWF expression. MiR-671-5p directly targeted Angpt1 and VWF by luciferase reporter assays. In vivo administration of miR-671-5p agomir decreased the messenger RNA and protein levels of Anpgt1 and VWF, and attenuated CCl4 -induced or BDL-induced liver angiogenesis and fibrosis. Conclusion: We identify the negative regulation of miR-671-5p on Angpt1 and VWF and liver fibrosis-associated angiogenesis, which may provide promising targets for the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Le Yang
- Department of Cell BiologyMunicipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| | - Wenhui Yue
- Department of Cell BiologyMunicipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| | - Hang Zhang
- Department of Cell BiologyMunicipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| | - Zhi Zhang
- Department of Cell BiologyMunicipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| | - Renmin Xue
- Department of Cell BiologyMunicipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| | - Chengbin Dong
- Department of Interventional TherapyBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Fuquan Liu
- Department of Interventional TherapyBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Na Chang
- Department of Cell BiologyMunicipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| | - Lin Yang
- Department of Cell BiologyMunicipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| | - Liying Li
- Department of Cell BiologyMunicipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| |
Collapse
|
17
|
Donda K, Torres BA, Maheshwari A. Non-coding RNAs in Neonatal Necrotizing Enterocolitis. NEWBORN 2022; 1:120-130. [PMID: 35754997 PMCID: PMC9219563 DOI: 10.5005/jp-journals-11002-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Keyur Donda
- Department of Pediatrics, University of South Florida Health Morsani College of Medicine, Tampa, Florida, United States of America
| | - Benjamin A Torres
- Department of Pediatrics, University of South Florida Health Morsani College of Medicine, Tampa, Florida, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
18
|
Research on the Protective Effect of MiR-185-3p Mediated by Huangqin-Tang Decoction (HQT) on the Epithelial Barrier Function of Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:4775606. [PMID: 34970325 PMCID: PMC8714350 DOI: 10.1155/2021/4775606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 01/15/2023]
Abstract
Introduction It has been reported that the traditional Chinese medicine Huangqin-Tang decoction (HQT) has a protective effect on the epithelial barrier function of ulcerative colitis, but its mechanism has not been fully clarified. This study intends to explore the protective mechanism of HQT in regulating microRNA (miRNA) for the first time. Methods Based on the Balb/c mice ulcerative colitis model, the mice were given a gavage of 0.1 mL/10 g HQT every day for 7 days; on the 8th day, the colon of the mice was dissected, the length of the colon for the mice was measured, and the score was given based on this. Analysis of colonic mucosal injury was conducted by hematoxylin-eosin staining. Then, the differential miRNA was screened and sequenced in colon tissue using the HiSeq platform. And the differential miR-185-3p gene was verified by RT-PCR. Finally, the effects of HQT on miR-185-3p, occludin protein expression, and transepithelial electrical resistance (TEER) value were observed in combination with the CaCo2 intestinal epithelial cell model. Results HQT treatment can alleviate the shortening of colon length and reverse the intestinal mucosal injury. miRNA sequencing of colonic tissue showed that miR-185-3p was significantly downregulated in the model group, while HQT could upregulate miR-185-3p, thereby affecting the myosin light chain kinase (MLCK)/myosin light chain phosphorylation (p-MLC) pathway and leading to increased expression of occludin protein, which ultimately protected the intestinal epithelial barrier function. Conclusion HQT can protect colon epithelial barrier function by regulating miR-185-3p.
Collapse
|
19
|
Donda K, Bose T, Dame C, Maheshwari A. The Impact of MicroRNAs in Neonatal Necrotizing Enterocolitis and other Inflammatory Conditions of Intestine: A Review. Curr Pediatr Rev 2022; 19:5-14. [PMID: 35040406 DOI: 10.2174/1573396318666220117102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/28/2021] [Accepted: 11/11/2021] [Indexed: 01/28/2023]
Abstract
The understanding of necrotizing enterocolitis (NEC) etiopathogenesis is incomplete, contributing to the lack of early biomarkers and therapeutic options. Micro RNAs (miRNAs) are a class of RNAs that can alter gene expression and modulate various physiological and pathological processes. Several studies have been performed to evaluate the role of miRNA in the pathogenesis of NEC. In this article, we review the information on miRNAs that have been specifically identified in NEC or have been noted in other inflammatory bowel disorders that share some of the histopathological abnormalities seen frequently in NEC. This review highlights miRNAs that could be useful as early biomarkers of NEC and suggests possible approaches for future translational studies focused on these analytes. It is a novel field with potential for immense translational and clinical relevance in preventing, detecting, or treating NEC in very premature infants. Impact • Current information categorizes necrotizing enterocolitis (NEC) as a multifactorial disease, but microRNAs (miRNAs) may influence the risk of occurrence of NEC. • MiRNAs may alter the severity of the intestinal injury and the clinical outcome of NEC. • The literature on intestinal diseases of adults suggests additional miRNAs that have not been studied in NEC yet but share some features and deserve further exploration in human NEC, especially if affecting gut dysbiosis, intestinal perfusion, and coagulation disorders.
Collapse
Affiliation(s)
- Keyur Donda
- Department of Pediatrics, University of South Florida Health Morsani College of Medicine, Tampa, Florida, FL, United States
| | - Tanima Bose
- Institute for Clinical Neuroimmunology, Ludwig-Maximilians- University of Munich, Munich, Germany
| | - Christof Dame
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, MD, USA
| |
Collapse
|
20
|
Winter E, Cisilotto J, Silva AH, Rosolen D, Fabichak AP, Rode MP, Creczynski-Pasa TB. MicroRNAs: Potential biomarkers for reproduction, diagnosis, prognosis, and therapeutic in domestic animals. Res Vet Sci 2021; 142:117-132. [PMID: 34942556 DOI: 10.1016/j.rvsc.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
MicroRNA (miRNAs) are small non-coding RNA molecules involved in a wide range of biological processes through the post-transcriptional regulation of gene expression. Most studies evaluated microRNA expression in human, and despite fewer studies in veterinary medicine, this topic is one of the most exciting areas of modern veterinary medicine. miRNAs showed to be part of the pathogenesis of diseases and reproduction physiology in animals, making them biomarkers candidates. This review provides an overview of the current knowledge regarding miRNAs' role in reproduction and animal diseases, diagnostic and therapy.
Collapse
Affiliation(s)
- Evelyn Winter
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil.
| | - Júlia Cisilotto
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Adny Henrique Silva
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Daiane Rosolen
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Ana Paula Fabichak
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil
| | - Michele Patricia Rode
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| |
Collapse
|
21
|
The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. Cells 2021; 10:cells10123358. [PMID: 34943865 PMCID: PMC8699384 DOI: 10.3390/cells10123358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.
Collapse
|
22
|
Grillo TG, Quaglio AEV, Beraldo RF, Lima TB, Baima JP, Di Stasi LC, Sassaki LY. MicroRNA expression in inflammatory bowel disease-associated colorectal cancer. World J Gastrointest Oncol 2021; 13:995-1016. [PMID: 34616508 PMCID: PMC8465441 DOI: 10.4251/wjgo.v13.i9.995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/30/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules composed of 19-25 nucleotides that regulate gene expression and play a central role in the regulation of several immune-mediated disorders, including inflammatory bowel diseases (IBD). IBD, represented by ulcerative colitis and Crohn's disease, is characterized by chronic intestinal inflammation associated with an increased risk of colorectal cancer (CRC). CRC is one of the most prevalent tumors in the world, and its main risk factors are obesity, physical inactivity, smoking, alcoholism, advanced age, and some eating habits, in addition to chronic intestinal inflammatory processes and the use of immunosuppressants administered to IBD patients. Recent studies have identified miRNAs associated with an increased risk of developing CRC in this population. The identification of miRNAs involved in this tumorigenic process could be useful to stratify cancer risk development for patients with IBD and to monitor and assess prognosis. Thus, the present review aimed to summarize the role of miRNAs as biomarkers for the diagnosis and prognosis of IBD-associated CRC. In the future, therapies based on miRNA modulation could be used both in clinical practice to achieve remission of the disease and restore the quality of life for patients with IBD, and to identify the patients with IBD at high risk for tumor development.
Collapse
Affiliation(s)
- Thais Gagno Grillo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Ana Elisa Valencise Quaglio
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Rodrigo Fedatto Beraldo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Talles Bazeia Lima
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Julio Pinheiro Baima
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Luiz Claudio Di Stasi
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| |
Collapse
|
23
|
Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells 2021; 10:cells10092204. [PMID: 34571853 PMCID: PMC8468560 DOI: 10.3390/cells10092204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA's role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines. Due to complex interactions between multiple factors in the etiology of IBD, development of therapies that effectively maintain remission for this disease is a significant challenge. In this review, we discuss the role of dysregulated miRNA expression in the context of clinical ulcerative colitis (UC) and Crohn's disease (CD)-the two main forms of IBD-and the various preclinical mouse models of IBD utilized to validate the therapeutic potential of targeting these miRNA. Additionally, we highlight advances in the development of genetically engineered animal models that recapitulate clinical miRNA expression and provide powerful preclinical models to assess the diagnostic and therapeutic promise of miRNA in IBD.
Collapse
|
24
|
Lu JW, Rouzigu A, Teng LH, Liu WL. The Construction and Comprehensive Analysis of Inflammation-Related ceRNA Networks and Tissue-Infiltrating Immune Cells in Ulcerative Progression. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6633442. [PMID: 34327234 PMCID: PMC8277522 DOI: 10.1155/2021/6633442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Ulcerative colitis (UC) is a common disease with great variability in severity, with a high recurrence rate and heavy disease burden. In recent years, the different biological functions of competing endogenous RNA (ceRNA) networks of long noncoding RNAs (lncRNAs) and microRNAs (miRs) have aroused wide concerns, the ceRNA network of ulcerative colitis (UC) may have potential research value, and these expressed noncoding RNAs may be involved in the molecular basis of inflammation recurrence and progression. This study analyzed 490 colon samples associated with UC from 4 gene expression microarrays from the GEO database and identified gene modules by weighted correlation network analysis (WGCNA). CIBERSORT detected tissue-infiltrating leukocyte profiling by deconvolution of microarray data. LncBase and multiMIR were used to identify lncRNA-miRNA-mRNA interaction. We constructed a ceRNA network which includes 4 lncRNAs (SH3BP5-AS1, MIR4435-2HG, ENTPD1-AS1, and AC007750.1), 5 miRNAs (miR-141-3p, miR-191-5p, miR-192-5p, miR-194-5p, and miR196-5p), and 52 mRNAs. Those genes are involved in interleukin family signals, neutrophil degranulation, adaptive immunity, and cell adhesion pathways. lncRNA MIR4435-2HG is a variable in the decision tree for moderate-to-severe UC diagnostic prediction. Our work identifies potential regulated inflammation-related lncRNA-miRNA-mRNA regulatory axes. The regulatory axes are dysregulated during the deterioration of UC, suggesting that it is a risk factor for UC progression.
Collapse
Affiliation(s)
- Jia-Wei Lu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 Zhejiang Province, China
| | - Aimaier Rouzigu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 Zhejiang Province, China
| | - Li-Hong Teng
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 Zhejiang Province, China
| | - Wei-Li Liu
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 Zhejiang Province, China
| |
Collapse
|
25
|
Strong association of common variants in the miRNA-binding site of NOD2 gene with clinicopathological characteristics and disease activity of systemic lupus erythematosus. Clin Rheumatol 2021; 40:4559-4567. [PMID: 34173079 DOI: 10.1007/s10067-021-05812-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION/OBJECTIVES Systemic lupus erythematosus (SLE) is a multifactorial systemic autoimmune disease, in which genetic susceptibility plays a pivotal role. The nucleotide oligomerization domain 2 (NOD2) gene is one of the main regulators of chronic inflammatory conditions and could be involved in SLE pathogenesis. Single nucleotide polymorphisms (SNPs) in miRNA binding sites which are located in 3'UTR of the NOD2 gene could be associated with SLE risk by dysregulation of NOD2 expression. In the present study, we assessed the possible association between SNPs rs3135500 and rs3135499 in the NOD2 gene with SLE risk in the Iranian population. METHODS A case-control study using 110 SLE patients and 120 control subjects was undertaken to estimate rs3135500 (G > A) and rs3135499 (A > C) genotypes via real-time PCR high-resolution melting method (HRM). RESULTS No significant association was observed between allele and genotype frequencies of rs3135500 and rs3135499 polymorphisms and SLE risk in this population (P > 0.05). However, there was an obvious association between rs3135500 (A allele) with laboratory factors that are associated with disease activity (P < 0.05) and some clinical manifestations that are associated with disease severity such as neurological symptoms, skin manifestations, renal involvements, and higher serum concentration of creatinine (P < 0.05). Besides, rs3135499 (C allele) was correlated with renal involvement and also the concentration of creatinine (P < 0.05). Moreover, in the patients group, the risk alleles in these polymorphisms were associated with lower age of onset (P < 0.05). CONCLUSIONS Our results suggest a substantial association between NOD2 polymorphisms with clinicopathological characteristics and SLE disease activity. Key Points • Single nucleotide polymorphisms (SNPs) in miRNA binding sites which are located in 3'UTR of the NOD2 gene could be associated with SLE risk by dysregulation of NOD2 expression. • Our results suggested that two miRSNPs (rs3135500 and rs3135499) in the NOD2 gene were meaningfully correlated with clinicopathological characteristics and disease activity of SLE.
Collapse
|
26
|
Khodakarimi S, Zarebkohan A, Kahroba H, Omrani M, Sepasi T, Mohaddes G, Beyrampour-Basmenj H, Ebrahimi A, Ebrahimi-Kalan A. The role of miRNAs in the regulation of autophagy in autoimmune diseases. Life Sci 2021; 287:119726. [PMID: 34144058 DOI: 10.1016/j.lfs.2021.119726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/22/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Autoimmune diseases (AD), which are classified as chronic injuries, are caused by a specific auto-reactive reaction. The etiology of most ADs is not well understood. Meanwhile, Autophagy is a protective response defining as a catabolic method by lysosomes tending to maintain homeostasis acts by recycling and discrediting cell compartments. Autophagy plays a crucial role in controlling immune homeostasis by eliminating intracellular pathogens and presenting antigens to immune cognition. MicroRNAs are commonly known as endogenous non-coding small RNAs, which span 18-25 nt and take part in the gene expression at the post-transcriptional level regulation. miRNAs play important roles in different processes like, cell differentiation, duplicating, and apoptosis. Moreover, miRNAs are the critical molecules for the regular function of the immune system by modulating immune tolerance mechanisms and autoimmunity. Recent findings support the role of dysregulated miRNAs in the pathogenesis of ADs and in the regulation of autophagy. In this review, we will focus on the role of the miRNAs in the regulation of autophagy and then will explain the role of dysregulated miRNAs in the initiation of the ADs by modulating autophagy.
Collapse
Affiliation(s)
- Sina Khodakarimi
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Houman Kahroba
- Molecular Medicine Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadhassan Omrani
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tina Sepasi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour-Basmenj
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, Istanbul, Turkey
| | - Abbas Ebrahimi-Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Jung H, Kim JS, Lee KH, Tizaoui K, Terrazzino S, Cargnin S, Smith L, Koyanagi A, Jacob L, Li H, Hong SH, Yon DK, Lee SW, Kim MS, Wasuwanich P, Karnsakul W, Shin JI, Kronbichler A. Roles of microRNAs in inflammatory bowel disease. Int J Biol Sci 2021; 17:2112-2123. [PMID: 34131410 PMCID: PMC8193269 DOI: 10.7150/ijbs.59904] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract that mainly affects young people. IBD is associated with various gastrointestinal symptoms, and thus, affects the quality of life of patients. Currently, the pathogenesis of IBD is poorly understood. Although intestinal bacteria and host immune response are thought to be major factors in its pathogenesis, a sufficient explanation of their role in its pathophysiologic mechanism has not been presented. MicroRNAs (miRNAs), which are small RNA molecules that regulate gene expression, have gained attention as they are known to participate in the molecular interactions of IBD. Recent studies have confirmed the important role of miRNAs in targeting certain molecules in signaling pathways that regulate the homeostasis of the intestinal barrier, inflammatory reactions, and autophagy of the intestinal epithelium. Several studies have identified the specific miRNAs associated with IBD from colon tissues or serum samples of IBD patients and have attempted to use them as useful diagnostic biomarkers. Furthermore, some studies have attempted to treat IBD through intracolonic administration of specific miRNAs in the form of nanoparticle. This review summarizes the latest findings on the role of miRNAs in the pathogenesis, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- HyunTaek Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Seok Kim
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kalthoum Tizaoui
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Science, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain.,Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, 78000 Versailles, France
| | - Han Li
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sung Hwi Hong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Keon Yon
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, Republic of Korea
| | - Min Seo Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
| | - Paul Wasuwanich
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Wikrom Karnsakul
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Diagnostic and Prognostic Role of miR-192 in Different Cancers: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8851035. [PMID: 33614788 PMCID: PMC7878092 DOI: 10.1155/2021/8851035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Introduction It has been shown that miR-192 is abnormally expressed in a variety of cancer types and participates in different kinds of signaling pathways. The role of miR-192 in the diagnosis and prognosis of cancer has not been verified. This article is aimed at exploring the diagnostic and prognostic value of miR-192 through a systematic review and meta-analysis. Methods A systematic search was performed through PubMed, Embase, Web of Science, and Cochrane Library databases up to June 16, 2020. A total of 16 studies were enrolled in the meta-analyses, of which 11 articles were used for diagnostic meta-analysis and 5 articles were used for prognostic meta-analysis. The values of sensitivity and specificity using miR-192 expression as a diagnostic tool were pooled in the diagnostic meta-analysis. The hazard ratios (HRs) of overall survival (OS) with 95 confidence intervals (CIs) were extracted from the studies, and pooled HRs were evaluated in the prognostic meta-analysis. Eleven studies including 667 cancer patients and 514 controls met the eligibility criteria for the diagnostic meta-analysis. Five studies including 166 patients with high miR-192 expression and 236 patients with low miR-192 expression met the eligibility criteria for the prognostic meta-analysis. Results The overall diagnostic accuracy was as follows: sensitivity 0.79 (95%CI = 0.75-0.82), specificity 0.74 (95%CI = 0.64-0.82), positive likelihood ratio 3.03 (95%CI = 2.11-4.34), negative likelihood ratio 0.29 (95%CI = 0.23-0.37), diagnostic odds ratio 10.50 (95%CI = 5.89-18.73), and area under the curve ratio (AUC) 0.82 (95%CI = 0.78-0.85). The overall prognostic analysis showed that high expression of miR-192 in patients was associated with positive survival (HR = 0.62, 95%CI : 0.41-0.93, p = 0.020). Conclusion Our results revealed that miR-192 was a potential biomarker with good sensitivity and specificity in cancers. Moreover, highly expressed miR-192 predicted a good prognosis for patients.
Collapse
|
29
|
Abstract
Inflammatory bowel disease (IBD) as a chronic inflammation in colon and small intestine has two subtypes: ulcerative colitis (UC) and Crohn's disease (CD). Genome studies have shown that UC and CD are related to microRNAs (miRNAs) expression in addition to environmental factors. This article reviews important researches that have recently been done on miRNAs roles in CD and UC disease. First, miRNA is introduced and its biogenesis and function are discussed. Afterward, roles of miRNAs in inflammatory processes involved in IBD are showed. Finally, this review proposes some circulating and tissue-specific miRNAs, which are useful for CD and UC fast diagnosis and grade prediction. As a conclusion, miRNAs are efficient diagnostic molecules especially in IBD subtypes discrimination and can be used by microarray and real time PCR methods for disease detection and classification.
Collapse
|
30
|
MicroRNA negatively regulates NF-κB-mediated immune responses by targeting NOD1 in the teleost fish Miichthys miiuy. SCIENCE CHINA-LIFE SCIENCES 2020; 64:803-815. [PMID: 32815068 DOI: 10.1007/s11427-020-1777-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Inflammation is a self-protection mechanism that can be triggered when innate immune cells detect infection. Eradication of pathogen infection requires appropriate immune and inflammatory responses, but excessive inflammatory responses can cause uncontrolled inflammation, autoimmune diseases, or pathogen dissemination. Mounting evidence has shown that microRNAs (miRNAs) in mammals act as important and versatile regulators of innate immunity and inflammation. However, miRNA-mediated regulation networks are largely unknown in inflammatory responses in lower vertebrates. Here miR-144 and miR-217 are identified as negative regulators in teleost inflammatory responses. We find that Vibrio harveyi and lipopolysaccharide (LPS) treatment significantly upregulate the expression of fish miR-144 and miR-217. Upregulated miR-144 and miR-217 suppress LPS-induced inflammatory cytokine expression by targeting nucleotide-binding oligomerization domain-containing protein 1 (NOD1), thereby avoiding excessive inflammatory responses. In addition, miR-144 and miR-217 regulate inflammatory responses through NOD1-induced nuclear factor kappa (NF-kB) signaling pathways. These findings demonstrate that miR-144 and miR-217 play regulatory roles in inflammatory responses by modulating the NOD1-induced NF-κB signaling pathway.
Collapse
|
31
|
Konstantinidis AΟ, Pardali D, Adamama-Moraitou KK, Gazouli M, Dovas CI, Legaki E, Brellou GD, Savvas I, Jergens AE, Rallis TS, Allenspach K. Colonic mucosal and serum expression of microRNAs in canine large intestinal inflammatory bowel disease. BMC Vet Res 2020; 16:69. [PMID: 32087719 PMCID: PMC7035774 DOI: 10.1186/s12917-020-02287-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Canine inflammatory bowel disease (IBD) is a group of chronic gastrointestinal (GI) disorders of still largely unknown etiology. Canine IBD diagnosis is time-consuming and costly as other diseases with similar signs should be initially excluded. In human IBD microRNA (miR) expression changes have been reported in GI mucosa and blood. Thus, there is a possibility that miRs may provide insight into disease pathogenesis, diagnosis and even treatment of canine IBD. The aim of this study was to determine the colonic mucosal and serum relative expression of a miRs panel in dogs with large intestinal IBD and healthy control dogs. RESULTS Compared to healthy control dogs, dogs with large intestinal IBD showed significantly increased relative expression of miR-16, miR-21, miR-122 and miR-147 in the colonic mucosa and serum, while the relative expression of miR-185, miR-192 and miR-223 was significantly decreased. Relative expression of miR-146a was significantly increased only in the serum of dogs with large intestinal IBD. Furthermore, serum miR-192 and miR-223 relative expression correlated to disease activity and endoscopic score, respectively. CONCLUSION Our data suggest the existence of dysregulated miRs expression patterns in canine IBD and support the potential future use of serum miRs as useful noninvasive biomarkers.
Collapse
Affiliation(s)
- Alexandros Ο Konstantinidis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Pardali
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina K Adamama-Moraitou
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Gazouli
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Legaki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia D Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Savvas
- Companion Animal Clinic (Anesthesia and Intensive Care Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Albert E Jergens
- Departments of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Timoleon S Rallis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Karin Allenspach
- Departments of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA.
| |
Collapse
|
32
|
The Role of MicroRNAs upon Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. Cells 2019; 8:cells8111461. [PMID: 31752264 PMCID: PMC6912477 DOI: 10.3390/cells8111461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggest the significance of inflammation in the progression of cancer, for example the development of colorectal cancer in Inflammatory Bowel Disease (IBD) patients. Long-lasting inflammation in the gastrointestinal tract causes serious systemic complications and breaks the homeostasis of the intestine, where the altered expression of regulatory genes and miRNAs trigger malignant transformations. Several steps lead from acute inflammation to malignancies: epithelial-to-mesenchymal transition (EMT) and inhibitory microRNAs (miRNAs) are known factors during multistage carcinogenesis and IBD pathogenesis. In this review, we outline the interactions between EMT components and miRNAs that may affect cancer development during IBD.
Collapse
|
33
|
Li S, Deng P, Wang M, Liu X, Jiang M, Jiang B, Yang L, Hu J. IL-1α and IL-1β promote NOD2-induced immune responses by enhancing MAPK signaling. J Transl Med 2019; 99:1321-1334. [PMID: 31019287 DOI: 10.1038/s41374-019-0252-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 01/26/2023] Open
Abstract
Both toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) induce a tightly regulated inflammatory response at risk of causing tissue damage, depending on the effectiveness of ensuing negative feedback regulatory mechanisms. Cross-regulation between TLRs, NLRs, and cytokine receptors has been observed. However, the cross-regulation between interleukin-1 (IL-1) receptors and NOD2 is not completely understood. In this study, we found that IL-1α/β increased NOD2-induced inflammatory response in human monocytic THP1 cells, peripheral blood mononuclear cells (PBMCs), mouse macrophage RWA264.7 cells and spleen cells, and in an in vivo experiment. IL-1α/β pre-treatment induced the production of CXC chemokines, including growth-regulated oncogene (GRO)-α, GRO-β, and IL-8, and proinflammatory cytokines, including IL-1β, IL-6, and TNFα, which are induced by the activation of NOD2, in a dose- and time-dependent manner. However, pre-treatment with the NOD2 ligand muramyl dipeptide (MDP) did not up-regulate the expression of cytokines induced by IL-1α/β re-treatment. IL-1β treatment increased the expression of A20, which is an important inhibitor of the innate immune response. However, the overexpression of A20 failed to inhibit MDP-induced cytokine production, suggesting that A20 had no effects on the NOD2-induced immune response. In addition, IL-1α/β increased the expression of NOD2 and its downstream adaptor RIP2, and IL-1α/β pre-treatment increased MDP-induced activation of mitogen-activated protein kinases (MAPKs), including ERK, JNK, and P38, which contributed to MDP-induced cytokine production. Based on these results, IL-1α/β promote the NOD2-induced immune responses by enhancing MDP-induced activation of MAPK signaling pathways.
Collapse
Affiliation(s)
- Sushan Li
- Department of Cardiology, Changsha Central Hospital, Changsha, China.,Graduate School, University of South China, Hengyang, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Deng
- Department of Cardiology, Changsha Central Hospital, Changsha, China.
| | - Manzhi Wang
- Department of Pediatrics, Changsha Central Hospital, Changsha, China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Binyuan Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Li Yang
- Tuberculosis Research Center, Changsha Central Hospital, Changsha, China
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Changsha, China. .,Changsha Cancer Institute, Changsha Central Hospital, Changsha, China.
| |
Collapse
|
34
|
Alqurashi N, Hashimi SM, Alowaidi F, Ivanovski S, Farag A, Wei MQ. miR-496, miR-1185, miR-654, miR-3183 and miR-495 are downregulated in colorectal cancer cells and have putative roles in the mTOR pathway. Oncol Lett 2019; 18:1657-1668. [PMID: 31423233 PMCID: PMC6614670 DOI: 10.3892/ol.2019.10508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by suppressing the target mRNA and inhibiting translation in order to regulate multiple biological processes. miRNAs play important roles as oncogenes or tumor suppressors in the development of various types of human cancer. The regulation of mammalian target of rapamycin (mTOR) by miRNAs has been studied in several types of cancer, including colorectal cancer (CRC). However, to the best of our knowledge, only limited information regarding the function of miRNAs in human CRC is available. In the present study, the expression of 22 miRNAs in CRC cell lines were investigated in regard to key genes in the mTOR pathway. Initially, it was revealed that mTOR, regulatory-associated protein of mTOR complex I and rapamycin-intensive companion of mTOR were overexpressed in CRC cell lines when compared with a normal colorectal cell line. Subsequently, putative miRNA-mRNA associations were identified via multiple miRNA target prediction programs. The expression levels for the candidate miRNAs were validated using quantitative real-time polymerase chain reaction. Expression analysis revealed that, among 20 miRNAs, five miRNAs (miR-496, miR-1185, miR-654, miR-3183 and miR-495) exhibited significant downregulation in association with the mTOR signaling pathway. Taken together, the results from the present study suggest that several miRNAs that are associated with CRC, with possible roles in mTOR signaling, may have potential therapeutic or diagnostic benefits in CRC treatment.
Collapse
Affiliation(s)
- Naif Alqurashi
- Department of Basic Science, Deanship of Preparatory Year and Supporting Studies, and Department of Stem Cells, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Saeed M Hashimi
- Department of Basic Science, Deanship of Preparatory Year and Supporting Studies, and Department of Stem Cells, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Faisal Alowaidi
- Department of Pathology and Laboratory Medicine, College of Medicine and University Hospitals, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saso Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Amro Farag
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Ming Q Wei
- Division of Molecular and Gene Therapies, School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
35
|
Feng Y, Zhang Y, Zhou D, Chen G, Li N. MicroRNAs, intestinal inflammatory and tumor. Bioorg Med Chem Lett 2019; 29:2051-2058. [PMID: 31213403 DOI: 10.1016/j.bmcl.2019.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) is the third most malignant tumor. Inflammatory bowel disease (IBD) can increase the risk of colorectal cancer. And colitis-associated cancer (CAC) is a CRC subtype, representing the inflammation-related colorectal cancer. For the past decades, we have known that ectopic microRNA (miRNA) expression was involved in the pathogenesis of IBD and CRC, playing a pivotal role in the progression of inflammation to colorectal cancer. Thus, this review provides the recent advances in altered human tissue-specific miRNAs that contribute to IBD, CRC and CAC pathogenesis, diagnosis and treatment. Meanwhile, the potential utilization of miRNAs as novel therapeutic targets for the prevention of CRC was also discussed.
Collapse
Affiliation(s)
- Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Yuan Zhang
- Tianjin Vocational College of Bioengineering, Tianjin 300462, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
36
|
Zhao H, Chen J, Chen J, Kong X, Zhu H, Zhang Y, Dong H, Wang J, Ren Q, Wang Q, Chen S, Deng Z, Chen Z, Cui Q, Zheng J, Lu J, Wang S, Tan J. miR-192/215-5p act as tumor suppressors and link Crohn's disease and colorectal cancer by targeting common metabolic pathways: An integrated informatics analysis and experimental study. J Cell Physiol 2019; 234:21060-21075. [PMID: 31020657 DOI: 10.1002/jcp.28709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 12/25/2022]
Abstract
MicroRNAs have emerged as key regulators involved in a variety of biological processes. Previous studies have demonstrated that miR-192/215 participated in progression of Crohn's disease and colorectal cancer. However, their concrete relationships and regulation networks in diseases remain unclear. Here, we used bioinformatics methods to expound miR-192/215-5p macrocontrol regulatory networks shared by two diseases. For data mining and figure generation, several miRNA prediction tools, Human miRNA tissue atlas, FunRich, miRcancer, MalaCards, STRING, GEPIA, cBioPortal, GEO databases, Pathvisio, Graphpad Prism 6 software, etc . are extensively applied. miR-192/215-5p were specially distributed in colon tissues and enriched biological pathways were closely associated with human cancers. Emerging role of miR-192/215-5p and their common pathways in Crohn's disease and colorectal cancer was also analyzed. Based on results derived from multiple approaches, we identified the biological functions of miR-192/215-5p as a tumor suppressor and link Crohn's disease and colorectal cancer by targeting triglyceride synthesis and extracellular matrix remodeling pathways.
Collapse
Affiliation(s)
- Hu Zhao
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Junqiu Chen
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Jin Chen
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Xuhui Kong
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Hehuan Zhu
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Yongping Zhang
- Department of Neuro-oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Huiyue Dong
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Jie Wang
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Qun Ren
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Qinghua Wang
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Shushang Chen
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Zhen Deng
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Zhan Chen
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Qiang Cui
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Junqiong Zheng
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, Fujian, China
| | - Jun Lu
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Shuiliang Wang
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Jianming Tan
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| |
Collapse
|
37
|
Neve B, Jonckheere N, Vincent A, Van Seuningen I. Epigenetic Regulation by lncRNAs: An Overview Focused on UCA1 in Colorectal Cancer. Cancers (Basel) 2018; 10:E440. [PMID: 30441811 PMCID: PMC6266399 DOI: 10.3390/cancers10110440] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancers have become the second leading cause of cancer-related deaths. In particular, acquired chemoresistance and metastatic lesions occurring in colorectal cancer are a major challenge for chemotherapy treatment. Accumulating evidence shows that long non-coding (lncRNAs) are involved in the initiation, progression, and metastasis of cancer. We here discuss the epigenetic mechanisms through which lncRNAs regulate gene expression in cancer cells. In the second part of this review, we focus on the role of lncRNA Urothelial Cancer Associated 1 (UCA1) to integrate research in different types of cancer in order to decipher its putative function and mechanism of regulation in colorectal cancer cells. UCA1 is highly expressed in cancer cells and mediates transcriptional regulation on an epigenetic level through the interaction with chromatin modifiers, by direct regulation via chromatin looping and/or by sponging the action of a diversity of miRNAs. Furthermore, we discuss the role of UCA1 in the regulation of cell cycle progression and its relation to chemoresistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Bernadette Neve
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Nicolas Jonckheere
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Audrey Vincent
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Isabelle Van Seuningen
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| |
Collapse
|
38
|
Moein S, Vaghari-Tabari M, Qujeq D, Majidinia M, Nabavi SM, Yousefi B. MiRNAs and inflammatory bowel disease: An interesting new story. J Cell Physiol 2018; 234:3277-3293. [PMID: 30417350 DOI: 10.1002/jcp.27173] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), as a chronic and recurrent inflammatory disorder, is caused by a dysregulated and aberrant immune response to exposed environmental factors in genetically susceptible individuals. Despite huge efforts in determining the molecular pathogenesis of IBD, an increasing worldwide incidence of IBD has been reported. MicroRNAs (miRNAs) are a set of noncoding RNA molecules that are about 22 nucleotides long, and these molecules are involved in the regulation of the gene expression. By clarifying the important role of miRNAs in a number of diseases, their role was also considered in IBD; numerous studies have been performed on this topic. In this review, we attempt to summarize a number of studies and discuss some of the recent developments in the roles of miRNAs in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mostafa Vaghari-Tabari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Irantab.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Porter RJ, Andrews C, Brice DP, Durum SK, McLean MH. Can We Target Endogenous Anti-inflammatory Responses as a Therapeutic Strategy for Inflammatory Bowel Disease? Inflamm Bowel Dis 2018; 24:2123-2134. [PMID: 30020451 PMCID: PMC6140439 DOI: 10.1093/ibd/izy230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) describes chronic relapsing remitting inflammation of the gastrointestinal tract including ulcerative colitis and Crohn's disease. The prevalence of IBD is rising across the globe. Despite a growing therapeutic arsenal, current medical treatments are not universally effective, do not induce lasting remission in all, or are accompanied by short- and long-term adverse effects. Therefore, there is a clinical need for novel therapeutic strategies for IBD. Current treatments for IBD mainly manipulate the immune system for therapeutic gain by inhibiting pro-inflammatory activity. There is a robust endogenous immunoregulatory capacity within the repertoire of both innate and adaptive immune responses. An alternative treatment strategy for IBD is to hijack and bolster this endogenous capability for therapeutic gain. This review explores this hypothesis and presents current evidence for this therapeutic direction in immune cell function, cytokine biology, and alternative mechanisms of immunoregulation such as microRNA, oligonucleotides, and the endocannabinoid system.
Collapse
Affiliation(s)
- Ross John Porter
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| | - Caroline Andrews
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Daniel Paul Brice
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| | - Scott Kenneth Durum
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Mairi Hall McLean
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom,Address correspondence to: Mairi H. McLean, Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, UK, AB25 2ZD. E-mail:
| |
Collapse
|
40
|
The Role of Autophagy and Related MicroRNAs in Inflammatory Bowel Disease. Gastroenterol Res Pract 2018; 2018:7565076. [PMID: 30046303 PMCID: PMC6038472 DOI: 10.1155/2018/7565076] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence demonstrates that microRNA- (miR-) mediated posttranscriptional regulation plays an important role in autophagy in inflammatory bowel disease (IBD), a disease that is difficult to manage clinically because of the associated chronic recurrent nonspecific inflammation. Research indicates that microRNAs regulate autophagy via different pathways, playing an important role in the IBD process and providing a new perspective for IBD research. Related studies have shown that miR-142-3p, miR-320, miR-192, and miR-122 target NOD2, an IBD-relevant autophagy gene, to modulate autophagy in IBD. miR-142-3p, miR-93, miR-106B, miR-30C, miR-130a, miR-346, and miR-20a regulate autophagy by targeting ATG16L1 through several different pathways. miR-196 can downregulate IRGM and suppress autophagy by inhibiting the accumulation of LC3II. During the endoplasmic reticulum stress response, miR-665, miR-375, and miR-150 modulate autophagy by regulating the unfolded protein response, which may play an important role in IBD intestinal fibrosis. Regarding autophagy-related pathways, miR-146b, miR-221-5p, miR-132, miR-223, miR-155, and miR-21 regulate NF-κB or mTOR signaling to induce or inhibit autophagy in intestinal cells by releasing anti- or proinflammatory factors, respectively.
Collapse
|
41
|
Cao B, Chen Y, Zhou Q, Zhang L, Ou R, Wei Q, Wu Y, Shang HF. Functional Variant rs3135500 in NOD2 Increases the Risk of Multiple System Atrophy in a Chinese Population. Front Aging Neurosci 2018; 10:150. [PMID: 29881342 PMCID: PMC5976778 DOI: 10.3389/fnagi.2018.00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/04/2018] [Indexed: 02/05/2023] Open
Abstract
Background: Given the overlap of clinical manifestations and pathological characteristics between Parkinson's disease (PD) and multiple system atrophy (MSA), we investigated the associations between five functional polymorphisms of nucleotide-binding oligomerization domain protein 2 (NOD2) which were associated with PD, and MSA in a Chinese population. Methods: A cohort of 431 MSA patients and 441 unrelated healthy controls (HCs) were included in the study. Five polymorphisms in NOD2, including P268S, R702W, G908R, 1007fs, and rs3135500, were genotyped. The mRNA expression of NOD2 in peripheral mononuclear cells (PBMCs) in 32 MSA patients were analyzed using RT-PCR, and the concentration of NOD2 and α-synuclein from plasma of 57 MSA patients were also measured by ELISA analysis. Results: No heterozygous or homozygous for R702W, G908R, and 1007fs were found in all the subjects. For rs3135500, differences in genotype distributions, dominant and additive genetic models, were found between MSA and HCs, and between MSA Parkinsonism (MSA-P) patients and HCs. Interestingly, patients carrying the “A” allele of rs3135500 had higher mRNA NOD2 level from PBMCs and NOD2 protein from plasma than patients without this allele (p = 0.028 and p = 0.036, respectively). In addition, we also found the concentration of NOD2 in plasma was positively correlated with the levels of NOD2 mRNA in PBMC and α-synuclein in plasma (R = 0.761 and 0.832, respectively). Conclusion: Our findings suggest that the rs3135500 variant in the NOD2 gene might increase the risk for MSA and might provide new evidence that inflammation mediated by NOD2 involved in the pathogenesis of MSA. Further association studies involving a larger number of participants, as well as functional studies, are needed to confirm our current findings.
Collapse
Affiliation(s)
- Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingqing Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Nunes S, Silva IB, Ampuero MR, de Noronha ALL, de Souza LCL, Correia TC, Khouri R, Boaventura VS, Barral A, Ramos PIP, Brodskyn C, Oliveira PRS, Tavares NM. Integrated Analysis Reveals That miR-193b, miR-671, and TREM-1 Correlate With a Good Response to Treatment of Human Localized Cutaneous Leishmaniasis Caused by Leishmania braziliensis. Front Immunol 2018; 9:640. [PMID: 29670621 PMCID: PMC5893808 DOI: 10.3389/fimmu.2018.00640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Localized cutaneous leishmaniasis (LCL) is a chronic disease characterized by ulcerated skin lesion(s) and uncontrolled inflammation. The mechanisms underlying the pathogenesis of LCL are not completely understood, and little is known about posttranscriptional regulation during LCL. MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression and can be implicated in the pathogenesis of LCL. We investigated the involvement of miRNAs and their targets genes in human LCL using publicly available transcriptome data sets followed by ex vivo validation. Initial analysis highlighted that miRNA expression is altered during LCL, as patients clustered separately from controls. Joint analysis identified eight high confidence miRNAs that had altered expression (−1.5 ≤ fold change ≥ 1.5; p < 0.05) between cutaneous ulcers and uninfected skin. We found that the expression of miR-193b and miR-671 are greatly associated with their target genes, CD40 and TNFR, indicating the important role of these miRNAs in the expression of genes related to the inflammatory response observed in LCL. In addition, network analysis revealed that miR-193b, miR-671, and TREM1 correlate only in patients who show faster wound healing (up to 59 days) and not in patients who require longer cure times (more than 60 days). Given that these miRNAs are associated with control of inflammation and healing time, our findings reveal that they might influence the pathogenesis and prognosis of LCL.
Collapse
Affiliation(s)
- Sara Nunes
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Icaro Bonyek Silva
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Mariana Rosa Ampuero
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | | | | | | | - Ricardo Khouri
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Viviane Sampaio Boaventura
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Aldina Barral
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Centre for Data and Knowledge Integration for Health (CIDACS), FIOCRUZ, Salvador, Brazil
| | - Cláudia Brodskyn
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Pablo Rafael Silveira Oliveira
- Federal University of Bahia, Salvador, Brazil.,Centre for Data and Knowledge Integration for Health (CIDACS), FIOCRUZ, Salvador, Brazil
| | - Natalia Machado Tavares
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
43
|
Abstract
The nucleotide-binding oligomerization domain (NOD) protein, NOD2, belonging to the intracellular NOD-like receptor family, detects conserved motifs in bacterial peptidoglycan and promotes their clearance through activation of a proinflammatory transcriptional program and other innate immune pathways, including autophagy and endoplasmic reticulum stress. An inactive form due to mutations or a constitutive high expression of NOD2 is associated with several inflammatory diseases, suggesting that balanced NOD2 signaling is critical for the maintenance of immune homeostasis. In this review, we discuss recent developments about the pathway and mechanisms of regulation of NOD2 and illustrate the principal functions of the gene, with particular emphasis on its central role in maintaining the equilibrium between intestinal microbiota and host immune responses to control inflammation. Furthermore, we survey recent studies illustrating the role of NOD2 in several inflammatory diseases, in particular, inflammatory bowel disease, of which it is the main susceptibility gene.
Collapse
Affiliation(s)
- Anna Negroni
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| | - Maria Pierdomenico
- Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | - Salvatore Cucchiara
- Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | - Laura Stronati
- Department of Cellular Biotechnology and Hematology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
44
|
de Bruyn M, Vermeire S. NOD2 and bacterial recognition as therapeutic targets for Crohn’s disease. Expert Opin Ther Targets 2017; 21:1123-1139. [DOI: 10.1080/14728222.2017.1397627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Magali de Bruyn
- Translational Research in GastroIntestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research in GastroIntestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| |
Collapse
|
45
|
Chu XQ, Wang J, Chen GX, Zhang GQ, Zhang DY, Cai YY. Overexpression of microRNA-495 improves the intestinal mucosal barrier function by targeting STAT3 via inhibition of the JAK/STAT3 signaling pathway in a mouse model of ulcerative colitis. Pathol Res Pract 2017; 214:151-162. [PMID: 29129493 DOI: 10.1016/j.prp.2017.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
We aim to investigate the role of microRNA-495 (miR-495) in the intestinal mucosal barrier by indirectly targeting signal transducer and activator of transcription 3 (STAT3) through the Janus kinase-signal transducer and activator of transcription (JAK)/STAT3 signaling pathway in a mouse model of ulcerative colitis (UC). BALB/c mice were selected for establishing mice model of UC, and intestinal tissues of normal and UC mice were collected. ELISA was conducted for detecting levels of TNF-α, IL-6, IFN-γ and IL-10. The levels of SOD, MPO, MDA and NO were tested in the intestinal tissues. Dual luciferase reporter gene assay was applied to determine whether miR-495 directly targets STAT3. Cells were cultured, transfected and assigned into: normal group, blank group, NC group, miR-495 mimic group, miR-495 inhibitor group, siRNA-STAT3 group and miR-495 inhibitor+siRNA-STAT3 group. MTT was used for testing cell proliferation, flow cytometry for cell cycle and apoptosis. Northern blotting and Western blotting were performed to detect miR-495 expression and expressions of STAT3, JAK and Claudin-1. Results show that the UC group had higher expression levels of TNF-α, IL-6, IFN-γ, MPO, MDA, NO, STAT3 and JAK and lower expression levels of IL-10, SOD, miR-495 and Claudin-1, compared to the normal group. Dual luciferase reporter gene assay confirmed that STAT3 was the target gene of miR-495. The miR-495 mimic and siRNA-STAT3 groups had higher expressions of Claudin-1, higher cell proliferation and increased amount of cells in S phase, but lower expressions of STAT3 and JAK, decreased amount of cells in G0/G1 phase and cell apoptotic rate compared with the blank, NC groups. We also found that the miR-495 inhibitor+siRNA-STAT3 group had reduced miR-495 expression. No significant differences were found in mRNA and protein expressions of STAT3, JAK and Claudin-1, cell proliferation, apoptosis and cycle amongst the miR-495 inhibitor+siRNA-STAT3 groups. Our study provides evidence that miR-495 improves the intestinal mucosal barrier function by targeting STAT3 through inhibiting the JAK/STAT3 signaling pathway in UC mice.
Collapse
Affiliation(s)
- Xian-Qun Chu
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province 272011, PR China
| | - Jing Wang
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province 272011, PR China
| | - Guang-Xiang Chen
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province 272011, PR China
| | - Guan-Qi Zhang
- Department of Hepatobiliary Surgery, Hubei Provincial People's Hospital, Wuhan 430060, PR China
| | - De-Yong Zhang
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province 272011, PR China.
| | - Yong-Yan Cai
- The First Department of Pediatrics Medicine, Cangzhou Central Hospital, Cangzhou 061000, PR China
| |
Collapse
|
46
|
Palmieri O, Creanza TM, Bossa F, Latiano T, Corritore G, Palumbo O, Martino G, Biscaglia G, Scimeca D, Carella M, Ancona N, Andriulli A, Latiano A. Functional Implications of MicroRNAs in Crohn's Disease Revealed by Integrating MicroRNA and Messenger RNA Expression Profiling. Int J Mol Sci 2017; 18:E1580. [PMID: 28726756 PMCID: PMC5536068 DOI: 10.3390/ijms18071580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 12/11/2022] Open
Abstract
Crohn's disease (CD) is a debilitating inflammatory bowel disease (IBD) that emerges due to the influence of genetic and environmental factors. microRNAs (miRNAs) have been identified in the tissue and sera of IBD patients and may play an important role in the induction of IBD. Our study aimed to identify differentially expressed miRNAs and miRNAs with the ability to alter transcriptome activity by comparing inflamed tissue samples with their non-inflamed counterparts. We studied changes in miRNA-mRNA interactions associated with CD by examining their differential co-expression relative to normal mucosa from the same patients. Correlation changes between the two conditions were incorporated into scores of predefined gene sets to identify biological processes with altered miRNA-mediated control. Our study identified 28 miRNAs differentially expressed (p-values < 0.01), of which 14 are up-regulated. Notably, our differential co-expression analysis highlights microRNAs (i.e., miR-4284, miR-3194 and miR-21) that have known functional interactions with key mechanisms implicated in IBD. Most of these miRNAs cannot be detected by differential expression analysis that do not take into account miRNA-mRNA interactions. The identification of differential miRNA-mRNA co-expression patterns will facilitate the investigation of the miRNA-mediated molecular mechanisms underlying CD pathogenesis and could suggest novel drug targets for validation.
Collapse
Affiliation(s)
- Orazio Palmieri
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Teresa Maria Creanza
- Institute of Intelligent Systems for Automation, National Research Council, CNR-ISSIA, 70126 Bari, Italy.
- Center for Complex Systems in Molecular Biology and Medicine, University of Turin, 10124 Turin, Italy.
| | - Fabrizio Bossa
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Tiziana Latiano
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Giuseppe Corritore
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Orazio Palumbo
- IRCCS 'Casa Sollievo della Sofferenza', Division of Medical Genetics, 71013 San Giovanni Rotondo, Italy.
| | - Giuseppina Martino
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Giuseppe Biscaglia
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Daniela Scimeca
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Massimo Carella
- IRCCS 'Casa Sollievo della Sofferenza', Division of Medical Genetics, 71013 San Giovanni Rotondo, Italy.
| | - Nicola Ancona
- Institute of Intelligent Systems for Automation, National Research Council, CNR-ISSIA, 70126 Bari, Italy.
| | - Angelo Andriulli
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Anna Latiano
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| |
Collapse
|
47
|
Nallathambi R, Mazuz M, Ion A, Selvaraj G, Weininger S, Fridlender M, Nasser A, Sagee O, Kumari P, Nemichenizer D, Mendelovitz M, Firstein N, Hanin O, Konikoff F, Kapulnik Y, Naftali T, Koltai H. Anti-Inflammatory Activity in Colon Models Is Derived from Δ9-Tetrahydrocannabinolic Acid That Interacts with Additional Compounds in Cannabis Extracts. Cannabis Cannabinoid Res 2017; 2:167-182. [PMID: 29082314 PMCID: PMC5627671 DOI: 10.1089/can.2017.0027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction: Inflammatory bowel diseases (IBDs) include Crohn's disease, and ulcerative colitis. Cannabis sativa preparations have beneficial effects for IBD patients. However, C. sativa extracts contain hundreds of compounds. Although there is much knowledge of the activity of different cannabinoids and their receptor agonists or antagonists, the cytotoxic and anti-inflammatory activity of whole C. sativa extracts has never been characterized in detail with in vitro and ex vivo colon models. Material and Methods: The anti-inflammatory activity of C. sativa extracts was studied on three lines of epithelial cells and on colon tissue. C. sativa flowers were extracted with ethanol, enzyme-linked immunosorbent assay was used to determine the level of interleukin-8 in colon cells and tissue biopsies, chemical analysis was performed using high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance and gene expression was determined by quantitative real-time PCR. Results: The anti-inflammatory activity of Cannabis extracts derives from D9-tetrahydrocannabinolic acid (THCA) present in fraction 7 (F7) of the extract. However, all fractions of C. sativa at a certain combination of concentrations have a significant increased cytotoxic activity. GPR55 receptor antagonist significantly reduces the anti-inflammatory activity of F7, whereas cannabinoid type 2 receptor antagonist significantly increases HCT116 cell proliferation. Also, cannabidiol (CBD) shows dose dependent cytotoxic activity, whereas anti-inflammatory activity was found only for the low concentration of CBD, and in a bell-shaped rather than dose-dependent manner. Activity of the extract and active fraction was verified on colon tissues taken from IBD patients, and was shown to suppress cyclooxygenase-2 (COX2) and metalloproteinase-9 (MMP9) gene expression in both cell culture and colon tissue. Conclusions: It is suggested that the anti-inflammatory activity of Cannabis extracts on colon epithelial cells derives from a fraction of the extract that contains THCA, and is mediated, at least partially, via GPR55 receptor. The cytotoxic activity of the C. sativa extract was increased by combining all fractions at a certain combination of concentrations and was partially affected by CB2 receptor antagonist that increased cell proliferation. It is suggested that in a nonpsychoactive treatment for IBD, THCA should be used rather than CBD.
Collapse
Affiliation(s)
- Rameshprabu Nallathambi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Moran Mazuz
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Aurel Ion
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Gopinath Selvaraj
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Smadar Weininger
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Marcelo Fridlender
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Ahmad Nasser
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | | | - Puja Kumari
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Diana Nemichenizer
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maayan Mendelovitz
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nave Firstein
- Department of Gastroenrterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
| | - Orly Hanin
- Department of Gastroenrterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
| | - Fred Konikoff
- Department of Gastroenrterology and Hepatology, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Timna Naftali
- Department of Gastroenrterology and Hepatology, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
48
|
Cao B, Zhou X, Ma J, Zhou W, Yang W, Fan D, Hong L. Role of MiRNAs in Inflammatory Bowel Disease. Dig Dis Sci 2017; 62:1426-1438. [PMID: 28391412 DOI: 10.1007/s10620-017-4567-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/01/2017] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBD), mainly including Crohn's disease and ulcerative colitis, are characterized by chronic inflammation of the gastrointestinal tract. Despite improvements in detection, drug treatment and surgery, the pathogenesis of IBD has not been clarified. A number of miRNAs have been found to be involved in the initiation, development and progression of IBD, and they may have the potential to be used as biomarkers and therapeutic targets. Here, we have summarized the recent advances about the roles of miRNAs in IBD and analyzed the contribution of miRNAs to general diagnosis, differential diagnosis and activity judgment of IBD. Furthermore, we have also elaborated the promising role of miRNAs in IBD-related cancer prevention and prognosis prediction.
Collapse
Affiliation(s)
- Bo Cao
- The First Brigade of Student, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin Zhou
- The First Brigade of Student, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jiaojiao Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
49
|
Chen H, Wang X, Bai J, He A. Expression, regulation and function of miR-495 in healthy and tumor tissues. Oncol Lett 2017; 13:2021-2026. [PMID: 28454357 DOI: 10.3892/ol.2017.5727] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/04/2016] [Indexed: 01/14/2023] Open
Abstract
MicroRNA-495 (miR-495) is a small non-coding RNA encoded by a gene located on chromosome 14 (14q32.31). Its expression is regulated by the transcription factors EF12 and EF47, in addition to promoter methylation status and the fusion oncoprotein mixed-lineage leukemia-AF9. Previous studies suggest that miR-495 is involved in various developmental, immunological and inflammatory processes in healthy tissue, and in the proliferation, invasion, metastasis and drug resistance of cancer cells. The role miR-495 serves in tumors is controversial. miR-495 primarily functions as a tumor suppressor; however, in a number of cases it acts as an oncogene. miR-495 has potential applications as a diagnostic and prognostic marker, and as a therapeutic target for genetic and pharmacological manipulation in the treatment of various diseases.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaman Wang
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ju Bai
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Aili He
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China.,National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
50
|
Chen Y, Salem M, Boyd M, Bornholdt J, Li Y, Coskun M, Seidelin JB, Sandelin A, Nielsen OH. Relation between NOD2 genotype and changes in innate signaling in Crohn's disease on mRNA and miRNA levels. NPJ Genom Med 2017; 2:3. [PMID: 29263823 PMCID: PMC5642384 DOI: 10.1038/s41525-016-0001-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023] Open
Abstract
Crohn’s disease is associated with an altered innate immune response of pathogenic importance. This altered response can be associated to loss-of-function polymorphisms in the NOD2 (nucleotide-binding oligomerization domain-containing protein 2) gene, but also changes in transcriptional and post-transcriptional regulatory layers, including microRNA activity. Here, we characterized the link between NOD2 genotype and inflammatory-mediated changes in innate signaling by studying transcriptional and post-transcriptional activity in response to NOD2-agonist muramyl dipeptide in monocytes from healthy controls, and Crohn’s disease patients with and without NOD2 loss-of-function polymorphisms. We measured the expression of genes and microRNAs in monocytes from these subjects after stimulation with muramyl dipeptide. Gene expression profiles mainly distinguished the actual muramyl dipeptide response, but not the genotype. A hyper-responsive phenotype was found in Crohn’s disease patients without NOD2 mutations, characterized by upregulated cytokine receptors and general downregulation of microRNA expression. Conversely, microRNA expression could identify genotype-specific differences between subject groups but exhibited little change upon muramyl dipeptide treatment. Only two microRNAs showed muramyl dipeptide-induced response, including miR-155, which was found to regulate multiple genes and whose host gene was one of the highest muramyl dipeptide responders. miR-155 was upregulated in Crohn’s disease patients with NOD2 mutations following lipopolysaccharide and Escherichia coli treatment, but the upregulation was substantially reduced upon muramyl dipeptide treatment. While Crohn’s disease patients with NOD2 mutations on average showed a reduced muramyl dipeptide response, the cohort exhibited large individual variance: a small subset had inflammatory responses almost comparable to wild-type patients on both gene and miR-155 regulatory levels. The genetics of people with Crohn’s disease affects the molecular drivers of their dysregulated immune responses. Some individuals with Crohn’s harbor mutations in the NOD2 gene, which encodes a pathogen recognition receptor that binds to a molecule called muramyl dipeptide (MDP). To better understand how alternations in NOD2 can lead to increased susceptibility to gut inflammation, Yun Chen, Mohammad Salem and colleagues from the University of Copenhagen and Herlev Hospital, Denmark, analyzed the expression patterns of both genes and small, regulatory microRNAs in blood cells from healthy controls and from Crohn’s patients with and without NOD2 mutations. They exposed the cells to MDP, and saw that although gene acticity changed dramatically as a response, there was little difference between subjects, regardless of genetics. Conversely, microRNA expression showed genotype-specific differences that weren not impacted by MDP treatment. The findings underscore the importance of microRNAs in Crohn’s disease.
Collapse
Affiliation(s)
- Yun Chen
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Mohammad Salem
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Mette Boyd
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Jette Bornholdt
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Yuan Li
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Mehmet Coskun
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark.,Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| |
Collapse
|