1
|
Bacos K, Perfilyev A, Karagiannopoulos A, Cowan E, Ofori JK, Bertonnier-Brouty L, Rönn T, Lindqvist A, Luan C, Ruhrmann S, Ngara M, Nilsson Å, Gheibi S, Lyons CL, Lagerstedt JO, Barghouth M, Esguerra JL, Volkov P, Fex M, Mulder H, Wierup N, Krus U, Artner I, Eliasson L, Prasad RB, Cataldo LR, Ling C. Type 2 diabetes candidate genes, including PAX5, cause impaired insulin secretion in human pancreatic islets. J Clin Invest 2023; 133:163612. [PMID: 36656641 PMCID: PMC9927941 DOI: 10.1172/jci163612] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic β cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human β cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing β cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to β cell dysfunction in T2D pathophysiology.
Collapse
Affiliation(s)
- Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | | | - Alexandros Karagiannopoulos
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Elaine Cowan
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Ludivine Bertonnier-Brouty
- Endocrine Cell Differentiation, Department of Laboratory Medicine, Lund Stem Cell Center, Malmö, Scania, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Cheng Luan
- Unit of Islet Pathophysiology, Department of Clinical Sciences
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Mtakai Ngara
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Åsa Nilsson
- Human Tissue Lab, Department of Clinical Sciences
| | - Sevda Gheibi
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Claire L. Lyons
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Jens O. Lagerstedt
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | | | - Jonathan L.S. Esguerra
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Malin Fex
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Hindrik Mulder
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Nils Wierup
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Ulrika Krus
- Human Tissue Lab, Department of Clinical Sciences
| | - Isabella Artner
- Endocrine Cell Differentiation, Department of Laboratory Medicine, Lund Stem Cell Center, Malmö, Scania, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Rashmi B. Prasad
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden.,Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| | - Luis Rodrigo Cataldo
- Molecular Metabolism Unit, Department of Clinical Sciences, and,The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| |
Collapse
|
2
|
Liu W, Kin T, Ho S, Dorrell C, Campbell SR, Luo P, Chen X. Abnormal regulation of glucagon secretion by human islet alpha cells in the absence of beta cells. EBioMedicine 2019; 50:306-316. [PMID: 31780397 PMCID: PMC6921359 DOI: 10.1016/j.ebiom.2019.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The understanding of the regulation of glucagon secretion by pancreatic islet α-cells remains elusive. We aimed to develop an in vitro model for investigating the function of human α-cells under direct influence of glucose and other potential regulators. METHODS Highly purified human α-cells from islets of deceased donors were re-aggregated in the presence or absence of β-cells in culture, evaluated for glucagon secretion under various treatment conditions, and compared to that of intact human islets and non-sorted islet cell aggregates. FINDINGS The pure human α-cell aggregates maintained proper glucagon secretion capability at low concentrations of glucose, but failed to respond to changes in ambient glucose concentration. Addition of purified β-cells, but not the secreted factors from β-cells at low or high concentrations of glucose, partly restored the responsiveness of α-cells to glucose with regulated glucagon secretion. The EphA stimulator ephrinA5-fc failed to mimic the inhibitory effect of β-cells on glucagon secretion. Glibenclamide inhibited glucagon secretion from islets and the α- and β-mixed cell-aggregates, but not from the α-cell-only aggregates, at 2.0 mM glucose. INTERPRETATION This study validated the use of isolated and then re-aggregated human islet cells for investigating α-cell function and paracrine regulation, and demonstrated the importance of cell-to-cell contact between α- and β-cells on glucagon secretion. Loss of proper β- and α-cell physical interaction in islets likely contributes to the dysregulated glucagon secretion in diabetic patients. Re-aggregated select combinations of human islet cells provide unique platforms for studying islet cell function and regulation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China; Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Siuhong Ho
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Craig Dorrell
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| | - Sean R Campbell
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ping Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China.
| | - Xiaojuan Chen
- Columbia Center for Translational Immunology, Department of Surgery, Columbia University Medical Center, 650 West 168th Street, BB1701, New York, NY 10032, USA.
| |
Collapse
|
3
|
Tariq S, Nurulain SM, Rashed H, Lotfy M, Emerald SB, Koturan S, Tekes K, Adeghate E. Diabetes-induced changes in the morphology and nociceptinergic innervation of the rat uterus. J Mol Histol 2016; 47:21-33. [PMID: 26589323 DOI: 10.1007/s10735-015-9643-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
Abstract
The prevalence of diabetes mellitus (DM) is about 6% across the globe. This prevalence has been reported to increase in the near future. This means that the number of women with DM who would like to get pregnant and have children will also increase. The present study is aimed at investigating the morphological changes observed in the uterus after the onset of DM. The study also examined the pattern of distribution of nociceptin (NC), a neuropeptide involved in the regulation of pain, a major physiological factor during parturition. The study shows a severe atrophy of uteri as early as 15 days post DM and continued until the termination of the eight-week study. This atrophy was confirmed by light microscopy. Electron microscopy study showed atrophy of the columnar cells of the endometrium, reduced myofibril number and destruction of smooth muscle cells in the myometrium of diabetic rats compared to control. Immunofluorescence and immunoelectron microscopy studies clearly demonstrated the presence of NC in the endometrium, myometrium and on the myofibrils of the smooth muscles of both control and diabetic rat uteri. In addition, NC-positive neurons and varicose fibres were observed in the myometrium of both normal and diabetic rats. However, the expression of NC decreased after the onset of DM. Morphometric analysis showed that the number of NC-labeled cells was significantly (p < 0.05) lower in diabetic rat uteri compared to those of control. In conclusion, DM-induced uterine atrophy is associated with a decrease in the expression of NC in cells, neurons and myofibrils of the rat uterus.
Collapse
Affiliation(s)
- Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Syed M Nurulain
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hameed Rashed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Starling Bright Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Surya Koturan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Kornélia Tekes
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
4
|
Berglund E, Daré E, Branca RM, Akcakaya P, Fröbom R, Berggren PO, Lui WO, Larsson C, Zedenius J, Orre L, Lehtiö J, Kim J, Bränström R. Secretome protein signature of human gastrointestinal stromal tumor cells. Exp Cell Res 2015; 336:158-70. [DOI: 10.1016/j.yexcr.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/03/2023]
|
5
|
Tariq S, Rashed H, Nurulain SM, Emerald BS, Koturan S, Tekes K, Adeghate E. Distribution of nociceptin in pancreatic islet cells of normal and diabetic rats. Pancreas 2015; 44:602-7. [PMID: 25875798 DOI: 10.1097/mpa.0000000000000306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Nociceptin has been reported to play an important role in the regulation of pancreatic exocrine secretion. Most of the studies performed on nociceptin are mainly physiological rather than morphological in nature. The present study investigated the pattern of distribution of nociceptin in the endocrine pancreas of normal and diabetic rats. METHODS Immunohistochemistry, immunofluorescence, Western blot, and double-labeled immunoelectron microscopy were used in this study. Diabetes was induced using streptozotocin (60 mg/kg body weight). RESULTS Nociceptin-immunoreactive cells were observed in the central and peripheral regions of the islets of both normal and diabetic rat pancreas. The number of nociceptin-positive cells was significantly (P < 0.05) lower in the islet of diabetic rats compared with the control. Immunofluorescence study showed that nociceptin colocalizes with insulin in pancreatic β-cells. The degree of colocalization of nociceptin with insulin was severely deranged after the onset of diabetes. Moreover, immunogold particles conjugated with either nociceptin or insulin were observed on the granules of pancreatic β-cell. The number of nociceptin-labeled colloidal gold particles was significantly lower after the onset of diabetes. CONCLUSIONS Nociceptin is present in pancreatic islets cells and colocalizes with insulin. Nociceptin may have a physiological role in the metabolism of insulin.
Collapse
Affiliation(s)
- Saeed Tariq
- From the Departments of *Anatomy, and †Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; and ‡Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
AIM: To observe the localization of TRAIL/TRAIR (DR4, DR5, DcR1, DcR2) in the fetal pancreas.
METHODS: Fetal pancreas of 32 wk of pregnancy were obtained from induced abortions, embedded in paraffin, and 4-μm sections were prepared. The localization of TRAIL/TRAILR in fetal pancreas was investigated by fluorescence immunohistochemical method combined with laser scanning confocal microscopy.
RESULTS: TRAIL immunoreactive cells were mainly located on the periphery of the pancreas islets. There were a few DcR1 and DcR2 positive cells whereas there were no immunoreactive cells of DR4 and DR5 in the pancreas islets. In the acini and the ducts of the exocrine pancreas there were no TRAIL/TRAILR immunoreactive cells.
CONCLUSION: This study not only describes the distribution of TRAIL/TRAILR in the fetal pancreas, but also provides a morphological basis for deducing the function of TRAIL/TRAILR in pancreas, suggesting that in normal pancreatic islets, the pancreatic cells are resistant towards apoptosis too.
Collapse
Affiliation(s)
- Li-Hua Chen
- Department of Immunology, the Fourth Military Medical University, 17 West Changle Road, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|