1
|
Okawa Y, Sasagawa S, Kato H, Johnson TA, Nagaoka K, Kobayashi Y, Hayashi A, Shibayama T, Maejima K, Tanaka H, Miyano S, Shibahara J, Nishizuka S, Hirano S, Seto Y, Iwaya T, Kakimi K, Yasuda T, Nakagawa H. Immuno-genomic analysis reveals eosinophilic feature and favorable prognosis of female non-smoking esophageal squamous cell carcinomas. Cancer Lett 2024; 581:216499. [PMID: 38013050 DOI: 10.1016/j.canlet.2023.216499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Most of esophageal squamous cell carcinoma (ESCC) develop in smoking males in Japan, but the genomic etiology and immunological characteristics of rare non-smoking female ECSS remain unclear. To elucidate the genomic and immunological features of ESCC in non-smoking females, we analyzed whole-genome or transcriptome sequencing data from 94 ESCCs, including 20 rare non-smoking female cases. In addition, 31,611 immune cells were extracted from four ESCC tissues and subject to single-cell RNA-seq. We compared their immuno-genomic and microbiome profiles between non-smoking female and smoking ESCCs. Non-smoking females showed much better prognosis. Whole-genome sequencing analysis showed no significant differences in driver genes or copy number alterations depending on smoking status. The mutational signatures specifically observed in non-smoking females ESCC could be attributed to aging. Immune profiling from RNA-seq revealed that ESCC in non-smoking females had high tumor microenvironment signatures and a high abundance of eosinophils with a favorable prognosis. Single-cell RNA-sequencing of intratumor immune cells revealed gender differences of eosinophils and their activation in female cases. ESCCs in non-smoking females have age-related mutational signatures and gender-specific tumor immune environment with eosinophils, which is likely to contribute to their favorable prognosis.
Collapse
Affiliation(s)
- Yuki Okawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroaki Kato
- Department of Surgery, Graduate School of Medicine, Kindai University, Osaka, Japan
| | - Todd A Johnson
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Akimasa Hayashi
- Department of Pathology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Takahiro Shibayama
- Department of Pathology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroko Tanaka
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Satoshi Nishizuka
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yasuyuki Seto
- Department of GI Surgery, Graduate of School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Iwaya
- Department of Clinical Oncology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan; Department of Immunology, Graduate School of Medicine, Kindai University, Osaka, Japan
| | - Takushi Yasuda
- Department of Surgery, Graduate School of Medicine, Kindai University, Osaka, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
2
|
Chu YD, Cheng LC, Lim SN, Lai MW, Yeh CT, Lin WR. Aldolase B-driven lactagenesis and CEACAM6 activation promote cell renewal and chemoresistance in colorectal cancer through the Warburg effect. Cell Death Dis 2023; 14:660. [PMID: 37816733 PMCID: PMC10564793 DOI: 10.1038/s41419-023-06187-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy worldwide and is associated with a high mortality rate. Changes in bioenergy metabolism, such as the Warburg effect, are often observed in CRC. Aldolase B (ALDOB) has been identified as a potential regulator of these changes, but its exact role in CRC cell behavior and bioenergetic homeostasis is not fully understood. To investigate this, two cohorts of CRC patients were analyzed independently. The results showed that higher ALDOB expression was linked to unfavorable prognosis, increased circulating carcinoembryonic antigen (CEA) levels, and altered bioenergetics in CRC. Further analysis using cell-based assays demonstrated that ALDOB promoted cell proliferation, chemoresistance, and increased expression of CEA in CRC cells. The activation of pyruvate dehydrogenase kinase-1 (PDK1) by ALDOB-induced lactagenesis and secretion, which in turn mediated the effects on CEA expression. Secreted lactate was found to enhance lactate dehydrogenase B (LDHB) expression in adjacent cells and to be a crucial modulator of ALDOB-mediated phenotypes. Additionally, the effect of ALDOB on CEA expression was downstream of the bioenergetic changes mediated by secreted lactate. The study also identified CEA cell adhesion molecule-6 (CEACAM6) as a downstream effector of ALDOB that controlled CRC cell proliferation and chemoresistance. Notably, CEACAM6 activation was shown to enhance protein stability through lysine lactylation, downstream of ALDOB-mediated lactagenesis. The ALDOB/PDK1/lactate/CEACAM6 axis plays an essential role in CRC cell behavior and bioenergetic homeostasis, providing new insights into the involvement of CEACAM6 in CRC and the Warburg effect. These findings may lead to the development of new treatment strategies for CRC patients.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Li-Chun Cheng
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
- Division of Pediatric Gastroenterology Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| | - Wey-Ran Lin
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| |
Collapse
|
3
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
Domínguez-Zorita S, Cuezva JM. The Mitochondrial ATP Synthase/IF1 Axis in Cancer Progression: Targets for Therapeutic Intervention. Cancers (Basel) 2023; 15:3775. [PMID: 37568591 PMCID: PMC10417293 DOI: 10.3390/cancers15153775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer poses a significant global health problem with profound personal and economic implications on National Health Care Systems. The reprograming of metabolism is a major trait of the cancer phenotype with a clear potential for developing effective therapeutic strategies to combat the disease. Herein, we summarize the relevant role that the mitochondrial ATP synthase and its physiological inhibitor, ATPase Inhibitory Factor 1 (IF1), play in metabolic reprogramming to an enhanced glycolytic phenotype. We stress that the interplay in the ATP synthase/IF1 axis has additional functional roles in signaling mitohormetic programs, pro-oncogenic or anti-metastatic phenotypes depending on the cell type. Moreover, the same axis also participates in cell death resistance of cancer cells by restrained mitochondrial permeability transition pore opening. We emphasize the relevance of the different post-transcriptional mechanisms that regulate the specific expression and activity of ATP synthase/IF1, to stimulate further investigations in the field because of their potential as future targets to treat cancer. In addition, we review recent findings stressing that mitochondria metabolism is the primary altered target in lung adenocarcinomas and that the ATP synthase/IF1 axis of OXPHOS is included in the most significant signature of metastatic disease. Finally, we stress that targeting mitochondrial OXPHOS in pre-clinical mouse models affords a most effective therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| |
Collapse
|
5
|
A Mutation in Mouse MT-ATP6 Gene Induces Respiration Defects and Opposed Effects on the Cell Tumorigenic Phenotype. Int J Mol Sci 2023; 24:ijms24021300. [PMID: 36674816 PMCID: PMC9865613 DOI: 10.3390/ijms24021300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
As the last step of the OXPHOS system, mitochondrial ATP synthase (or complex V) is responsible for ATP production by using the generated proton gradient, but also has an impact on other important functions linked to this system. Mutations either in complex V structural subunits, especially in mtDNA-encoded ATP6 gene, or in its assembly factors, are the molecular cause of a wide variety of human diseases, most of them classified as neurodegenerative disorders. The role of ATP synthase alterations in cancer development or metastasis has also been postulated. In this work, we reported the generation and characterization of the first mt-Atp6 pathological mutation in mouse cells, an m.8414A>G transition that promotes an amino acid change from Asn to Ser at a highly conserved residue of the protein (p.N163S), located near the path followed by protons from the intermembrane space to the mitochondrial matrix. The phenotypic consequences of the p.N163S change reproduce the effects of MT-ATP6 mutations in human diseases, such as dependence on glycolysis, defective OXPHOS activity, ATP synthesis impairment, increased ROS generation or mitochondrial membrane potential alteration. These observations demonstrate that this mutant cell line could be of great interest for the generation of mouse models with the aim of studying human diseases caused by alterations in ATP synthase. On the other hand, mutant cells showed lower migration capacity, higher expression of MHC-I and slightly lower levels of HIF-1α, indicating a possible reduction of their tumorigenic potential. These results could suggest a protective role of ATP synthase inhibition against tumor transformation that could open the door to new therapeutic strategies in those cancer types relying on OXPHOS metabolism.
Collapse
|
6
|
Sharaf BM, Giddey AD, Al-Hroub HM, Menon V, Okendo J, El-Awady R, Mousa M, Almehdi A, Semreen MH, Soares NC. Mass spectroscopy-based proteomics and metabolomics analysis of triple-positive breast cancer cells treated with tamoxifen and/or trastuzumab. Cancer Chemother Pharmacol 2022; 90:467-488. [PMID: 36264351 DOI: 10.1007/s00280-022-04478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE HER2-enriched breast cancer with high levels of hormone receptor expression, known as "triple positive" breast cancer, may represent a new entity with a relatively favourable prognosis against which the combination of chemotherapy, HER-2 inhibition, and endocrine treatment may be considered overtreatment. We explored the effect of the anticancer drugs tamoxifen and trastuzumab, both separately and in combination, on the integrated proteomic and metabolic profile of "triple positive" breast cancer cells (BT-474). METHOD We employed ultra-high-performance liquid chromatography-quadrupole time of flight mass spectrometry using a Bruker timsTOF to investigate changes in BT-474 cell line treated with either tamoxifen, trastuzumab or a combination. Differentially abundant metabolites were identified using the Bruker Human Metabolome Database metabolite library and proteins using the Uniprot proteome for Homo sapiens using MetaboScape and MaxQuant, respectively, for identification and quantitation. RESULTS A total of 77 proteins and 85 metabolites were found to significantly differ in abundance in BT-474 treated cells with tamoxifen 5 μM/and or trastuzumab 2.5 μM. Findings suggest that by targeting important cellular signalling pathways which regulate cell growth, apoptosis, proliferation, and chemoresistance, these medicines have a considerable anti-growth effect in BT-474 cells. Pathways enriched for dysregulation include RNA splicing, neutrophil degranulation and activation, cellular redox homeostasis, mitochondrial transmembrane transport, ferroptosis and necroptosis, ABC transporters and central carbon metabolism. CONCLUSION Our findings in protein and metabolite level research revealed that anti-cancer drug therapy had a significant impact on the key signalling pathways and molecular processes in triple positive BT-474 cell lines.
Collapse
Affiliation(s)
- Basma M Sharaf
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box. 27272, Sharjah, United Arab Emirates.,Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates
| | - Alexander D Giddey
- Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates
| | - Hamza M Al-Hroub
- Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates
| | - Varsha Menon
- Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates
| | - Javan Okendo
- Systems and Chemical Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town, 7925, South Africa
| | - Raafat El-Awady
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box. 27272, Sharjah, United Arab Emirates.,Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates
| | - Muath Mousa
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed Almehdi
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box. 27272, Sharjah, United Arab Emirates. .,Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates.
| | - Nelson C Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box. 27272, Sharjah, United Arab Emirates. .,Research Institute for Medical and Health Sciences (RIHMS), University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
7
|
Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:177-193. [PMID: 35578648 PMCID: PMC9096339 DOI: 10.1007/s13167-022-00281-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria are the “gatekeeper” in a wide range of cellular functions, signaling events, cell homeostasis, proliferation, and apoptosis. Consequently, mitochondrial injury is linked to systemic effects compromising multi-organ functionality. Although mitochondrial stress is common for many pathomechanisms, individual outcomes differ significantly comprising a spectrum of associated pathologies and their severity grade. Consequently, a highly ambitious task in the paradigm shift from reactive to predictive, preventive, and personalized medicine (PPPM/3PM) is to distinguish between individual disease predisposition and progression under circumstances, resulting in compromised mitochondrial health followed by mitigating measures tailored to the individualized patient profile. For the successful implementation of PPPM concepts, robust parameters are essential to quantify mitochondrial health sustainability. The current article analyses added value of Mitochondrial Health Index (MHI) and Bioenergetic Health Index (BHI) as potential systems to quantify mitochondrial health relevant for the disease development and its severity grade. Based on the pathomechanisms related to the compromised mitochondrial health and in the context of primary, secondary, and tertiary care, a broad spectrum of conditions can significantly benefit from robust quantification systems using MHI/BHI as a prototype to be further improved. Following health conditions can benefit from that: planned pregnancies (improved outcomes for mother and offspring health), suboptimal health conditions with reversible health damage, suboptimal life-style patterns and metabolic syndrome(s) predisposition, multi-factorial stress conditions, genotoxic environment, ischemic stroke of unclear aetiology, phenotypic predisposition to aggressive cancer subtypes, pathologies associated with premature aging and neuro/degeneration, acute infectious diseases such as COVID-19 pandemics, among others.
Collapse
|
8
|
Chu YD, Lim SN, Yeh CT, Lin WR. COX5B-Mediated Bioenergetic Alterations Modulate Cell Growth and Anticancer Drug Susceptibility by Orchestrating Claudin-2 Expression in Colorectal Cancers. Biomedicines 2021; 10:60. [PMID: 35052740 PMCID: PMC8772867 DOI: 10.3390/biomedicines10010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) consists of four enzyme complexes and ATP synthase, and is crucial for maintaining physiological tissue and cell growth by supporting the main bioenergy pool. Cytochrome c oxidase (COX) has been implicated as a primary regulatory site of OXPHOS. Recently, COX subunit 5B (COX5B) emerged as a potential biomarker associated with unfavorable prognosis by modulating cell behaviors in specific cancer types. However, its molecular mechanism remains unclear, particularly in colorectal cancers (CRCs). To understand the role of COX5B in CRCs, the expression and postoperative outcome associations using independent in-house patient cohorts were evaluated. A higher COX5B tumor/nontumor expression ratio was associated with unfavorable clinical outcomes (p = 0.001 and 0.011 for overall and disease-free survival, respectively. In cell-based experiments, the silencing of COX5B repressed cell growth and enhanced the susceptibility of CRCs cells to anticancer drugs. Finally, downstream effectors identified by RNA sequencing followed by RT-qPCR and functional compensation experiments revealed that the tight junction protein Claudin-2 (CLDN2) acts downstream of COX5B-mediated bioenergetic alterations in controlling cell growth and the sensitivity to anticancer drugs in CRCs cells. In conclusion, it was found that COX5B promoted cell growth and attenuated anticancer drugs susceptibility in CRCs cells by orchestrating CLDN2 expression, which may contribute to unfavorable postoperative outcomes of patients with CRCs.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
9
|
Wang T, Ma F, Qian HL. Defueling the cancer: ATP synthase as an emerging target in cancer therapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:82-95. [PMID: 34703878 PMCID: PMC8517097 DOI: 10.1016/j.omto.2021.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reprogramming of cellular metabolism is a hallmark of cancer. Mitochondrial ATP synthase (MAS) produces most of the ATP that drives the cell. High expression of the MAS-composing proteins is found during cancer and is linked to a poor prognosis in glioblastoma, ovarian cancer, prostate cancer, breast cancer, and clear cell renal cell carcinoma. Cell surface-expressed ATP synthase, translocated from mitochondrion to cell membrane, involves the angiogenesis, tumorigenesis, and metastasis of cancer. ATP synthase has therefore been considered a therapeutic target. We review recent various ATP synthase inhibitors that suppress tumor growth and are being tested for the clinic.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
10
|
Rodríguez-Enríquez S, Robledo-Cadena DX, Gallardo-Pérez JC, Pacheco-Velázquez SC, Vázquez C, Saavedra E, Vargas-Navarro JL, Blanco-Carpintero BA, Marín-Hernández Á, Jasso-Chávez R, Encalada R, Ruiz-Godoy L, Aguilar-Ponce JL, Moreno-Sánchez R. Acetate Promotes a Differential Energy Metabolic Response in Human HCT 116 and COLO 205 Colon Cancer Cells Impacting Cancer Cell Growth and Invasiveness. Front Oncol 2021; 11:697408. [PMID: 34414111 PMCID: PMC8370060 DOI: 10.3389/fonc.2021.697408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Under dysbiosis, a gut metabolic disorder, short-chain carboxylic acids (SCCAs) are secreted to the lumen, affecting colorectal cancer (CRC) development. Butyrate and propionate act as CRC growth inhibitors, but they might also serve as carbon source. In turn, the roles of acetate as metabolic fuel and protein acetylation promoter have not been clearly elucidated. To assess whether acetate favors CRC growth through active mitochondrial catabolism, a systematic study evaluating acetate thiokinase (AcK), energy metabolism, cell proliferation, and invasiveness was performed in two CRC cell lines incubated with physiological SCCAs concentrations. In COLO 205, acetate (+glucose) increased the cell density (50%), mitochondrial protein content (3–10 times), 2-OGDH acetylation, and oxidative phosphorylation (OxPhos) flux (36%), whereas glycolysis remained unchanged vs. glucose-cultured cells; the acetate-induced OxPhos activation correlated with a high AcK activity, content, and acetylation (1.5–6-fold). In contrast, acetate showed no effect on HCT116 cell growth, OxPhos, AcK activity, protein content, and acetylation. However, a substantial increment in the HIF-1α content, HIF-1α-glycolytic protein targets (1–2.3 times), and glycolytic flux (64%) was observed. Butyrate and propionate decreased the growth of both CRC cells by impairing OxPhos flux through mitophagy and mitochondrial fragmentation activation. It is described, for the first time, the role of acetate as metabolic fuel for ATP supply in CRC COLO 205 cells to sustain proliferation, aside from its well-known role as protein epigenetic regulator. The level of AcK determined in COLO 205 cells was similar to that found in human CRC biopsies, showing its potential role as metabolic marker.
Collapse
Affiliation(s)
| | | | | | | | - Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, Mexico
| | | | | | | | | | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, Mexico
| | - Luz Ruiz-Godoy
- Banco de Tumores, Instituto Nacional de Cancerología, México, Mexico
| | | | | |
Collapse
|
11
|
King R, Hayes C, Donohoe CL, Dunne MR, Davern M, Donlon NE. Hypoxia and its impact on the tumour microenvironment of gastroesophageal cancers. World J Gastrointest Oncol 2021; 13:312-331. [PMID: 34040696 PMCID: PMC8131902 DOI: 10.4251/wjgo.v13.i5.312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The malfeasant role of the hypoxic tumour microenvironment (TME) in cancer progression was recognized decades ago but the exact mechanisms that augment the hallmarks of cancer and promote treatment resistance continue to be elucidated. Gastroesophageal cancers (GOCs) represent a major burden of worldwide disease, responsible for the deaths of over 1 million people annually. Disentangling the impact of hypoxia in GOCs enables a better overall understanding of the disease pathogenesis while shining a light on novel therapeutic strategies and facilitating precision treatment approaches with the ultimate goal of improving outcomes for patients with these diseases. This review discusses the underlying principles and processes of the hypoxic response and the effect of hypoxia in promoting the hallmarks of cancer in the context of GOCs. We focus on its bidirectional influence on inflammation and how it drives angiogenesis, innate and adaptive immune evasion, metastasis, and the reprogramming of cellular bioenergetics. The contribution of the hypoxic GOC TME to treatment resistance is examined and a brief overview of the pharmacodynamics of hypoxia-targeted therapeutics is given. The principal methods that are used in measuring hypoxia and how they may enhance prognostication or provide rationale for individually tailored management in the case of tumours with significant hypoxic regions are also discussed.
Collapse
Affiliation(s)
- Ross King
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Conall Hayes
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Claire L Donohoe
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Margaret R Dunne
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Maria Davern
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Noel E Donlon
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| |
Collapse
|
12
|
Guo L. Mitochondria and the permeability transition pore in cancer metabolic reprogramming. Biochem Pharmacol 2021; 188:114537. [PMID: 33811907 DOI: 10.1016/j.bcp.2021.114537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are a major source of ATP provision as well as cellular suicidal weapon store. Accumulating evidences demonstrate that mitochondrial bioenergetics, biosynthesis and signaling are important mediators of tumorigenesis. Metabolic plasticity enables cancer cell reprogramming to cope with cellular and environmental alterations, a process requires mitochondria biology. Mitochondrial metabolism emerges to be a promising arena for cancer therapeutic targets. The permeability transition pore (PTP) participates in physiological Ca2+ and ROS homeostasis as well as cell death depending on the open state. The hypothesis that PTP forms from F-ATP synthase provides clues to the potential collaborative role of mitochondrial respiration and PTP in regulating cancer cell fate and metabolic reprogramming.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
13
|
Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: Rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166016. [PMID: 33246010 DOI: 10.1016/j.bbadis.2020.166016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
To adapt to tumoral environment conditions or even to escape chemotherapy, cells rapidly reprogram their metabolism to handle adversities and survive. Given the rapid rise of studies uncovering novel insights and therapeutic opportunities based on the role of mitochondria in tumor metabolic programing and therapeutics, this review summarizes most significant developments in the field. Taking in mind the key role of mitochondria on carcinogenesis and tumor progression due to their involvement on tumor plasticity, metabolic remodeling, and signaling re-wiring, those organelles are also potential therapeutic targets. Among other topics, we address the recent data intersecting mitochondria as of prognostic value and staging in cancer, by mitochondrial DNA (mtDNA) determination, and current inhibitors developments targeting mtDNA, OXPHOS machinery and metabolic pathways. We contribute for a holistic view of the role of mitochondria metabolism and directed therapeutics to understand tumor metabolism, to circumvent therapy resistance, and to control tumor development.
Collapse
Affiliation(s)
- Gabriela L Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ana R Coelho
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ricardo Marques
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal.
| |
Collapse
|
14
|
Esparza-Moltó PB, Cuezva JM. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins. Antioxid Redox Signal 2020; 33:927-945. [PMID: 31910046 DOI: 10.1089/ars.2019.7988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Cancer is a major disease imposing high personal and economic burden draining large part of National Health Care and Research budgets worldwide. In the last decade, research in cancer has underscored the reprogramming of metabolism to an enhanced aerobic glycolysis as a major trait of the cancer phenotype with great potential for targeted therapy. Recent Advances: Mitochondria are essential organelles in metabolic reprogramming for controlling the production of biological energy through oxidative phosphorylation (OXPHOS) and the supply of metabolic precursors that sustain proliferation. In addition, mitochondria are critical hubs that integrate different signaling pathways that control cellular metabolism and cell fate. The mitochondrial ATP synthase plays a fundamental role in OXPHOS and cellular signaling. Critical Issues: This review overviews mitochondrial metabolism and OXPHOS, and the major changes reported in the expression and function of mitochondrial proteins of OXPHOS in oncogenesis and in cellular differentiation. We summarize the prominent role that RNA-binding proteins (RNABPs) play in the sorting and localized translation of nuclear-encoded mRNAs that help define the mitochondrial cell-type-specific phenotype. Moreover, we emphasize the mechanisms that contribute to restrain the activity and expression of the mitochondrial ATP synthase in carcinomas, and illustrate that the dysregulation of proteins that control energy metabolism correlates with patients' survival. Future Directions: Future research should elucidate the mechanisms and RNABPs that promote the specific alterations of the mitochondrial phenotype in carcinomas arising from different tissues with the final aim of developing new therapeutic strategies to treat cancer.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020; 12:2819. [PMID: 33008042 PMCID: PMC7599761 DOI: 10.3390/cancers12102819] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Collapse
Affiliation(s)
- Rosa Maria Pascale
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Diego Francesco Calvisi
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Maria Maddalena Simile
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Claudio Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| |
Collapse
|
16
|
Frattaruolo L, Brindisi M, Curcio R, Marra F, Dolce V, Cappello AR. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. Int J Mol Sci 2020; 21:ijms21176014. [PMID: 32825551 PMCID: PMC7503725 DOI: 10.3390/ijms21176014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, which implements a profound metabolic rewiring in order to support a high proliferation rate and to ensure cell survival in its complex microenvironment. Although initial studies considered glycolysis as a crucial metabolic pathway in tumor metabolism reprogramming (i.e., the Warburg effect), recently, the critical role of mitochondria in oncogenesis, tumor progression, and neoplastic dissemination has emerged. In this report, we examined the main mitochondrial metabolic pathways that are altered in cancer, which play key roles in the different stages of tumor progression. Furthermore, we reviewed the function of important molecules inhibiting the main mitochondrial metabolic processes, which have been proven to be promising anticancer candidates in recent years. In particular, inhibitors of oxidative phosphorylation (OXPHOS), heme flux, the tricarboxylic acid cycle (TCA), glutaminolysis, mitochondrial dynamics, and biogenesis are discussed. The examined mitochondrial metabolic network inhibitors have produced interesting results in both preclinical and clinical studies, advancing cancer research and emphasizing that mitochondrial targeting may represent an effective anticancer strategy.
Collapse
|
17
|
Su F, Zhou FF, Zhang T, Wang DW, Zhao D, Hou XM, Feng MH. Quantitative proteomics identified 3 oxidative phosphorylation genes with clinical prognostic significance in gastric cancer. J Cell Mol Med 2020; 24:10842-10854. [PMID: 32757436 PMCID: PMC7521272 DOI: 10.1111/jcmm.15712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to explore the underlying mechanisms involved in gastric cancer (GC) formation using data-independent acquisition (DIA) quantitative proteomics analysis. We identified the differences in protein expression and related functions involved in biological metabolic processes in GC. Totally, 745 differentially expressed proteins (DEPs) were found in GC tissues vs. gastric normal tissues. Despite enormous complexity in the details of the underlying regulatory network, we find that clusters of proteins from the DEPs were mainly involved in 38 pathways. All of the identified DEPs involved in oxidative phosphorylation were down-regulated. Moreover, GC possesses significantly altered biological metabolic processes, such as NADH dehydrogenase complex assembly and tricarboxylic acid cycle, which is mostly consistent with that in KEGG analysis. Furthermore the higher expression of UQCRQ, NDUFB7 and UQCRC2 were positively correlated with a better prognosis, implicating these proteins may as novel candidate diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Fen-Fang Zhou
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Clinical Medicine of Peritoneal Cancer of Wuhan, Wuhan, China
| | - Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China.,The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Dan-Wen Wang
- Center for Clinical Medicine of Peritoneal Cancer of Wuhan, Wuhan, China.,Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Da Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Ming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Mao-Hui Feng
- Center for Clinical Medicine of Peritoneal Cancer of Wuhan, Wuhan, China.,Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Clinical Cancer Study Center of Hubei Province, Wuhan, China.,Key Laboratory of Tumor Biological Behavior of Hubei Province, Wuhan, China
| |
Collapse
|
18
|
Nguyen H, LaFramboise T. Complexities and pitfalls in analyzing and interpreting mitochondrial DNA content in human cancer. J Genet Genomics 2020; 47:349-359. [PMID: 33004308 DOI: 10.1016/j.jgg.2020.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/29/2022]
Abstract
Mutations in the human mitochondrial genome have been observed in all types of human cancer, indicating that mutations might contribute to tumorigenesis, metastasis, recurrence, or drug response. This possibility is appealing because of the known shift from oxidative metabolism to glycolysis, known as the Warburg effect, that occurs in malignancy. Mitochondrial DNA (mtDNA) mutations could either be maternally inherited and predispose to cancer (germ line mutations) or occur sporadically in the mtDNA of specific tissues (tissue- or tumor-specific somatic mutations) and contribute to the tumor initiation and progression process. High-throughput sequencing technologies now enable comprehensive detection of mtDNA variation in tissues and bodily fluids, with the potential to be used as an early detection tool that may impact the treatment of cancer. Here, we discuss insights into the roles of mtDNA mutations in carcinogenesis, highlighting the complexities involved in the analysis and interpretation of mitochondrial genomic content, technical challenges in studying their contribution to pathogenesis, and the value of mtDNA mutations in developing early detection, diagnosis, prognosis, and therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Hieu Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology (VRSIG), 458 Minh Khai, Vinh Tuy, Hai Ba Trung, Hanoi, Viet Nam; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
19
|
Cellular Mechanisms of Circulating Tumor Cells During Breast Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21145040. [PMID: 32708855 PMCID: PMC7404335 DOI: 10.3390/ijms21145040] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary site and travel in the blood stream. A higher number of CTCs increases the risk of breast cancer metastasis, and it is inversely associated with the survival rates of patients with breast cancer. Although the numbers of CTCs are generally low and the majority of CTCs die in circulation, the survival of a few CTCs can seed the development of a tumor at a secondary location. An increasing number of studies demonstrate that CTCs undergo modification in response to the dynamic biophysical environment in the blood due in part to fluid shear stress. Fluid shear stress generates reactive oxygen species (ROS), triggers redox-sensitive cell signaling, and alters the function of intracellular organelles. In particular, the mitochondrion is an important target organelle in determining the metastatic phenotype of CTCs. In healthy cells, mitochondria produce adenosine triphosphate (ATP) via oxidative phosphorylation in the electron transport chain, and during oxidative phosphorylation, they produce physiological levels of ROS. Mitochondria also govern death mechanisms such as apoptosis and mitochondrial permeability transition pore opening to, in order eliminate unwanted or damaged cells. However, in cancer cells, mitochondria are dysregulated, causing aberrant energy metabolism, redox homeostasis, and cell death pathways that may favor cancer invasiveness. In this review, we discuss the influence of fluid shear stress on CTCs with an emphasis on breast cancer pathology, then discuss alterations of cellular mechanisms that may increase the metastatic potentials of CTCs.
Collapse
|
20
|
Lin HC, Chu LJ, Huang PJ, Cheng WH, Zheng YH, Huang CY, Hong SW, Chen LC, Lin HA, Wang JY, Chen RM, Lin WN, Tang P, Huang KY. Proteomic signatures of metronidazole-resistant Trichomonas vaginalis reveal novel proteins associated with drug resistance. Parasit Vectors 2020; 13:274. [PMID: 32487244 PMCID: PMC7268490 DOI: 10.1186/s13071-020-04148-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/25/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Trichomoniasis is the most common non-viral sexually transmitted disease caused by the protozoan parasite Trichomonas vaginalis. Metronidazole (MTZ) is a widely used drug for the treatment of trichomoniasis; however, increased resistance of the parasite to MTZ has emerged as a highly problematic public health issue. METHODS We conducted iTRAQ-based analysis to profile the proteomes of MTZ-sensitive (MTZ-S) and MTZ-resistant (MTZ-R) parasites. STRING and gene set enrichment analysis (GESA) were utilized to explore the protein-protein interaction networks and enriched pathways of the differentially expressed proteins, respectively. Proteins potentially related to MTZ resistance were selected for functional validation. RESULTS A total of 3123 proteins were identified from the MTZ-S and MTZ-R proteomes in response to drug treatment. Among the identified proteins, 304 proteins were differentially expressed in the MTZ-R proteome, including 228 upregulated and 76 downregulated proteins. GSEA showed that the amino acid-related metabolism, including arginine, proline, alanine, aspartate, and glutamate are the most upregulated pathways in the MTZ-R proteome, whereas oxidative phosphorylation is the most downregulated pathway. Ten proteins categorized into the gene set of oxidative phosphorylation were ATP synthase subunit-related proteins. Drug resistance was further examined in MTZ-S parasites pretreated with the ATP synthase inhibitors oligomycin and bafilomycin A1, showing enhanced MTZ resistance and potential roles of ATP synthase in drug susceptibility. CONCLUSIONS We provide novel insights into previously unidentified proteins associated with MTZ resistance, paving the way for future development of new drugs against MTZ-refractory trichomoniasis.
Collapse
Affiliation(s)
- Hsin-Chung Lin
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 333, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 333, Taiwan
| | - Po-Jung Huang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City, 333, Taiwan.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 333, Taiwan
| | - Wei-Hung Cheng
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
| | - Yu-Hsing Zheng
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Ching-Yun Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Shu-Wen Hong
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Hsin-An Lin
- Division of Infection, Department of Medicine, Tri-Service General Hospital SongShan Branch, Taipei City, 105, Taiwan
| | - Jui-Yang Wang
- Division of Family Medicine, Tri-Service General Hospital Songshan Branch, Taipei City, 105, Taiwan
| | - Ruei-Min Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Petrus Tang
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan.
| |
Collapse
|
21
|
Seyfried TN, Mukherjee P, Iyikesici MS, Slocum A, Kalamian M, Spinosa JP, Chinopoulos C. Consideration of Ketogenic Metabolic Therapy as a Complementary or Alternative Approach for Managing Breast Cancer. Front Nutr 2020; 7:21. [PMID: 32219096 PMCID: PMC7078107 DOI: 10.3389/fnut.2020.00021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer remains as a significant cause of morbidity and mortality in women. Ultrastructural and biochemical evidence from breast biopsy tissue and cancer cells shows mitochondrial abnormalities that are incompatible with energy production through oxidative phosphorylation (OxPhos). Consequently, breast cancer, like most cancers, will become more reliant on substrate level phosphorylation (fermentation) than on oxidative phosphorylation (OxPhos) for growth consistent with the mitochondrial metabolic theory of cancer. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive breast cancer growth through substrate level phosphorylation (SLP) in both the cytoplasm (Warburg effect) and the mitochondria (Q-effect), respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability to tumor cells while simultaneously elevating ketone bodies, a non-fermentable metabolic fuel. It is suggested that KMT would be most effective when used together with glutamine targeting. Information is reviewed for suggesting how KMT could reduce systemic inflammation and target tumor cells without causing damage to normal cells. Implementation of KMT in the clinic could improve progression free and overall survival for patients with breast cancer.
Collapse
Affiliation(s)
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Mehmet S. Iyikesici
- Medical Oncology, Kemerburgaz University Bahcelievler Medical Park Hospital, Istanbul, Turkey
| | - Abdul Slocum
- Medical Oncology, Chemo Thermia Oncology Center, Istanbul, Turkey
| | | | | | | |
Collapse
|
22
|
Metabolic reprogramming and disease progression in cancer patients. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165721. [PMID: 32057942 DOI: 10.1016/j.bbadis.2020.165721] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/19/2022]
Abstract
Genomics has contributed to the treatment of a fraction of cancer patients. However, there is a need to profile the proteins that define the phenotype of cancer and its pathogenesis. The reprogramming of metabolism is a major trait of the cancer phenotype with great potential for prognosis and targeted therapy. This review overviews the major changes reported in the steady-state levels of proteins of metabolism in primary carcinomas, paying attention to those enzymes that correlate with patients' survival. The upregulation of enzymes of glycolysis, pentose phosphate pathway, lipogenesis, glutaminolysis and the antioxidant defense is concurrent with the downregulation of mitochondrial proteins involved in oxidative phosphorylation, emphasizing the potential of mitochondrial metabolism as a promising therapeutic target in cancer. We stress that high-throughput quantitative expression profiling of differentially expressed proteins in large cohorts of carcinomas paired with normal tissues will accelerate translation of metabolism to a successful personalized medicine in cancer.
Collapse
|
23
|
Oh SJ, Lee J, Kim Y, Song KH, Cho E, Kim M, Jung H, Kim TW. Far Beyond Cancer Immunotherapy: Reversion of Multi-Malignant Phenotypes of Immunotherapeutic-Resistant Cancer by Targeting the NANOG Signaling Axis. Immune Netw 2020; 20:e7. [PMID: 32158595 PMCID: PMC7049583 DOI: 10.4110/in.2020.20.e7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy, in the form of vaccination, adoptive cellular transfer, or immune checkpoint inhibitors, has emerged as a promising practice within the field of oncology. However, despite the developing field's potential to revolutionize cancer treatment, the presence of immunotherapeutic-resistant tumor cells in many patients present a challenge and limitation to these immunotherapies. These cells not only indicate immunotherapeutic resistance, but also show multi-modal resistance to conventional therapies, abnormal metabolism, stemness, and metastasis. How can immunotherapeutic-resistant tumor cells render multi-malignant phenotypes? We reasoned that the immune-refractory phenotype could be associated with multi-malignant phenotypes and that these phenotypes are linked together by a factor that acts as the master regulator. In this review, we discussed the role of the embryonic transcription factor NANOG as a crucial master regulator we named “common factor” in multi-malignant phenotypes and presented strategies to overcome multi-malignancy in immunotherapeutic-resistant cancer by restraining the NANOG-mediated multi-malignant signaling axis. Strategies that blunt the NANOG axis could improve the clinical management of therapy-refractory cancer.
Collapse
Affiliation(s)
- Se Jin Oh
- Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul 02841, Korea.,Department of Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea.,Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul 02841, Korea
| | - Jaeyoon Lee
- College of Science, College of Social Sciences and Humanities, Northeastern University, Boston, MA 02115, USA
| | - Yukang Kim
- Korea University College of Medicine, Seoul 02841, Korea
| | - Kwon-Ho Song
- Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul 02841, Korea.,Department of Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea.,Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul 02841, Korea
| | - Eunho Cho
- Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul 02841, Korea.,Department of Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea.,Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul 02841, Korea
| | - Minsung Kim
- Korea University College of Medicine, Seoul 02841, Korea
| | - Heejae Jung
- Korea University College of Medicine, Seoul 02841, Korea
| | - Tae Woo Kim
- Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul 02841, Korea.,Department of Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea.,Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
24
|
Ito Y, Nakajima K, Masubuchi Y, Kikuchi S, Saito F, Akahori Y, Jin M, Yoshida T, Shibutani M. Differential responses on energy metabolic pathway reprogramming between genotoxic and non-genotoxic hepatocarcinogens in rat liver cells. J Toxicol Pathol 2019; 32:261-274. [PMID: 31719753 PMCID: PMC6831489 DOI: 10.1293/tox.2019-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
To clarify difference in the responses on the reprogramming of metabolism toward carcinogenesis between genotoxic and non-genotoxic hepatocarcinogens in the liver, rats were repeatedly administered genotoxic hepatocarcinogens (N-nitrosodiethylamine, aflatoxin B1, N-nitrosopyrrolidine, or carbadox) or non-genotoxic hepatocarcinogens (carbon tetrachloride, thioacetamide, or methapyrilene hydrochloride) for 28, 84, or 90 days. Non-genotoxic hepatocarcinogens revealed transcript expression changes suggestive of suppressed mitochondrial oxidative phosphorylation (OXPHOS) after 28 days and increased glutathione S-transferase placental form-positive (GST-P+) foci downregulating adenosine triphosphate (ATP) synthase subunit beta, mitochondrial precursor (ATPB), compared with genotoxic hepatocarcinogens after 84 or 90 days, suggesting that non-genotoxic hepatocarcinogens are prone to suppress OXPHOS from the early stage of treatment, which is in contrast to genotoxic hepatocarcinogens. Both genotoxic and non-genotoxic hepatocarcinogens upregulated glycolytic enzyme genes and increased cellular membrane solute carrier family 2, facilitated glucose transporter member 1 (GLUT1) expression in GST-P+ foci for up to 90 days, suggesting induction of a metabolic shift from OXPHOS to glycolysis at early hepatocarcinogenesis by hepatocarcinogens unrelated to genotoxic potential. Non-genotoxic hepatocarcinogens increased c-MYC+ cells after 28 days and downregulated Tp53 after 84 or 90 days, suggesting a commitment to enhanced metabolic shift and cell proliferation. Genotoxic hepatocarcinogens also enhanced c-MYC activation-related metabolic shift until 84 or 90 days. In addition, both genotoxic and non-genotoxic hepatocarcinogens upregulated glutaminolysis-related Slc1a5 or Gls, or both, after 28 days and induced liver cell foci immunoreactive for neutral amino acid transporter B(0) (SLC1A5) in the subpopulation of GST-P+ foci after 84 or 90 days, suggesting glutaminolysis-mediated facilitation of cell proliferation toward hepatocarcinogenesis. These results suggest differential responses between genotoxic and non-genotoxic hepatocarcinogens on reprogramming of energy metabolic pathways toward carcinogenesis in liver cells from the early stage of hepatocarcinogen treatment.
Collapse
Affiliation(s)
- Yuko Ito
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Kouraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Kouraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Animal Science and Technology Veterinary Medicine, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, P.R. China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
25
|
ATP Synthase Subunit Epsilon Overexpression Promotes Metastasis by Modulating AMPK Signaling to Induce Epithelial-to-Mesenchymal Transition and Is a Poor Prognostic Marker in Colorectal Cancer Patients. J Clin Med 2019; 8:jcm8071070. [PMID: 31330880 PMCID: PMC6678251 DOI: 10.3390/jcm8071070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 01/04/2023] Open
Abstract
Metastasis remains the major cause of death from colon cancer. We intend to identify differentially expressed genes that are associated with the metastatic process and prognosis in colon cancer. ATP synthase epsilon subunit (ATP5E) gene was found to encode the mitochondrial F0F1 ATP synthase subunit epsilon that was overexpressed in tumor cells compared to their normal counterparts, while other genes encoding the ATP synthase subunit were repressed in public microarray datasets. CRC cells in which ATP5E was silenced showed markedly reduced invasive and migratory abilities. ATP5E inhibition significantly reduced the incidence of distant metastasis in a mouse xenograft model. Mechanistically, increased ATP5E expression resulted in a prominent reduction in E-cadherin and an increase in Snail expression. Our data also showed that an elevated ATP5E level in metastatic colon cancer samples was significantly associated with the AMPK-AKT-hypoxia-inducible factor-1α (HIF1α) signaling axis; silencing ATP5E led to the degradation of HIF1α under hypoxia through AMPK-AKT signaling. Our findings suggest that elevated ATP5E expression could serve as a marker of distant metastasis and a poor prognosis in colon cancer, and ATP5E functions via modulating AMPK-AKT-HIF1α signaling.
Collapse
|
26
|
Li Q, Dong Z, Lian W, Cui J, Wang J, Shen H, Liu W, Yang J, Zhang X, Cui H. Ochratoxin A causes mitochondrial dysfunction, apoptotic and autophagic cell death and also induces mitochondrial biogenesis in human gastric epithelium cells. Arch Toxicol 2019; 93:1141-1155. [PMID: 30903243 DOI: 10.1007/s00204-019-02433-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/14/2019] [Indexed: 01/23/2023]
Abstract
Ochratoxin A (OTA) is a common natural contaminant found in human and animal food worldwide. Our previous work has shown that OTA can cause oxidative DNA damage, G2 arrest and malignant transformation of human gastric epithelium (GES-1) cells. Mitochondria are considered to be target for the action of many cytotoxic agents. However, the role of mitochondria in the cytotoxicity of OTA remains unknown. The aim of this study is to explore the putative role of mitochondria on OTA cytotoxicity by analyzing mitochondrial changes in GES-1 cells. The results showed that OTA treatment (5, 10, 20 µM) for different times caused increases in the production of reactive oxygen species, and induced mitochondrial damage, shown by loss of mitochondrial membrane potential (ΔΨM), and decrease in cellular ATP concentration. Subsequently, the mitochondrial apoptotic pathway was activated, presented by increase of apoptotic rate and activation of apoptotic proteins. Autophagic cell death was also triggered, demonstrated by the conversion of light chain 3B (LC3B)-I to LC3B-II and elevated levels of green fluorescent protein-LC3 (GFP-LC3) puncta. Moreover, Parkin-dependent mitophagy was also activated presented by the colocalization of MitoTracker with LysoTracker or GFP-LC3 puncta. The inhibition of autophagy and mitophagy by inhibitors or siRNA attenuated the toxic effect of OTA on cell growth. Interestingly, OTA treatment also enhanced mitochondrial biogenesis confirmed by activation of AMPK/PGC-1α/TFAM pathway and promoted cell survival. Collectively, the effects of OTA on mitochondria of GES-1 cells are complex. OTA could cause mitochondrial function disturbance, apoptotic and autophagic cell death and also induce mitochondrial biogenesis.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Dermatology, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, People's Republic of China
| | - Zhen Dong
- State Key Laboratory of Silkworm Biology, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing City, People's Republic of China
| | - Weiguang Lian
- Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, Hebei Province, People's Republic of China
| | - Jinfeng Cui
- Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, Hebei Province, People's Republic of China
| | - Juan Wang
- Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, Hebei Province, People's Republic of China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, Hebei Province, People's Republic of China
| | - Wenjing Liu
- Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, Hebei Province, People's Republic of China
| | - Jie Yang
- State Key Laboratory of Silkworm Biology, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing City, People's Republic of China
| | - Xianghong Zhang
- Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, Hebei Province, People's Republic of China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Biology, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing City, People's Republic of China.
| |
Collapse
|
27
|
Nájera L, Alonso‐Juarranz M, Garrido M, Ballestín C, Moya L, Martínez‐Díaz M, Carrillo R, Juarranz A, Rojo F, Cuezva J, Rodríguez‐Peralto J. Prognostic implications of markers of the metabolic phenotype in human cutaneous melanoma. Br J Dermatol 2019; 181:114-127. [DOI: 10.1111/bjd.17513] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Affiliation(s)
- L. Nájera
- Servicio de Anatomía Patológica Hospital Universitario Puerta de Hierro Majadahonda, MadridSpain
| | | | - M. Garrido
- Instituto de Investigación Hospital 12 de Octubre Universidad Complutense de Madrid MadridSpain
| | - C. Ballestín
- IIS‐Fundación Jiménez Diaz C/Reyes Católicos 2 28049 MadridSpain
| | - L. Moya
- Servicio de Anatomía Patológica Hospital Universitario Ramón y Cajal MadridSpain
| | - M. Martínez‐Díaz
- Departamento de Biología Molecular Centro de Biología Molecular Severo Ochoa CSIC‐UAM MadridSpain
| | - R. Carrillo
- Servicio de Anatomía Patológica Hospital Universitario Ramón y Cajal MadridSpain
| | - A. Juarranz
- Departamento de Biología Facultad de Ciencias Universidad Autónoma de Madrid C/Darwin, 2 28049 MadridSpain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) MadridSpain
| | - F. Rojo
- IIS‐Fundación Jiménez Diaz C/Reyes Católicos 2 28049 MadridSpain
| | - J.M. Cuezva
- Instituto de Investigación Hospital 12 de Octubre Universidad Complutense de Madrid MadridSpain
- Departamento de Biología Molecular Centro de Biología Molecular Severo Ochoa CSIC‐UAM MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII MadridSpain
| | - J.L. Rodríguez‐Peralto
- Instituto de Investigación Hospital 12 de Octubre Universidad Complutense de Madrid MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) ISCIII Madrid Spain
| |
Collapse
|
28
|
Wangpermtam P, Petmitr S, Punyarit P, Klongnoi B, Sanguansin S. Down-regulation of mitochondrial NADH and cytochrome b gene associated with high tumor stages in head and neck squamous cell carcinoma. Arch Oral Biol 2019; 99:107-112. [PMID: 30658318 DOI: 10.1016/j.archoralbio.2019.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study aimed to determine mitochondrial mRNA expression levels and the relationships between these expression levels and various adverse clinicopathological characteristics. METHODS The mRNA expression levels of all 12 genes encoded protein, located on the heavy-strand of mitochondrial DNA including cytochrome b, NADH1, NADH2, NADH3, NADH4, NADH4L, NADH5, ATPase6, ATPase8, cytochrome c oxidase subunit 1, cytochrome c oxidase subunit 2, cytochrome c oxidase subunit 3 were analyzed in 30 head and neck squamous cell carcinoma (HNSCC) and the corresponding normal tissues using reverse transcriptase quantitative real time PCR. Pearson Chi-square test was used to determine the relationships between these expression levels and categorical parameters. RESULTS The expression levels of 12 mitochondrial mRNAs were observed in all 30 HNSCC patients with down-regulation, ranging from 43.3% to 76.7% and up-regulation, ranging from 10.0% to 36.7%. Furthermore, the number of cases with down-regulations in all 6 NADH and cytochrome b mRNA with TMN stages III and IV were significantly higher than that in stages I and II (p=0.049 and 0.007, respectively). CONCLUSION Down-regulation of all mitochondrial NADH mRNA as well as mitochondrial cytochrome b mRNA was associated with high tumor stage among HNSCC patients.
Collapse
Affiliation(s)
| | - Songsak Petmitr
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phaibul Punyarit
- Department of Clinical Pathology, Army Institute of Pathology, Phramongkutklao Medical Center and Pathology Division, Bangkok, Thailand; Department of Surgery, Bumrungrad International Hospital, Bangkok, Thailand
| | - Boworn Klongnoi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Sirima Sanguansin
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
29
|
Reduced Levels of ATP Synthase Subunit ATP5F1A Correlate with Earlier-Onset Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1347174. [PMID: 30538797 PMCID: PMC6261400 DOI: 10.1155/2018/1347174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/21/2018] [Accepted: 09/30/2018] [Indexed: 12/28/2022]
Abstract
Switching of cellular energy production from oxidative phosphorylation (OXPHOS) to aerobic glycolysis occurs in many types of tumors. However, the significance of energy metabolism for the development of prostate carcinoma is poorly understood. We investigated the expression of OXPHOS complexes in 94 human prostate carcinomas and paired benign tissue using immunohistochemistry. Overall mitochondrial mass was upregulated in carcinomas compared to benign prostate tissue in all Gleason grades. A significant direct correlation between the expression of OXPHOS complexes I, II, and V and the Gleason score was observed. However, 17% of prostate carcinomas and 18% of benign prostate tissues showed isolated or combined deficiency of OXPHOS complexes (one deficiency in 12% of the tumors, combined deficiencies in 5%). Complex I was absent in 9% of the samples, with only parts of the tumor affected. ATP5F1A, a complex V protein, was the most frequently affected subunit, in 10% of tumors and 11% of benign prostate tissues (but not both tissues in any single patient). A possible role of complex V in prostate cancer development is suggested by the significant positive correlation of ATP5F1A levels with earlier-onset prostate cancer (age at diagnosis and at prostatectomy) and free PSA percentage. The relatively high percentage (17%) of prostate carcinomas with regional foci of partial OXPHOS complex deficiencies could have important therapeutic implications.
Collapse
|
30
|
Song KH, Kim JH, Lee YH, Bae HC, Lee HJ, Woo SR, Oh SJ, Lee KM, Yee C, Kim BW, Cho H, Chung EJ, Chung JY, Hewitt SM, Chung TW, Ha KT, Bae YK, Mao CP, Yang A, Wu T, Kim TW. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest 2018; 128:4098-4114. [PMID: 30124467 PMCID: PMC6118592 DOI: 10.1172/jci96804] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 06/28/2018] [Indexed: 01/12/2023] Open
Abstract
The host immune system plays a pivotal role in the emergence of tumor cells that are refractory to multiple clinical interventions including immunotherapy, chemotherapy, and radiotherapy. Here, we examined the molecular mechanisms by which the immune system triggers cross-resistance to these interventions. By examining the biological changes in murine and tumor cells subjected to sequential rounds of in vitro or in vivo immune selection via cognate cytotoxic T lymphocytes, we found that multimodality resistance arises through a core metabolic reprogramming pathway instigated by epigenetic loss of the ATP synthase subunit ATP5H, which leads to ROS accumulation and HIF-1α stabilization under normoxia. Furthermore, this pathway confers to tumor cells a stem-like and invasive phenotype. In vivo delivery of antioxidants reverses these phenotypic changes and resensitizes tumor cells to therapy. ATP5H loss in the tumor is strongly linked to failure of therapy, disease progression, and poor survival in patients with cancer. Collectively, our results reveal a mechanism underlying immune-driven multimodality resistance to cancer therapy and demonstrate that rational targeting of mitochondrial metabolic reprogramming in tumor cells may overcome this resistance. We believe these results hold important implications for the clinical management of cancer.
Collapse
Affiliation(s)
- Kwon-Ho Song
- Department of Biochemistry and Molecular Biology
- Department of Biomedical Science, College of Medicine, and
- Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul, South Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Ho Lee
- Department of Biochemistry and Molecular Biology
- Department of Biomedical Science, College of Medicine, and
- Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul, South Korea
| | - Hyun Cheol Bae
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Hyo-Jung Lee
- Department of Biochemistry and Molecular Biology
- Department of Biomedical Science, College of Medicine, and
- Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul, South Korea
| | - Seon Rang Woo
- Department of Biochemistry and Molecular Biology
- Department of Biomedical Science, College of Medicine, and
- Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul, South Korea
| | - Se Jin Oh
- Department of Biochemistry and Molecular Biology
- Department of Biomedical Science, College of Medicine, and
- Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul, South Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology
- Department of Biomedical Science, College of Medicine, and
| | - Cassian Yee
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bo Wook Kim
- Department of Obstetrics and Gynecology, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, Seoul, South Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Stephen M. Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Young-Ki Bae
- Comparative Biomedicine Research Branch, Research Institute, National Cancer Center, Goyang, South Korea
| | - Chih-Ping Mao
- MD-PhD Program
- Immunology Training Program
- Department of Pathology
| | | | - T.C. Wu
- Department of Pathology
- Department of Oncology
- Department of Obstetrics and Gynecology, and
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tae Woo Kim
- Department of Biochemistry and Molecular Biology
- Department of Biomedical Science, College of Medicine, and
- Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
Effect of ketone bodies on viability of human breast cancer cells (MCF-7). MARMARA MEDICAL JOURNAL 2018. [DOI: 10.5472/marumj.430783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Esparza-Moltó PB, Cuezva JM. The Role of Mitochondrial H +-ATP Synthase in Cancer. Front Oncol 2018; 8:53. [PMID: 29564224 PMCID: PMC5845864 DOI: 10.3389/fonc.2018.00053] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/20/2018] [Indexed: 01/23/2023] Open
Abstract
Cancer cells reprogram energy metabolism by boosting aerobic glycolysis as a main pathway for the provision of metabolic energy and of precursors for anabolic purposes. Accordingly, the relative expression of the catalytic subunit of the mitochondrial H+-ATP synthase—the core hub of oxidative phosphorylation—is downregulated in human carcinomas when compared with its expression in normal tissues. Moreover, some prevalent carcinomas also upregulate the ATPase inhibitory factor 1 (IF1), which is the physiological inhibitor of the H+-ATP synthase. IF1 overexpression, both in cells in culture and in tissue-specific mouse models, is sufficient to reprogram energy metabolism to an enhanced glycolysis by limiting ATP production by the H+-ATP synthase. Furthermore, the IF1-mediated inhibition of the H+-ATP synthase promotes the production of mitochondrial ROS (mtROS). mtROS modulate signaling pathways favoring cellular proliferation and invasion, the activation of antioxidant defenses, resistance to cell death, and modulation of the tissue immune response, favoring the acquisition of several cancer traits. Consistently, IF1 expression is an independent marker of cancer prognosis. By contrast, inhibition of the H+-ATP synthase by α-ketoglutarate and the oncometabolite 2-hydroxyglutarate, reduces mTOR signaling, suppresses cancer cell growth, and contributes to lifespan extension in several model organisms. Hence, the H+-ATP synthase appears as a conserved hub in mitochondria-to-nucleus signaling controlling cell fate. Unraveling the molecular mechanisms responsible for IF1 upregulation in cancer and the signaling cascades that are modulated by the H+-ATP synthase are of utmost interest to decipher the metabolic and redox circuits contributing to cancer origin and progression.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre (i+12), Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre (i+12), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
33
|
Flowers EM, Sudderth J, Zacharias L, Mernaugh G, Zent R, DeBerardinis RJ, Carroll TJ. Lkb1 deficiency confers glutamine dependency in polycystic kidney disease. Nat Commun 2018; 9:814. [PMID: 29483507 PMCID: PMC5827653 DOI: 10.1038/s41467-018-03036-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder characterized by the growth of fluid-filled cysts in the kidneys. Several studies reported that the serine-threonine kinase Lkb1 is dysregulated in PKD. Here we show that genetic ablation of Lkb1 in the embryonic ureteric bud has no effects on tubule formation, maintenance, or growth. However, co-ablation of Lkb1 and Tsc1, an mTOR repressor, results in an early developing, aggressive form of PKD. We find that both loss of Lkb1 and loss of Pkd1 render cells dependent on glutamine for growth. Metabolomics analysis suggests that Lkb1 mutant kidneys require glutamine for non-essential amino acid and glutathione metabolism. Inhibition of glutamine metabolism in both Lkb1/Tsc1 and Pkd1 mutant mice significantly reduces cyst progression. Thus, we identify a role for Lkb1 in glutamine metabolism within the kidney epithelia and suggest that drugs targeting glutamine metabolism may help reduce cyst number and/or size in PKD. Polycystic kidney disease (PKD) is characterized by the formation of large fluid-filled cysts. Here Flowers and colleagues show that loss of Lkb1, downregulated in PKD, renders kidney cells dependent on glutamine for growth, and suggest that inhibition of glutamine metabolism may prevent cyst development in PKD.
Collapse
Affiliation(s)
- Ebony M Flowers
- Departments of Molecular Biology and Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jessica Sudderth
- Children's Medical Center Research Institute at UTSW, Eugene McDermott Center for Human Growth & Development, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lauren Zacharias
- Children's Medical Center Research Institute at UTSW, Eugene McDermott Center for Human Growth & Development, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Veteran Affairs Hospital Nashville, Nashville, TN, 37232, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute at UTSW, Eugene McDermott Center for Human Growth & Development, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Thomas J Carroll
- Departments of Molecular Biology and Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
34
|
Yadav AK, Srikrishna S. scribble (scrib) knockdown induces tumorigenesis by modulating Drp1-Parkin mediated mitochondrial dynamics in the wing imaginal tissues of Drosophila. Mitochondrion 2018; 44:103-110. [PMID: 29360576 DOI: 10.1016/j.mito.2018.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
scrib loss of function is associated with various human-cancers. Most of the human-cancers have been characterized by mitochondrial dysfunction with elevated oxidative stress. However, the role of scrib to mitochondrial dysfunction in cancer has not been investigated earlier. Here, we have shown that scrib knockdown leads to mitochondrial depolarization, fragmentation and perinuclear-clustering along with disruption of the redox homeostasis. Moreover, the scrib abrogated tumor showed the elevation of Drp-1 and reduced expression of Marf, which suggests enhanced mitochondrial-fission. Further, the reduced expression of Parkin and HtrA2 interpret defective mitophagy leading to clustering of fragmented mitochondria and apoptotic inhibition in scrib knockdown tumors. Also, Parkin immunostaining depicted its reduced expression and mislocalization in the tumor cells in comparison to wild type. Moreover, the genetic study revealed the epistatic interactions of parkin and scrib. Thus, for the first time our results suggested that scrib loss induced mitochondrial-dysfunction modulates cancer progression by altering the mitochondrial dynamics regulators.
Collapse
Affiliation(s)
- Amarish Kumar Yadav
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saripella Srikrishna
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
35
|
Li W, Qi Y, Cui X, Sun Y, Huo Q, Yang Y, Wen X, Tan M, Du S, Zhang H, Zhang M, Liu C, Kong Q. Heteroplasmy and Copy Number Variations of Mitochondria in 88 Hepatocellular Carcinoma Individuals. J Cancer 2017; 8:4011-4017. [PMID: 29187876 PMCID: PMC5706003 DOI: 10.7150/jca.21218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/28/2017] [Indexed: 01/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. In this study, we had analysed the copy number variations and heteroplasmic mutations of mitochondria (MT) in 88 HCC individuals. The average copy number of MT genome in normal samples was significantly greater than that in tumor samples. Overall, the number of heteroplasmic mutations in 88 tumor and their matched normal samples were 241 and 173, respectively. There was higher positive ratio of heteroplasmic mutations in tumor samples (86%) than normal samples (73%). Worthwhile mention, ND1 gene harbored greater mutation frequency and more nonsynonymous mutations in tumor samples. Interestingly, 202 tumor-specific heteroplasmic mutations were detected. Moreover, ND1, ND3, ND4, ND5 and ND6 genes had higher ratio of nonsynonymous versus synonymous mutations in tumor-specific heteroplasmic mutations. It might suggest that the disorder of NADH dehydrogenase (complex I) resulted by heteroplasmic mutations may have close relation with tumorigenesis of hepatocellular carcinoma. This study provided theoretical basis for further understanding mechanism of tumorigenesis from the perspective of mitochondrial heteroplasmic mutations.
Collapse
Affiliation(s)
- Weiyang Li
- Jining Medical University, Jining, Shandong 272067, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
| | - Yanwei Qi
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaofang Cui
- Jining Medical University, Jining, Shandong 272067, China
| | - Yuhui Sun
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Qing Huo
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Yang
- Jining Medical University, Jining, Shandong 272067, China
| | - Xinyuan Wen
- Jining Medical University, Jining, Shandong 272067, China
| | | | - Shiyi Du
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Huali Zhang
- Jining Medical University, Jining, Shandong 272067, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
| | - Meng Zhang
- Jining Medical University, Jining, Shandong 272067, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
| | - Chuanxin Liu
- Jining Medical University, Jining, Shandong 272067, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
| | - Qingsheng Kong
- Jining Medical University, Jining, Shandong 272067, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
36
|
Mizukami S, Watanabe Y, Nakajima K, Hasegawa-Baba Y, Jin M, Yoshida T, Shibutani M. Downregulation of TMEM70 in Rat Liver Cells After Hepatocarcinogen Treatment Related to the Warburg Effect in Hepatocarcinogenesis Producing GST-P-Expressing Proliferative Lesions. Toxicol Sci 2017; 159:211-223. [DOI: 10.1093/toxsci/kfx131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Lai WT, Li YJ, Wu SB, Yang CN, Wu TS, Wei YH, Deng YT. Connective tissue growth factor decreases mitochondrial metabolism through ubiquitin-mediated degradation of mitochondrial transcription factor A in oral squamous cell carcinoma. J Formos Med Assoc 2017; 117:212-219. [PMID: 28438434 DOI: 10.1016/j.jfma.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/PURPOSE Deregulation of metabolic pathways is one of the hallmarks of cancer progression. Connective tissue growth factor (CTGF/CCN2) acts as a tumor suppressor in oral squamous cell carcinoma (OSCC). However, the role of CTGF in modulating cancer metabolism is still unclear. METHODS OSCC cells stably overexpressing CTGF (SAS/CTGF) and shRNA against CTGF (TW2.6/shCTGF) were established. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were examined by the Seahorse XF24 analyzer. The expression of CTGF and mitochondrial biogenesis related genes was measured by real-time polymerase chain reaction or Western blot analysis. RESULTS CTGF decreased OCR, ECAR, adenosine triphosphate (ATP) generation, mitochondrial DNA (mtDNA), and mitochondrial transcription factor A (mtTFA) protein expression in OSCC cells. Overexpression of mtTFA restored CTGF-decreased OCR, ECAR, mtDNA copy number, migration and invasion of SAS/CTGF cells. Immunoprecipitation assay showed a higher level of ubiquitinated mtTFA protein after CTGF treatment. MG132, an inhibitor of proteasomal degradation, reversed the effect of CTGF on mtTFA protein expression in SAS cells. CONCLUSION CTGF can decrease glycolysis, mitochondrial oxidative phosphorylation, ATP generation, and mtDNA copy number by increasing mtTFA protein degradation through ubiquitin proteasome pathway and in turn reduces migration and invasion of OSCC cells. Therefore, CTGF may be developed as a potential additive therapeutic drug for oral cancer in the near future.
Collapse
Affiliation(s)
- Wei-Ting Lai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yue-Ju Li
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Shi-Bei Wu
- Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Ning Yang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Tai-Sheng Wu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yau-Huei Wei
- Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, Taiwan
| | - Yi-Ting Deng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan.
| |
Collapse
|
38
|
Iommarini L, Ghelli A, Gasparre G, Porcelli AM. Mitochondrial metabolism and energy sensing in tumor progression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:582-590. [PMID: 28213331 DOI: 10.1016/j.bbabio.2017.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 01/14/2023]
Abstract
Energy homeostasis is pivotal for cell fate since metabolic regulation, cell proliferation and death are strongly dependent on the balance between catabolic and anabolic pathways. In particular, metabolic and energetic changes have been observed in cancer cells even before the discovery of oncogenes and tumor suppressors, but have been neglected for a long time. Instead, during the past 20years a renaissance of the study of tumor metabolism has led to a revised and more accurate sight of the metabolic landscape of cancer cells. In this scenario, genetic, biochemical and clinical evidences place mitochondria as key actors in cancer metabolic restructuring, not only because there are energy and biosynthetic intermediates manufacturers, but also because occurrence of mutations in metabolic enzymes encoded by both nuclear and mitochondrial DNA has been associated to different types of cancer. Here we provide an overview of the possible mechanisms modulating mitochondrial energy production and homeostasis in the intriguing scenario of neoplastic cells, focusing on the double-edged role of 5'-AMP activated protein kinase in cancer metabolism. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Luisa Iommarini
- Dipartimento Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Anna Ghelli
- Dipartimento Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Giuseppe Gasparre
- Dipartimento Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Dipartimento Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy; Centro Interdipartimentale di Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano dell'Emilia, Italy
| |
Collapse
|
39
|
Identification of epigenetically downregulated Tmem70 and Ube2e2 in rat liver after 28-day treatment with hepatocarcinogenic thioacetamide showing gene product downregulation in hepatocellular preneoplastic and neoplastic lesions produced by tumor promotion. Toxicol Lett 2017; 266:13-22. [DOI: 10.1016/j.toxlet.2016.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/13/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
|
40
|
Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Maji S, Hoogenboom R, Rohner NA, Thomas SN, Román JS. Enhanced Bioactivity of α-Tocopheryl Succinate Based Block Copolymer Nanoparticles by Reduced Hydrophobicity. Macromol Biosci 2016; 16:1824-1837. [PMID: 27739627 PMCID: PMC5518931 DOI: 10.1002/mabi.201600259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/04/2016] [Indexed: 12/25/2022]
Abstract
Well-structured amphiphilic copolymers are necessary to obtain self-assembled nanoparticles (NPs) based on synthetic polymers. Highly homogeneous and monodispersed macromolecules obtained by controlled polymerization have successfully been used for this purpose. However, disaggregation of the organized macromolecules is desired when a bioactive element, such as α-tocopheryl succinate, is introduced in self-assembled NPs and this element must be exposed or released to exert its action. The aim of this work is to demonstrate that the bioactivity of synthetic NPs based on defined reversible addition-fragmentation chain transfer polymerization copolymers can be enhanced by the introduction of hydrophilic comonomers in the hydrophobic segment. The amphiphilic terpolymers are based on poly(ethylene glycol) (PEG) as hydrophilic block, and a hydrophobic block based on a methacrylic derivative of α-tocopheryl succinate (MTOS) and small amounts of 2-hydroxyethyl methacrylate (HEMA) (PEG-b-poly(MTOS-co-HEMA)). The introduction of HEMA reduces hydrophobicity and introduces "disorder" both in the homogeneous blocks and the compact core of the corresponding NPs. These NPs are able to encapsulate additional α-tocopheryl succinate (α-TOS) with high efficiency and their biological activity is much higher than that described for the unmodified copolymers, proposedly due to more efficient degradation and release of α-TOS, demonstrating the importance of the hydrophilic-hydrophobic balance.
Collapse
Affiliation(s)
- Raquel Palao-Suay
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - María Rosa Aguilar
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Francisco J Parra-Ruiz
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Samarendra Maji
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | - Nathan A Rohner
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, 30332, GA, USA
| | - Susan N Thomas
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, 30332, GA, USA
| | - Julio San Román
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
41
|
Mitochondrial oncobioenergetic index: A potential biomarker to predict progression from indolent to aggressive prostate cancer. Oncotarget 2016; 6:43065-80. [PMID: 26515588 PMCID: PMC4767491 DOI: 10.18632/oncotarget.5487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/04/2015] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial function is influenced by alterations in oncogenes and tumor suppressor genes and changes in the microenvironment occurring during tumorigenesis. Therefore, we hypothesized that mitochondrial function will be stably and dynamically altered at each stage of the prostate tumor development. We tested this hypothesis in RWPE-1 cells and its tumorigenic clones with progressive malignant characteristics (RWPE-1 < WPE-NA22 < WPE-NB14 < WPE-NB11 < WPE-NB26) using high-throughput respirometry. Our studies demonstrate that mitochondrial content do not change with increasing malignancy. In premalignant cells (WPE-NA22 and WPE-NB14), OXPHOS is elevated in presence of glucose or glutamine alone or in combination compared to RWPE-1 cells and decreases with increasing malignancy. Glutamine maintained higher OXPHOS than glucose and suggests that it may be an important substrate for the growth and proliferation of prostate epithelial cells. Glycolysis significantly increases with malignancy and follow a classical Warburg phenomenon. Fatty acid oxidation (FAO) is significantly lower in tumorigenic clones and invasive WPE-NB26 does not utilize FAO at all. In this paper, we introduce for the first time the mitochondrial oncobioenergetic index (MOBI), a mathematical representation of oncobioenergetic profile of a cancer cell, which increases significantly upon transformation into localized premalignant form and rapidly falls below the normal as they become aggressive in prostate tumorigenesis. We have validated this in five prostate cancer cell lines and MOBI appears to be not related to androgen dependence or mitochondrial content, but rather dependent on the stage of the cancer. Altogether, we propose that MOBI could be a potential biomarker to distinguish aggressive cancer from that of indolent disease.
Collapse
|
42
|
Wen R, Dhar S. Turn up the cellular power generator with vitamin E analogue formulation. Chem Sci 2016; 7:5559-5567. [PMID: 30034696 PMCID: PMC6022097 DOI: 10.1039/c6sc00481d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/07/2016] [Indexed: 01/22/2023] Open
Abstract
The down regulation of the cellular power generator, adenosine triphosphate (ATP) synthase, in various cancer cells plays an obstructive role in mitochondria-mediated cell death. Cancer cells up-regulate ATPase inhibitory factor 1 (IF1) and down-regulate β-F1-ATPase of ATP synthase to enhance aerobic glycolysis for tumor growth via inhibiting total ATP synthase activity in the oxidative phosphorylation (OXPHOS) pathway. Alpha-tocopheryl succinate (α-TOS), one of the most bioactive derivatives of vitamin E, can selectively induce apoptosis in numerous cancer cells. The cancer cell selective apoptosis inducing property of α-TOS is correlated to: mitochondrial destabilization, inhibition of anti-apoptotic B cell lymphoma 2 (Bcl2) and protein kinase C (PKC), caspase 3 activation, production of mitochondrial reactive oxygen species (ROS), and inhibition of succinate dehydrogenase activity of mitochondrial complex II, and interaction with complex I to some extent. There is no report which elucidates the effects of α-TOS on the cellular power generator, complex V or ATP synthase. Here, we report the activation of mitochondrial ATP synthase using a suitably designed chemical formulation of α-TOS for the first time. A mitochondria targeted α-TOS nanoparticle formulation demonstrated enhanced cytotoxicity and mitochondrial activities in cancer cells by inhibiting Bcl2 protein and activating ATP synthase. The modulation of ATP synthase in cancer cells by the engineered formulation of α-TOS can be promising for solid cancers with compromised ATP synthase.
Collapse
Affiliation(s)
- Ru Wen
- NanoTherapeutics Research Laboratory , Department of Chemistry , University of Georgia , Room 679 , Athens , GA 30602 , USA . ; ; Tel: +1-706-542-1012 ; http://shanta.uga.edu/
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory , Department of Chemistry , University of Georgia , Room 679 , Athens , GA 30602 , USA . ; ; Tel: +1-706-542-1012 ; http://shanta.uga.edu/
| |
Collapse
|
43
|
Fang JY, Tan SJ, Wu YC, Yang Z, Hoang BX, Han B. From competency to dormancy: a 3D model to study cancer cells and drug responsiveness. J Transl Med 2016; 14:38. [PMID: 26847768 PMCID: PMC4743174 DOI: 10.1186/s12967-016-0798-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/20/2016] [Indexed: 01/08/2023] Open
Abstract
Background The heterogeneous and dynamic tumor microenvironment has significant impact on cancer cell proliferation, invasion, drug response, and is probably associated with entering dormancy and recurrence. However, these complex settings are hard to recapitulate in vitro. Methods In this study, we mimic different restriction forces that tumor cells are exposed to using a physiologically relevant 3D model with tunable mechanical stiffness. Results Breast cancer MDA-MB-231, colon cancer HCT-116 and pancreatic cancer CFPAC cells embedded in the stiffer gels exhibit a changed morphology and cluster formation, prolonged doubling time, and a slower metabolism rate, recapitulating the pathway from competency to dormancy. Altering environmental restriction allows them to re-enter and exit dormant conditions and change their sensitivities to drugs such as paclitaxol and gemcitabine. Cells surviving drug treatments can still regain competent growth and form tumors in vivo. Conclusion We have successfully developed an in vitro 3D model to mimic the effects of matrix restriction on tumor cells and this high throughput model can be used to study tumor cellular functions and their drug responses in their different states. This all in one platform may aid effective drug development.
Collapse
Affiliation(s)
- Josephine Y Fang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Division of Plastic and Reconstructive Surgery, Departments of Surgery and Biomedical Engineering, Keck School of Medicine, University of Southern California, 1333 San Pablo St., BMT 302, Los Angeles, CA, 90089, USA.
| | - Shih-Jye Tan
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Division of Plastic and Reconstructive Surgery, Departments of Surgery and Biomedical Engineering, Keck School of Medicine, University of Southern California, 1333 San Pablo St., BMT 302, Los Angeles, CA, 90089, USA.
| | - Yi-Chen Wu
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Division of Plastic and Reconstructive Surgery, Departments of Surgery and Biomedical Engineering, Keck School of Medicine, University of Southern California, 1333 San Pablo St., BMT 302, Los Angeles, CA, 90089, USA.
| | - Zhi Yang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Division of Plastic and Reconstructive Surgery, Departments of Surgery and Biomedical Engineering, Keck School of Medicine, University of Southern California, 1333 San Pablo St., BMT 302, Los Angeles, CA, 90089, USA.
| | - Ba X Hoang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Division of Plastic and Reconstructive Surgery, Departments of Surgery and Biomedical Engineering, Keck School of Medicine, University of Southern California, 1333 San Pablo St., BMT 302, Los Angeles, CA, 90089, USA.
| | - Bo Han
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Division of Plastic and Reconstructive Surgery, Departments of Surgery and Biomedical Engineering, Keck School of Medicine, University of Southern California, 1333 San Pablo St., BMT 302, Los Angeles, CA, 90089, USA.
| |
Collapse
|
44
|
Li Q, Li Y, Wang Y, Cui Z, Gong L, Qu Z, Zhong Y, Zhou J, Zhou Y, Gao Y, Li Y. Quantitative proteomic study of human prostate cancer cells with different metastatic potentials. Int J Oncol 2016; 48:1437-46. [PMID: 26846621 DOI: 10.3892/ijo.2016.3378] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/11/2015] [Indexed: 11/06/2022] Open
Abstract
Metastatic dissemination is a feature of most cancers including prostate cancer (PCa), and is the main cause of treatment failure and mortality. The aim of the study is to explore the mechanisms of PCa metastasis and to search for potential prognostic markers using proteomics. Two-dimensional fluorescent differential gel electrophoresis (2D-DIGE) was used to quantify proteins in normal prostate epithelial cells, bone metastasis-derived PC-3 cells, and visceral metastasis-derived PC-3M cells. Metastatic potential was confirmed by flow cytometry, electron microscopy, proliferating cell nuclear antigen assay, and wound healing assay. Differential protein expression was compared between PCa cells with different metastatic potentials (LNcap, DU145, PC-3 and PC-3M) and normal prostate epithelial cells (RWPE-1). Selected candidate proteins in human prostate tissues were analyzed using GOA, UniProt and GeneCards analyses. Eighty-six proteins were differentially expressed between cell lines (>1.5-fold, P<0.05). Among them, twelve proteins were identified by MALDI-TOF-MS. One protein was upregulated in normal prostate epithelial cells, nine proteins were upregulated in PC-3, and two proteins were upregulated in PC-3M. Proteins were divided into five groups according to their functions. The SETDB1 protein was closely associated with the prognosis of PCa. Bioinformatics suggested that SETDB1 might promote PCa bone metastasis through the WNT pathway. In conclusion, SETDB1 might be associated with the development of bone metastases from PCa. Further study is necessary to assess its exact role in PCa.
Collapse
Affiliation(s)
- Qun Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yilei Li
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical School, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanying Wang
- Department of Endoscopy in Special Clinic Room, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zheng Cui
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Lulu Gong
- The Hepatobiliary Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zhigang Qu
- The Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanping Zhong
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jun Zhou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Ying Zhou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical School, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
45
|
Tian H, Gao Z, Wang G, Li H, Zheng J. Estrogen potentiates reactive oxygen species (ROS) tolerance to initiate carcinogenesis and promote cancer malignant transformation. Tumour Biol 2015; 37:141-50. [DOI: 10.1007/s13277-015-4370-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022] Open
|
46
|
Michalak KP, Maćkowska-Kędziora A, Sobolewski B, Woźniak P. Key Roles of Glutamine Pathways in Reprogramming the Cancer Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:964321. [PMID: 26583064 PMCID: PMC4637129 DOI: 10.1155/2015/964321] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023]
Abstract
Glutamine (GLN) is commonly known as an important metabolite used for the growth of cancer cells but the effects of its intake in cancer patients are still not clear. However, GLN is the main substrate for DNA and fatty acid synthesis. On the other hand, it reduces the oxidative stress by glutathione synthesis stimulation, stops the process of cancer cachexia, and nourishes the immunological system and the intestine epithelium, as well. The current paper deals with possible positive effects of GLN supplementation and conditions that should be fulfilled to obtain these effects. The analysis of GLN metabolism suggests that the separation of GLN and carbohydrates in the diet can minimize simultaneous supply of ATP (from glucose) and NADPH2 (from glutamine) to cancer cells. It should support to a larger extent the organism to fight against the cancer rather than the cancer cells. GLN cannot be considered the effective source of ATP for cancers with the impaired oxidative phosphorylation and pyruvate dehydrogenase inhibition. GLN intake restores decreased levels of glutathione in the case of chemotherapy and radiotherapy; thus, it facilitates regeneration processes of the intestine epithelium and immunological system.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University of Poznań, Umultowska Street 85, 61-614 Poznań, Poland
- Nanobiomedical Center of Poznań, Umultowska Street 85, 61-614 Poznań, Poland
| | - Agnieszka Maćkowska-Kędziora
- Department of Clinical Pharmacology, Chair of Cardiology, Poznań University of Medical Sciences, Długa Street 1/2, 61-848 Poznań, Poland
| | - Bogusław Sobolewski
- Polish Mother's Memorial Hospital-Research Institute, Outpatient Clinic, Rzgowska Street 281/289, Łódź, Poland
| | - Piotr Woźniak
- Polish Mother's Memorial Hospital-Research Institute, Outpatient Clinic, Rzgowska Street 281/289, Łódź, Poland
| |
Collapse
|
47
|
Schöckel L, Glasauer A, Basit F, Bitschar K, Truong H, Erdmann G, Algire C, Hägebarth A, Willems PH, Kopitz C, Koopman WJ, Héroult M. Targeting mitochondrial complex I using BAY 87-2243 reduces melanoma tumor growth. Cancer Metab 2015; 3:11. [PMID: 26500770 PMCID: PMC4615872 DOI: 10.1186/s40170-015-0138-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/22/2015] [Indexed: 11/12/2022] Open
Abstract
Background Numerous studies have demonstrated that functional mitochondria are required for tumorigenesis, suggesting that mitochondrial oxidative phosphorylation (OXPHOS) might be a potential target for cancer therapy. In this study, we investigated the effects of BAY 87-2243, a small molecule that inhibits the first OXPHOS enzyme (complex I), in melanoma in vitro and in vivo. Results BAY 87-2243 decreased mitochondrial oxygen consumption and induced partial depolarization of the mitochondrial membrane potential. This was associated with increased reactive oxygen species (ROS) levels, lowering of total cellular ATP levels, activation of AMP-activated protein kinase (AMPK), and reduced cell viability. The latter was rescued by the antioxidant vitamin E and high extracellular glucose levels (25 mM), indicating the involvement of ROS-induced cell death and a dependence on glycolysis for cell survival upon BAY 87-2243 treatment. BAY 87-2243 significantly reduced tumor growth in various BRAF mutant melanoma mouse xenografts and patient-derived melanoma mouse models. Furthermore, we provide evidence that inhibition of mutated BRAF using the specific small molecule inhibitor vemurafenib increased the OXPHOS dependency of BRAF mutant melanoma cells. As a consequence, the combination of both inhibitors augmented the anti-tumor effect of BAY 87-2243 in a BRAF mutant melanoma mouse xenograft model. Conclusions Taken together, our results suggest that complex I inhibition has potential clinical applications as a single agent in melanoma and also might be efficacious in combination with BRAF inhibitors in the treatment of patients with BRAF mutant melanoma. Electronic supplementary material The online version of this article (doi:10.1186/s40170-015-0138-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Schöckel
- BPH, GDD, Global Therapeutic Research Group Oncology II, Bayer Pharma AG, Müllerstraße 178, 13353 Berlin, Germany
| | - Andrea Glasauer
- BPH, GDD, Global Therapeutic Research Group Oncology II, Bayer Pharma AG, Müllerstraße 178, 13353 Berlin, Germany
| | - Farhan Basit
- Department of Biochemistry, Radboud Institute for Molecular Life Science (RIMLS), Radboud University Medical Centre (RUMC), Nijmegen, The Netherlands
| | - Katharina Bitschar
- BPH, GDD, Global Therapeutic Research Group Oncology II, Bayer Pharma AG, Müllerstraße 178, 13353 Berlin, Germany
| | - Hoa Truong
- Department of Biochemistry, Radboud Institute for Molecular Life Science (RIMLS), Radboud University Medical Centre (RUMC), Nijmegen, The Netherlands
| | - Gerrit Erdmann
- BPH, GDD, Global Therapeutic Research Group Oncology II, Bayer Pharma AG, Müllerstraße 178, 13353 Berlin, Germany
| | - Carolyn Algire
- BPH, GDD, Global Therapeutic Research Group Oncology II, Bayer Pharma AG, Müllerstraße 178, 13353 Berlin, Germany
| | - Andrea Hägebarth
- BPH, GDD, Global Therapeutic Research Group Oncology II, Bayer Pharma AG, Müllerstraße 178, 13353 Berlin, Germany
| | - Peter Hgm Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Science (RIMLS), Radboud University Medical Centre (RUMC), Nijmegen, The Netherlands
| | - Charlotte Kopitz
- BPH, GDD, Global Therapeutic Research Group Oncology II, Bayer Pharma AG, Müllerstraße 178, 13353 Berlin, Germany
| | - Werner Jh Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Science (RIMLS), Radboud University Medical Centre (RUMC), Nijmegen, The Netherlands
| | - Mélanie Héroult
- Bayer AG Innovation Strategy, Kaiser Wilhelm Allee 1, 51368 Leverkusen, Germany
| |
Collapse
|
48
|
Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Fernández-Gutiérrez M, Parra J, Sánchez-Rodríguez C, Sanz-Fernández R, Rodrigáñez L, Román JS. Anticancer and antiangiogenic activity of surfactant-free nanoparticles based on self-assembled polymeric derivatives of vitamin E: structure-activity relationship. Biomacromolecules 2015; 16:1566-81. [PMID: 25848887 DOI: 10.1021/acs.biomac.5b00130] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
α-Tocopheryl succinate (α-TOS) is a well-known mitochondrially targeted anticancer compound, however, it is highly hydrophobic and toxic. In order to improve its activity and reduce its toxicity, new surfactant-free biologically active nanoparticles (NP) were synthesized. A methacrylic derivative of α-TOS (MTOS) was prepared and incorporated in amphiphilic pseudoblock copolymers when copolymerized with N-vinylpyrrolidone (VP) by free radical polymerization (poly(VP-co-MTOS)). The selected poly(VP-co-MTOS) copolymers formed surfactant-free NP by nanoprecipitation with sizes between 96 and 220 nm and narrow size distribution, and the in vitro biological activity was tested. In order to understand the structure-activity relationship three other methacrylic monomers were synthesized and characterized: MVE did not have the succinate group, SPHY did not have the chromanol ring, and MPHY did not have both the succinate group and the chromanol ring. The corresponding families of copolymers (poly(VP-co-MVE), poly(VP-co-SPHY), and poly(VP-co-MPHY)) were synthesized and characterized, and their biological activity was compared to poly(VP-co-MTOS). Both poly(VP-co-MTOS) and poly(VP-co-MVE) presented triple action: reduced cell viability of cancer cells with little or no harm to normal cells (anticancer), reduced viability of proliferating endothelial cells with little or no harm to quiescent endothelial cells (antiangiogenic), and efficiently encapsulated hydrophobic molecules (nanocarrier). The anticancer and antiangiogenic activity of the synthesized copolymers is demonstrated as the active compound (vitamin E or α-tocopheryl succinate) do not need to be cleaved to trigger the biological action targeting ubiquinone binding sites of complex II. Poly(VP-co-SPHY) and poly(VP-co-MPHY) also formed surfactant-free NP that were also endocyted by the assayed cells; however, these NP did not selectively reduce cell viability of cancer cells. Therefore, the chromanol ring of the vitamin E analogues has an important role in the biological activity of the copolymers. Moreover, when succinate moiety is substituted and vitamin E is directly linked to the macromolecular chain through an ester bond, the biological activity is maintained.
Collapse
Affiliation(s)
- Raquel Palao-Suay
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.,‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - María Rosa Aguilar
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.,‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - Francisco J Parra-Ruiz
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Mar Fernández-Gutiérrez
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.,‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - Juan Parra
- ‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain.,§Clinical Research and Experimental Biopathology Unit, Healthcare Complex of Ávila, SACYL, C/Jesús del Gran Poder 42, 05003 Ávila, Spain
| | - Carolina Sánchez-Rodríguez
- ∥Foundation for Biomedical Research, University Hospital of Getafe, Carretera de Toledo, km 12,500, 28905, Getafe, Madrid, Spain.,#European University of Madrid, C/ Tajo s/n. 28670, Villaviciosa de Odón (Madrid), Spain
| | - Ricardo Sanz-Fernández
- ∥Foundation for Biomedical Research, University Hospital of Getafe, Carretera de Toledo, km 12,500, 28905, Getafe, Madrid, Spain.,#European University of Madrid, C/ Tajo s/n. 28670, Villaviciosa de Odón (Madrid), Spain
| | - Laura Rodrigáñez
- ∥Foundation for Biomedical Research, University Hospital of Getafe, Carretera de Toledo, km 12,500, 28905, Getafe, Madrid, Spain
| | - Julio San Román
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.,‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| |
Collapse
|
49
|
Fliedner SMJ, Yang C, Thompson E, Abu-Asab M, Hsu CM, Lampert G, Eiden L, Tischler AS, Wesley R, Zhuang Z, Lehnert H, Pacak K. Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells. Am J Cancer Res 2015; 5:1558-1570. [PMID: 26101719 PMCID: PMC4473332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/15/2015] [Indexed: 06/04/2023] Open
Abstract
F1FoATP synthase (ATP synthase) is a ubiquitous enzyme complex in eukaryotes. In general it is localized to the mitochondrial inner membrane and serves as the last step in the mitochondrial oxidative phosphorylation of ADP to ATP, utilizing a proton gradient across the inner mitochondrial membrane built by the complexes of the electron transfer chain. However some cell types, including tumors, carry ATP synthase on the cell surface. It was suggested that cell surface ATP synthase helps tumor cells thriving on glycolysis to survive their high acid generation. Angiostatin, aurovertin, resveratrol, and antibodies against the α and β subunits of ATP synthase were shown to bind and selectively inhibit cell surface ATP synthase, promoting tumor cell death. Here we show that ATP synthase β (ATP5B) is present on the cell surface of mouse pheochromocytoma cells as well as tumor cells of human SDHB-derived paragangliomas (PGLs), while being virtually absent on chromaffin primary cells from bovine adrenal medulla by confocal microscopy. The cell surface location of ATP5B was verified in the tissue of an SDHB-derived PGL by immunoelectron microscopy. Treatment of mouse pheochromocytoma cells with resveratrol as well as ATP5B antibody led to statistically significant proliferation inhibition. Our data suggest that PGLs carry ATP synthase on their surface that promotes cell survival or proliferation. Thus, cell surface ATP synthase may present a novel therapeutic target in treating metastatic or inoperable PGLs.
Collapse
Affiliation(s)
- Stephanie MJ Fliedner
- Program on Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD 20892, USA
- 1 Department of Medicine, University Medical Center Schleswig-Holstein, Campus LübeckRatzeburger Allee 160, 23538 Lübeck, Germany
| | - Chunzhang Yang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesda, MD 20892, USA
| | - Eli Thompson
- Program on Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD 20892, USA
| | - Mones Abu-Asab
- Section of Immunopathology, National Eye Institute, NIH, National Institutes of HealthBethesda, MD 20892, USA
| | - Chang-Mei Hsu
- Section on Molecular Neuroscience, National Institute of Mental Health, National Institutes of HealthBethesda, Maryland 20892, USA
| | | | - Lee Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, National Institutes of HealthBethesda, Maryland 20892, USA
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical CenterBoston, MA 02111, USA
| | - Robert Wesley
- Department of Health and Human Services, Clinical Center, National Institutes of HealthBethesda, MD 20892, USA
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesda, MD 20892, USA
| | - Hendrik Lehnert
- 1 Department of Medicine, University Medical Center Schleswig-Holstein, Campus LübeckRatzeburger Allee 160, 23538 Lübeck, Germany
| | - Karel Pacak
- Program on Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD 20892, USA
| |
Collapse
|
50
|
Chang CF, Diers AR, Hogg N. Cancer cell metabolism and the modulating effects of nitric oxide. Free Radic Biol Med 2015; 79:324-36. [PMID: 25464273 PMCID: PMC5275750 DOI: 10.1016/j.freeradbiomed.2014.11.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/31/2014] [Accepted: 11/08/2014] [Indexed: 12/18/2022]
Abstract
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Anne R Diers
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|