1
|
Tanaka KI, Uehara Y, Shimoda M, Funayama R, Shiota S, Yamaguchi A, Sugimoto A, Ichitani M, Kadota Y, Kawakami T, Suzuki S, Kawahara M. Metallothionein, an endogenous antioxidant protein, protects against acute lung injury caused by air pollutants. Biomed Pharmacother 2025; 185:117965. [PMID: 40068487 DOI: 10.1016/j.biopha.2025.117965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025] Open
Abstract
Reducing deaths and diseases due to air pollution is a global challenge enshrined in the Sustainable Development Goals. Currently, there is an urgent need to discover factors that protect the lungs and bronchi, which are the first to be injured and undergo oxidative stress when air pollutants enter the body, and to establish methods to prevent their onset and progression. Metallothionein, a protein present in humans that exerts detoxification and antioxidant effects on toxic metals, has long been known to exert protective effects against liver and kidney diseases. However, no functional analysis of the effects of metallothionein on acute lung injury caused by air pollutants has been reported. Thus, we studied the effect of metallothionein on urban aerosol-dependent acute lung injury using metallothionein knockout (MT-KO) mice and a metallothionein inducer. Most importantly, we found that urban aerosol-dependent acute lung injury was exacerbated in MT-KO mice compared to wild-type (WT) mice. In addition, inflammatory responses and reactive oxygen species production in the lungs were enhanced in MT-KO mice compared to WT mice. Furthermore, we found that the intraperitoneal administration of zinc acetate exerted an antioxidant effect via the induction of metallothionein providing a protective effect against the development of urban aerosol-dependent acute lung injury. These results suggest that the metallothionein protein itself or compounds with metallothionein-inducing action may help prevent acute lung injury caused by air pollutants.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| | - Yui Uehara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| | - Rioko Funayama
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| | - Sachie Shiota
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| | - Akari Yamaguchi
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| | - Akio Sugimoto
- Central Research Institute, ITO EN Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516, Japan.
| | - Masaki Ichitani
- Central Research Institute, ITO EN Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516, Japan.
| | - Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
2
|
López-Almada G, Domínguez-Avila JA, Robles-Sánchez RM, Arauz-Cabrera J, Martínez-Coronilla G, González-Aguilar GA, Salazar-López NJ. Naringenin Decreases Retroperitoneal Adiposity and Improves Metabolic Parameters in a Rat Model of Western Diet-Induced Obesity. Metabolites 2025; 15:109. [PMID: 39997735 PMCID: PMC11857789 DOI: 10.3390/metabo15020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Obesity is a multifactorial disease with detrimental effects on health and quality of life; unregulated satiety plays a crucial role in food intake and obesity development. Naringenin (NAR) has shown beneficial effects on lipid and carbohydrate metabolism, although its impact on adiposity and satiety remains unclear. This study reports a Western diet (WD)-induced obesity model in rats, wherein 100 mg/kg of NAR was administered as an anti-obesity agent for 8 weeks; oxidative stress, lipid profile, and satiety biomarkers were then studied, as well as in silico interaction between NAR and cholecystokinin (CCK) and ghrelin receptors. Results: NAR supplementation resulted in a significant decrease in retroperitoneal adipose tissue and liver weight, as compared to the untreated WD group (p < 0.05), potentially associated with a decreased feed efficiency. NAR also inhibited the development of dyslipidemia, particularly by reducing serum triglycerides (p < 0.05). NAR supplementation increased CCK serum levels in the basal diet group, an effect that was abolished by the WD (p < 0.05); likewise, no changes were determined on ghrelin (p > 0.05). In silico data shows that NAR is capable of interacting with the CCK and ghrelin receptors, which suggests a potential for it to modulate hunger/satiety signaling by interacting with them. Conclusions: We conclude that NAR has anti-obesogenic effects and may regulate CCK serum levels, although further research is still needed.
Collapse
Affiliation(s)
- Gabriela López-Almada
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico; (G.L.-A.)
| | - J. Abraham Domínguez-Avila
- SECIHTI—Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico;
| | - Rosario Maribel Robles-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Col. Centro, Hermosillo 83000, SO, Mexico
| | - Jonathan Arauz-Cabrera
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico; (G.L.-A.)
| | - Gustavo Martínez-Coronilla
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico; (G.L.-A.)
| | - Gustavo A. González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico
| | - Norma Julieta Salazar-López
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico; (G.L.-A.)
| |
Collapse
|
3
|
Xu J, Chen J, Deng J, Chen X, Du R, Yu Z, Gao S, Chen B, Wang Y, Cai X, Duan H, Cai Y, Zheng G. Naringenin inhibits APAP-induced acute liver injury through activating PPARA-dependent signaling pathway. Exp Cell Res 2024; 437:114028. [PMID: 38582338 DOI: 10.1016/j.yexcr.2024.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Acute liver injury (ALI) refers to the damage to the liver cells of patients due to drugs, food, and diseases. In this work, we used a network pharmacology approach to analyze the relevant targets and pathways of the active ingredients in Citri Reticulatae Pericarpium (CRP) for the treatment of ALI and conducted systematic validation through in vivo and in vitro experiments. The network pharmacologic results predicted that naringenin (NIN) was the main active component of CRP in the treatment of ALI. GO functional annotation and KEGG pathway enrichment showed that its mechanism may be related to the regulation of PPARA signaling pathway, PPARG signaling pathway, AKT1 signaling pathway, MAPK3 signaling pathway and other signaling pathways. The results of in vivo experiments showed that (NIN) could reduce the liver lesions, liver adipose lesions, hepatocyte injury and apoptosis in mice with APAP-induced ALI, and reduce the oxidative stress damage of mouse liver cells and the inflammation-related factors to regulate ALI. In vitro experiments showed that NIN could inhibit the proliferation, oxidative stress and inflammation of APAP-induced LO2 cells, promote APAP-induced apoptosis of LO2 cells, and regulate the expression of apoptotic genes in acute liver injury. Further studies showed that NIN inhibited APAP-induced ALI mainly by regulating the PPARA-dependent signaling pathway. In conclusion, this study provides a preliminary theoretical basis for the screening of active compounds in CRP for the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Jiepei Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiamin Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinji Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaojing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rong Du
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiqian Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Guangdong, Jiangmen, 529000, China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Duan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Yuan J, Liu Y, Zhao F, Mu Y, Tian X, Liu H, Zhang K, Zhao J, Wang Y. Hepatic Proteomics Analysis Reveals Attenuated Endoplasmic Reticulum Stress in Lactiplantibacillus plantarum-Treated Oxidatively Stressed Broilers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37486617 DOI: 10.1021/acs.jafc.3c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Endoplasmic reticulum (ER) stress plays important roles in oxidative stress (OS), contributing to liver injury. Lactiplantibacillus plantarum P8 (P8) was reported to regulate broiler OS and the gut microbiota in broilers, but its roles in hepatic ER stress remain unclear. In the present study, the role of P8 in liver OS and ER stress was evaluated, and proteomics was performed to determine the mechanism. Results revealed that P8 treatment decreased liver OS and ER stress in dexamethasone (DEX)-induced oxidatively stressed broilers. Proteomics showed that differentially expressed proteins (DEPs) induced by DEX cover the "cellular response to unfold protein" term. Moreover, the DEPs (GGT5, TXNDC12, and SRM) between DEX- and DEX + P8-treated broilers were related to OS and ER stress and enriched in the glutathione metabolism pathway. RT-qPCR further confirmed the results of proteomics. In conclusion, P8 attenuates hepatic OS and ER stress by regulating GGT5, TXNDC12, SRM, and glutathione metabolism in broilers.
Collapse
Affiliation(s)
- Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Fan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuxin Mu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinyu Tian
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| |
Collapse
|
5
|
Alanazi AZ, Alhazzani K, Alrewily SQ, Aljerian K, Algahtani MM, Alqahtani QH, Haspula D, Alhamed AS, Alqinyah M, Raish M. The Potential Protective Role of Naringenin against Dasatinib-Induced Hepatotoxicity. Pharmaceuticals (Basel) 2023; 16:921. [PMID: 37513833 PMCID: PMC10383559 DOI: 10.3390/ph16070921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Dasatinib (DASA) is a novel tyrosine kinase inhibitor, approved for leukemia treatment. However, the long-term use of DASA induces several complications, especially liver damage. On the other hand, Naringenin (NGN) is a potent antioxidant and anti-inflammatory agent which is known to exert protective effects in several liver disease animal models. Yet, the effect of NGN on DASA-induced hepatotoxicity has not been examined. This study investigated the hepatoprotective effects of NGN against DASA-induced acute liver injury, using a mouse model. The mice were given NGN (50, 100, and 200 mg/kg po) or saline for 7 days, followed by DASA on the eighth day (25 mg/kg p.o.). DASA treatment alone was found to cause overexpression of proinflammatory cytokines, such as interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), and malonyl aldehyde (MDA), whereas attenuation of antioxidant genes including superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). Interestingly, a pretreatment with NGN + DASA resulted in minimizing the proinflammatory mediators and restoring the levels of antioxidant genes. In addition, there was evidence of necro-inflammatory changes in histopathological findings in the liver samples after DASA administration which remarkably reduced with NGN + DASA. Thus, this study revealed that NGN could minimize the hepatotoxicity induced by DASA by providing anti-inflammatory and antioxidant protection.
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Salah Q Alrewily
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Qamraa H Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
6
|
Wang Y, Guo Y, Liu H, Du X, Shi L, Wang W, Zhang S. Hawthorn fruit extract protect against MC-LR-induced hepatotoxicity by attenuating oxidative stress and apoptosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1239-1250. [PMID: 36880395 DOI: 10.1002/tox.23760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Microcystins (MCs) is a class of cyclic heptapeptide compounds with biological activity. There is no effective treatment for liver injury caused by MCs. Hawthorn is a medicinal and edible plant traditional Chinese medicine with hypolipidemic, reducing inflammation and oxidative stress in the liver. This study discussed the protective effect of hawthorn fruit extract (HFE) on liver damage caused by MC-LR and the underlying molecular mechanism. After MC-LR exposure, pathological changes were observed and hepatic activity of ALT, AST and ALP were increased obviously, but they were remarkably restored with HFE administration. In addition, MC-LR could significantly reduce SOD activity and increase MDA content. Importantly, MC-LR treatment resulted in mitochondrial membrane potential decreased, and Cytochrome C release, eventually leading to cell apoptosis rate increase. HFE pretreatment could significantly alleviate the above abnormal phenomena. To examine the mechanism of protection, the expression of critical molecules in the mitochondrial apoptosis pathway was examined. The levels of Bcl-2 was inhibited, and the levels of Bax, Caspase-9, Cleaved Caspase-9, and Cleaved caspase-3 were upregulated after MC-LR treatment. HFE reduced MC-LR-induced apoptosis via reversing the expression of key proteins and genes in the mitochondrial apoptotic pathway. Hence, HFE could alleviate MC-LR induced hepatotoxicity by reducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjun Wang
- College of Nursing, Jining Medical University, Jining, Shandong, China
| | - Shenshen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Mansour LAH, Elshopakey GE, Abdelhamid FM, Albukhari TA, Almehmadi SJ, Refaat B, El-Boshy M, Risha EF. Hepatoprotective and Neuroprotective Effects of Naringenin against Lead-Induced Oxidative Stress, Inflammation, and Apoptosis in Rats. Biomedicines 2023; 11:biomedicines11041080. [PMID: 37189698 DOI: 10.3390/biomedicines11041080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Naringenin (NRG) is one of the most important naturally occurring flavonoids, predominantly found in some edible fruits, such as citrus species and tomatoes. It has several biological activities, such as antioxidant, antitumor, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The heavy metal lead is toxic and triggers oxidative stress, which causes toxicity in many organs, including the liver and brain. This study explored the potential protective role of NRG in hepato- and neurotoxicity caused by lead acetate in rats. Four groups of ten male albino rats were included: group 1 was a control, group 2 was orally treated with lead acetate (LA) at a dose of 500 mg/kg BW, group 3 was treated with naringenin (NRG) at a dose of 50 mg/kg BW, and group 4 was treated with 500 mg/kg LA and 50 mg/kg NRG for 4 weeks. Then, blood was taken, the rats were euthanized, and liver and brain tissues were collected. The findings revealed that LA exposure induced hepatotoxicity with a significant increase in liver function markers (p < 0.05). In addition, albumin and total protein (TP) and the albumin/globulin ratio (A/G ratio) (p < 0.05) were markedly lowered, whereas the serum globulin level (p > 0.05) was unaltered. LA also induced oxidative damage, demonstrated by a significant increase in malonaldehyde (MDA) (p < 0.05), together with a pronounced antioxidant system reduction (SOD, CAT, and GSH) (p < 0.05) in both liver and brain tissues. Inflammation of the liver and brain caused by LA was indicated by increased levels of nuclear factor kappa beta (NF-κβ) and caspase-3, (p < 0.05), and the levels of B-cell lymphocyte-2 (BCL-2) and interleukin-10 (IL-10) (p < 0.05) were decreased. Brain tissue damage induced by LA toxicity was demonstrated by the downregulation of the neurotransmitters norepinephrine (NE), dopamine (DA), serotonin (5-HT), and creatine kinase (CK-BB) (p < 0.05). Additionally, the liver and brain of LA-treated rats displayed notable histopathological damage. In conclusion, NRG has potential hepato- and neuroprotective effects against lead acetate toxicity. However, additional research is needed in order to propose naringenin as a potential protective agent against renal and cardiac toxicity mediated by lead acetate.
Collapse
Affiliation(s)
- Lubna A. H. Mansour
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Fatma M. Abdelhamid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Talat A. Albukhari
- Department of Immunology and Hematology, Faculty of Medicine, Umm Al-Qura University, Makkah P.O. Box 6165, Saudi Arabia
| | - Samah J. Almehmadi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Mohamed El-Boshy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Engy F. Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
8
|
de Oliveira PV, Sanaiotto O, Kuhn KZ, Oltramari A, Bortoluzzi AJ, Lanza M, Aguiar GPS, Siebel AM, Müller LG, Oliveira JV. Micronization of naringenin in supercritical fluid medium: In vitro and in vivo assays. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Chilvery S, Yelne A, Khurana A, Saifi MA, Bansod S, Anchi P, Godugu C. Acetaminophen induced hepatotoxicity: An overview of the promising protective effects of natural products and herbal formulations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154510. [PMID: 36332383 DOI: 10.1016/j.phymed.2022.154510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The liver plays an important role in regulating the metabolic processes and is the most frequently targeted organ by toxic chemicals. Acetaminophen (APAP) is a well-known anti-allergic, anti-pyretic, non-steroidal anti-inflammatory drug (NSAID), which upon overdose leads to hepatotoxicity, the major adverse event of this over-the-counter drug. PURPOSE APAP overdose induced acute liver injury is the second most common cause that often requires liver transplantation worldwide, for which N-acetyl cysteine is the only synthetic drug clinically approved as an antidote. So, it was felt that there is a need for the novel therapeutic approach for the treatment of liver diseases with less adverse effects. This review provides detailed analysis of the different plant extracts; phytochemicals and herbal formulations for the amelioration of APAP-induced liver injury. METHOD The data was collected using different online resources including PubMed, ScienceDirect, Google Scholar, Springer, and Web of Science using keywords given below. RESULTS Over the past decades various reports have revealed that plant-based approaches may be a better treatment choice for the APAP-induced hepatotoxicity in pre-clinical experimental conditions. Moreover, herbal compounds provide several advantages over the synthetic drugs with fewer side effects, easy availability and less cost for the treatment of life-threatening diseases. CONCLUSION The current review summarizes the hepatoprotective effects and therapeutic mechanisms of various plant extracts, active phytoconstituents and herbal formulations with potential application against APAP induced hepatotoxicity as the numbers of hepatoprotective natural products are more without clinical relativity. Further, pre-clinical pharmacological research will contribute to the designing of natural products as medicines with encouraging prospects for clinical application.
Collapse
Affiliation(s)
- Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Yelne
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Exacerbation of Elastase-Induced Emphysema via Increased Oxidative Stress in Metallothionein-Knockout Mice. Biomolecules 2022; 12:biom12040583. [PMID: 35454172 PMCID: PMC9030156 DOI: 10.3390/biom12040583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Although the pathogenesis of chronic obstructive pulmonary disease (COPD) is not yet fully understood, recent studies suggest that the disruption of the intracellular balance of oxidative (such as reactive oxygen species (ROS)) and antioxidant molecules plays an important role in COPD development and progression. Metallothionein is an endogenous metal-binding protein with reported ROS scavenging activity. Although there have been many publications on the protective effects of metallothionein in the kidney and liver, its role in COPD models such as elastase- or cigarette smoke (CS)-induced lung injury is unknown. Thus, in the present study, we analyzed the elastase-induced lung injury model using metallothionein-knockout (MT-KO; MT-1 and -2 gene deletion) mice. The expression of MT-1 and MT-2 in the lungs of MT-KO mice was markedly lower compared with that in the lungs of wildtype (WT) mice. Porcine pancreatic elastase (PPE)-induced lung injury (alveolar enlargement and respiratory impairment) was significantly exacerbated in MT-KO mice compared with WT mice. Additionally, PPE-induced increases in the number of inflammatory cells, inflammatory cytokines, and cell death in lung tissue were significantly more pronounced in MT-KO mice compared with WT mice. Finally, using an in vivo imaging system, we also found that PPE-induced ROS production in the lungs was enhanced in MT-KO mice compared with WT mice. These results suggest that metallothionein may act as an inhibitor against elastase-induced lung injury by suppressing ROS production. These results suggest that metallothionein protein, or compounds that can induce metallothionein, could be useful in the treatment of COPD.
Collapse
|
11
|
Das R, Mitra S, Tareq AM, Emran TB, Hossain MJ, Alqahtani AM, Alghazwani Y, Dhama K, Simal-Gandara J. Medicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114588. [PMID: 34480997 DOI: 10.1016/j.jep.2021.114588] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver disease is a major cause of illness and death worldwide which accounts for approximately 2 million deaths per year worldwide, 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and hepatocellular carcinoma. That's why it is seeking the researchers' attention to find out the effective treatment strategies. Phytochemicals from natural resources are the main leads for the development of noble hepatoprotective drugs. The majority of the natural sources whose active compounds are currently employed actually have an ethnomedical use. Ethnopharmacological research is essential for the development of these bioactive compounds. These studies not only provide scientific evidence on medicinal plants utilized for particular therapeutic purposes, but they also ensure cultural heritage preservation. Plenty of experimental studies have been well-documented that the ethnomedicinal plants are of therapeutics' interest for the advanced pharmacological intervention in terms of hepatic disorders. AIM OF THE STUDY This study summarizes the processes of hepatotoxicity induced by various toxins and explores identified hepatoprotective plants and their phytoconstituents, which can guide the extraction of novel phytochemical constituents from plants to treat liver injury. This review aimed to summarize the hepatoprotective activity of Bangladeshi medicinal plants where the bioactive compounds may be leads for the drug discovery in future. MATERIALS AND METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, SpringerLink, PubMed, Google Scholar, Semantic Scholar, Scopus, BanglaJOL, and so on, were performed using the keywords 'Bangladesh', 'ethnomedicinal plants', 'Hepatoprotective agents' as for primary searches, and secondary search terms were used as follows, either alone or in combination: traditional medicine, medicinal plants, folk medicine, liver, hepatitis, therapeutic uses, and anti-inflammatory. Besides, several books, including the book entitled "Medicinal plants of Bangladesh: chemical constituents and uses" authored by Abdul Ghani, were carefully considered, which contained pharmacological properties and phytoconstituents of many medicinal plants growing and traditionally available in Bangladesh. Among them, the most promising plant species with their latest therapeutic effects against hepatic disorders were deeply considered in this review. RESULTS The results of this study revealed that in most cases, therapy using plant extracts stabilized altered hepatic biochemical markers induced by hepatotoxins. Initially, we investigated 32 plant species for hepatoprotective activity, however after extensive literature searching; we observed that 20 plants offer good pharmacological evidence of hepatoprotective function. Consequently, most bioactive compounds derived from the herbs including berberine, thymoquinone, andrographolide, ursolic acid, luteolin, naringenin, genistein, quercetin, troxerutin, morin, epigallocatechin-3-gallate, chlorogenic acid, emodin, curcumin, resveratrol, capsaicin, ellagic acid, etc. are appeared to be effective against hepatic disorders. CONCLUSIONS Flavonoids, phenolic acids, monoterpenoids, diterpenoids, triterpenoids, alkaloids, chromenes, capsaicinoids, curcuminoids, and anthraquinones are among the phytoconstituents were appraised to have hepatoprotective activities. All the actions displayed by these ethnomedicinal plants could make them serve as leads in the formulation of drugs with higher efficacy to treat hepatic disorders.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareil-ly, 243122, Uttar Pradesh, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004, Ourense, Spain.
| |
Collapse
|
12
|
Yu XF, Zhou ZL, Lu XD, Long SQ. Hepatoprotective effect of naringenin in rats with alcoholic liver disease. Shijie Huaren Xiaohua Zazhi 2021; 29:1334-1340. [DOI: 10.11569/wcjd.v29.i23.1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have shown that naringenin (Nar) can play a protective role in animal models with acute liver injury, but its role in alcoholic liver disease (ALD) remains unclear.
AIM To explore the effect of Nar on ALD rats and the possible mechanism involved.
METHODS Forty Sprague-Dawley rats were randomly divided into a control group, model group, low-dose Nar group, and high-dose Nar group, with 10 rats in each group. A rat model of ALD was generated by alcohol induction. Blood samples and liver tissues were collected at the end of the regimen. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were determined with an automatic biochemical analyzer. The morphology of the liver was observed by HE staining. Glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities, malondialdehyde (MDA) content, and reactive oxygen species (ROS) production level in the liver were determined with commercial kits. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in liver tissues were detected by immunohistochemical staining. The expression levels of Nrf-2, HO-1, and p-NF-κB P65 in liver tissues were detected by Western blot.
RESULTS Compared with the model group, the levels of AST and AST in serum of rats in the low- and high-dose Nar groups were significantly decreased, the activities of SOD and GPx and the expression levels of Nrf-2 and HO-1 in liver tissue were significantly increased, and MDA content, ROS level, and TNF-α, IL-6, and p-NF-κB P65 expression levels were significantly decreased, especially in the high-dose group.
CONCLUSION Nar can alleviate liver injury in ALD rats, and this effect may be related to the reduction of oxidative stress and inflammatory response in liver tissue.
Collapse
Affiliation(s)
- Xiu-Feng Yu
- Zhejiang Chinese Medical University, Hangzhou 310051, Zhejiang Province, China,Department of Emergency Medicine, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Zeng-Li Zhou
- Department of Gastroenterology, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Xu-Dong Lu
- Department of Emergency Medicine, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Si-Qin Long
- Department of Infectious Diseases, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
13
|
BinMowyna MN, AlFaris NA. Kaempferol suppresses acetaminophen-induced liver damage by upregulation/activation of SIRT1. PHARMACEUTICAL BIOLOGY 2021; 59:146-156. [PMID: 33556299 PMCID: PMC8871688 DOI: 10.1080/13880209.2021.1877734] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT Kaempferol, a flavonoid glycoside, has many hepatoprotective effects in several animals due to its antioxidant potential. OBJECTIVE This study evaluated the hepatoprotective effect of kaempferol against acetaminophen (APAP)-induced liver damage and examined whether the protection involved modulation of silent information regulator 1 (SIRT1) signalling. MATERIALS AND METHODS Adult male Wistar rats were classified into four groups (n = 8) and treated as follows: control + normal saline (vehicle), control + kaempferol (250 mg/kg), APAP (800 mg/kg, a single dose) and APAP + kaempferol. Kaempferol was administered for the first seven days followed by administration of APAP. The study was ended 24 h after APAP administration. RESULTS At the histological level, kaempferol reduced liver damage in APAP-treated rats. It also reduced the hepatic levels of TNF-α (66.3%), IL-6 (38.6%) and protein levels of caspase-3 (88.2%), and attenuated the increase in circulatory serum levels of ALT (47.6%), AST (55.8%) and γ-GT (35.2%) in APAP-treated rats. In both the controls and APAP-treated rats, kaempferol significantly increased the hepatic levels of glutathione (GSH) and superoxide dismutase, suppressed MDA and reactive oxygen species (ROS) levels, increased protein levels of Bcl-2 and downregulated protein levels of Bax and cleaved Bax. Concomitantly, it reduced the expression of CYP2E1, and the activity and protein levels of SIRT1. Consequently, it decreased the acetylation of all SIRT1 targets including PARP1, p53, NF-κB, FOXO-1 and p53 that mediate antioxidant, anti-inflammatory and anti-apoptotic effects. DISCUSSION AND CONCLUSIONS This study encourages the use of kaempferol in further clinical trials to treat APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
| | - Nora Abdullah AlFaris
- Department of Physical Sport Science, Nutrition and Food Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- CONTACT Nora Abdullah AlFaris P.O. Box 84428, Riyadh11671, Saudi Arabia
| |
Collapse
|
14
|
Naraki K, Rezaee R, Karimi G. A review on the protective effects of naringenin against natural and chemical toxic agents. Phytother Res 2021; 35:4075-4091. [PMID: 33724584 DOI: 10.1002/ptr.7071] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
Naringenin (NRG), as a flavanone from flavonoids family, is widely found in grapefruit, lemon tomato, and Citrus fruits. NRG has shown strong anti-inflammatory and antioxidant activities in body organs via mechanisms such as enhancement of glutathione S-transferase (GST), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activity, but reduction of serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and malondialdehyde (MDA). Furthermore, NRG anti-apoptotic potential was indicated to be mediated by regulating B-cell lymphoma (Bcl-2), Bcl-2-associated X protein (Bax) and caspase3/9. Overall, these properties make NRG a highly fascinating compound with beneficial pharmacological effects. Based on the literature, NRG-induced protective effects against toxicities produced by natural toxins, pharmaceuticals, heavy metals, and environmental chemicals, were mainly mediated via suppression of lipid peroxidation, oxidative stress (through boosting the antioxidant arsenal), and inflammatory factors (e.g., TNF-α, interleukin [IL]-6, IL-10, and IL-12), and activation of PI3K/Akt and MAPK survival signaling pathways. Despite considerable body of evidence on protective properties of NRG against a variety of toxic compounds, more well-designed experimental studies and particularly, clinical trials are required before reaching a concrete conclusion. The present review discusses how NRG protects against the above-noted toxic compounds.
Collapse
Affiliation(s)
- Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Meng M, Zhang R, Han R, Kong Y, Wang R, Hou L. The polysaccharides from the Grifola frondosa fruiting body prevent lipopolysaccharide/d-galactosamine-induced acute liver injury via the miR-122-Nrf2/ARE pathways. Food Funct 2021; 12:1973-1982. [DOI: 10.1039/d0fo03327h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The polysaccharides from Grifola frondosa fruiting body can be used as a potential hepatoprotective agent in the treatment of acute liver injury.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Rui Zhang
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Yu Kong
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Ruhua Wang
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Lihua Hou
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| |
Collapse
|
16
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
17
|
Flavonoids from Aurantii Fructus Immaturus and Aurantii Fructus: promising phytomedicines for the treatment of liver diseases. Chin Med 2020; 15:89. [PMID: 32863858 PMCID: PMC7449045 DOI: 10.1186/s13020-020-00371-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background Liver diseases and related complications are major sources of morbidity and mortality, which places a huge financial burden on patients and lead to nonnegligible social problems. Therefore, the discovery of novel therapeutic drugs for the treatment of liver diseases is urgently required. Aurantii Fructus Immaturus (AFI) and Aurantii Fructus (AF) are frequently used herbal medicines in traditional Chinese medicine (TCM) formulas for the treatment of diverse ailments. A variety of bioactive ingredients have been isolated and identified from AFI and AF, including alkaloids, flavonoids, coumarins and volatile oils. Main body Emerging evidence suggests that flavonoids, especially hesperidin (HD), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangeretin (TN), hesperetin (HT) and eriodictyol (ED) are major representative bioactive ingredients that alleviate diseases through multi-targeting mechanisms, including anti-oxidative stress, anti-cytotoxicity, anti-inflammation, anti-fibrosis and anti-tumor mechanisms. In the current review, we summarize the recent progress in the research of hepatoprotective effects of HD, NIN, NOB, NRG, TN, HT and ED and highlight the potential underlying molecular mechanisms. We also point out the limitations of the current studies and shed light on further in-depth pharmacological and pharmacokinetic studies of these bioactive flavonoids. Conclusion This review outlines the recent advances in the literature and highlights the potential of these flavonoids isolated from AFI and AF as therapeutic agents for the treatment of liver diseases. Further pharmacological studies will accelerate the development of natural products in AFI and AF and their derivatives as medicines with tantalizing prospects in the clinical application.
Collapse
|
18
|
Xiong J, Ni J, Chen C, Wang K. miR‑148a‑3p regulates alcoholic liver fibrosis through targeting ERBB3. Int J Mol Med 2020; 46:1003-1012. [PMID: 32582976 PMCID: PMC7387083 DOI: 10.3892/ijmm.2020.4655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease greatly affects human health. Previous studies have identified that microRNAs (miRNAs) are associated with the pathogenesis of alcoholic liver fibrosis (ALF). Therefore, the present study explored the regulatory mechanism of miR-148a-3p in ALF. An ALF model was established in rats by alcohol gavage, followed by treatment with miR-148a-3p. Reverse transcription-quantitative (RT-q) PCR was performed to detect miR-148a-3p expression in the rat liver tissues. The levels of lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) were determined by enzyme-labeled colorimetry. Liver damage was evaluated by liver indices and histology. The direct target gene of miR-148a-3p was predicted by a dual luciferase reporter assay. The effects of miR-148a-3p and miR-148a-3p in combination with receptor tyrosine-protein kinase erbB-3 (ERBB3) on HSC-T6 cell viability and apoptosis were detected by MTT and flow cytometry assays, respectively. Western blotting and RT-qPCR assays were performed to detect the expression levels of proteins and mRNA associated with fibrosis and apoptosis. The data showed that miR-148a-3p mimics inhibited the expression levels of AST, ALT, ALP, LDH, α-SMA and type I collagen in the model, decreased the liver indices, and improved the liver damage caused by alcohol. ERBB3, which was predicted as the direct target gene of miR-148a-3p, reversed the effects of ERBB3 on promoting cell viability and inhibiting apoptosis. Concomitantly, miR-148a-3p reversed the increased expression of Bcl-2 and inhibited the expression levels of Bax and c-cleaved-3 caused by ERBB3. These data suggested that miR-148a-3p regulated ALF and the viability and apoptosis of hepatic stellate cells through targeting ERBB3.
Collapse
Affiliation(s)
- Jie Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jianbo Ni
- Department of Gastroenterology and Hepatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Congying Chen
- Department of Gastroenterology and Hepatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Kezhou Wang
- Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
19
|
Kimura K, Nakano Y, Sugizaki T, Shimoda M, Kobayashi N, Kawahara M, Tanaka KI. Protective effect of polaprezinc on cadmium-induced injury of lung epithelium. Metallomics 2020; 11:1310-1320. [PMID: 31236550 DOI: 10.1039/c9mt00060g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cadmium is a toxic metal contained in food, water and the atmosphere, and exposure to cadmium can cause respiratory diseases in humans. Various health problems caused by cadmium result from oxidative stress-dependent cellular injury. Metallothioneins are intracellular, cysteine-rich, metal-binding proteins that have a detoxifying action on heavy metals such as cadmium in various organs. In addition, expression of metallothioneins is induced by metals with low biological toxicity, such as zinc. Therefore, in this study we examined whether polaprezinc, a chelate compound consisting of carnosine and zinc, can suppress cadmium-induced lung epithelial cell death. We found that cell viability markers (intracellular ATP levels and mitochondrial activity) and cytotoxicity (lactate dehydrogenase release) were decreased and increased, respectively by cadmium treatment; however, polaprezinc significantly reversed these changes. Moreover, cadmium-dependent endoplasmic reticulum stress responses were suppressed by polaprezinc treatment. We then examined the protective mechanisms of polaprezinc, focusing on oxidative stress. Cadmium induced the production of reactive oxygen species (ROS) in A549 cells in a dose-dependent manner and polaprezinc significantly suppressed this cadmium-induced ROS production. Finally, we examined whether polaprezinc exerts an antioxidative action by inducing metallothioneins. We found that polaprezinc dose-dependently induced metallothioneins using real-time RT-PCR, ELISA, and western blotting analyses. These results indicate that polaprezinc can suppress cadmium-induced lung epithelial cell death and oxidative stress by inducing metallothioneins. We therefore suggest that polaprezinc may have therapeutic effects against respiratory diseases, such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Kazuma Kimura
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Yukari Nakano
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Toshifumi Sugizaki
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Mikako Shimoda
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Nahoko Kobayashi
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
20
|
Jiang X, Li A, Wang Y, Iqbal M, Waqas M, Yang H, Li Z, Mehmood K, Qamar H, Li J. Ameliorative effect of naringin against thiram-induced tibial dyschondroplasia in broiler chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11337-11348. [PMID: 31960246 DOI: 10.1007/s11356-020-07732-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
Tetramethyl thiuram disulfide (thiram) is widely used in agricultural production as an insecticide and fungicide, which can also lead to tibial dyschondroplasia (TD) in poultry. TD is characterized by leg disorders and growth performance retardation, and no targeted drugs have been found to treat TD until now. Therefore, the objective of the present study was to explore the ameliorative effect of traditional Chinese medicine naringin on thiram-induced TD chickens. A total of 180 one-day-old Arbor Acres (AA) broiler chickens were randomly divided into three equal groups (n = 60): control group (standard diet), thiram-induced group (thiram 50 mg/kg from day 3 to day 7), and naringin-treated group (naringin 30 mg/kg from day 8 to day 18). During the 18-day experiment, the growth performance, tibial bone parameters, antioxidant property of liver, serum biochemical changes and clinical symptoms were recorded to evaluate the protective effect of naringin in thiram-induced TD broiler chickens. Additionally, mRNA expressions and protein levels of Ihh and PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. Administration of naringin showed significant results by alleviating lameness, increased growth performance, recuperated growth plate (GP) width, and improved functions and antioxidant enzyme level of liver in broilers affected by TD. Moreover, naringin treatment restored the development of damaged tibia bone via downregulating Ihh and upregulating PTHrP mRNA and protein expressions. In conclusion, our study determines naringin could be used as an effective medicine to treat TD.
Collapse
Affiliation(s)
- Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Three Gorges Polytechnic, Yichang, 443000, Hubei province, People's Republic of China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Faculty of Veterinary & Animal Sciences, University of the Poonch, District Poonch, Rawalakot, Azad Jammu & Kashmir, 12350, Pakistan
| | - Hao Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhixing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, Tibet, People's Republic of China.
| |
Collapse
|
21
|
Nguyen-Ngo C, Willcox JC, Lappas M. Anti-Diabetic, Anti-Inflammatory, and Anti-Oxidant Effects of Naringenin in an In Vitro Human Model and an In Vivo Murine Model of Gestational Diabetes Mellitus. Mol Nutr Food Res 2019; 63:e1900224. [PMID: 31343820 DOI: 10.1002/mnfr.201900224] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/25/2019] [Indexed: 11/11/2022]
Abstract
SCOPE Gestational diabetes mellitus (GDM), which affects up to 20% of pregnant women, is associated with maternal peripheral insulin resistance, low-grade inflammation, and oxidative stress. The flavonoid naringenin has potent anti-diabetic, anti-inflammatory, and anti-oxidative properties; however, its effects in GDM remain unknown. The study aimed to determine the effects of naringenin on glucose metabolism, inflammation, and oxidative stress associated with GDM both in vitro and in vivo. METHODS AND RESULTS In vitro, human tissue samples obtained at term elective Caesarean section are stimulated with tumour necrosis factor alpha (TNF) to develop a GDM-like environment. Naringenin treatment significantly improves TNF-impaired glucose uptake in skeletal muscle. In placenta and visceral adipose tissue (VAT), naringenin significantly reduces expression of pro-inflammatory cytokines and chemokines and increases antioxidant mRNA expression. Mechanistically, naringenin suppresses nuclear factor κB activation. In vivo, pregnant heterozygous db/+ mice are used to model GDM. Daily intraperitoneal injections of GDM mice with naringenin from gestational day 10-17 significantly improve glucose tolerance, reduces IL1A mRNA expression, and increases antioxidant mRNA expression in placenta, VAT, and subcutaneous adipose tissue. CONCLUSION Naringenin is shown to improve insulin sensitivity, inflammation, and oxidative stress associated with GDM and shows promise as a novel preventive therapeutic.
Collapse
Affiliation(s)
- Caitlyn Nguyen-Ngo
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, 3084, Victoria, Australia
| | - Jane C Willcox
- School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, 3084, Victoria, Australia
| |
Collapse
|
22
|
Preventive Effect of Blueberry Extract on Liver Injury Induced by Carbon Tetrachloride in Mice. Foods 2019; 8:foods8020048. [PMID: 30717106 PMCID: PMC6406748 DOI: 10.3390/foods8020048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022] Open
Abstract
The blueberry is a common fruit that is rich in nutritional value and polyphenol substances. In this study, the blueberry polyphenol content in extract was analysed by spectrophotometry. The results showed that the blueberry polyphenol content in the extract reached 52.7%. A mouse model of liver injury induced by carbon tetrachloride (CCl4) was established to study the preventive effect of blueberry extract (BE) on liver injury in mice and the experimental animals were examined using biochemical and molecular biological methods. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are important clinical liver function indicators; the changes of triglyceride (TG) and total cholesterol (TC) are observed after liver injury; interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) are important inflammatory indexes; superoxide dismutase (SOD) activity and thiobarbituric acid reactive substances (TBARS) are important changes of oxidative stress indexes. The in vivo animal experiment results showed that BE decreased the liver index of mice with liver injury, BE could reduce the AST, ALT, TG and TC levels and also could reduce the serum cytokine IL-6, TNF-α and IFN-γ levels in mice with liver injury. Moreover, BE increased the SOD activity and decreased the TBARS level in the gastric tissues of mice with liver injury. After treatment with the highest concentration of BP in liver injury mice, these levels returned close to those obtained after treatment with the standard drug of silymarin. Detection of messenger RNA (mRNA) in liver tissue showed that BE upregulated the Cu/Zn-SOD, Mn-SOD and chloramphenicol acetyltransferase (CAT) expression levels and downregulated cyclooxygenase (COX)-2 expression. The effect of BE on mice with liver injury was positively correlated with the BE concentration and was similar to that of silymarin, which is a drug for liver injury, suggesting that BE had a good preventive effect on liver injury. Thus, BE rich in polyphenols is a bioactive substance with value for development and utilization.
Collapse
|
23
|
Li M, Wang S, Li X, Kou R, Wang Q, Wang X, Zhao N, Zeng T, Xie K. Diallyl sulfide treatment protects against acetaminophen-/carbon tetrachloride-induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice. Toxicol Res (Camb) 2019; 8:67-76. [PMID: 30713662 PMCID: PMC6334500 DOI: 10.1039/c8tx00185e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
The purpose of the present study was to investigate the effects and underlying mechanisms of diallyl sulfide (DAS), an organosulfur compound extracted from garlic, on drug-induced or chemical-induced liver injury caused by acetaminophen (APAP) or carbon tetrachloride (CCl4) in mice. DAS (100, 200, or 400 μmol kg-1) was orally administered 1 hour before APAP or CCl4 intraperitoneal injection, and the serum and liver tissue were collected 24 hours after APAP or CCl4 exposure. The serum aminotransferase activities and liver histopathological examination showed that DAS exhibited obvious hepatoprotective effects against acute liver injury induced by APAP or CCl4. In addition, exposure to APAP or CCl4 resulted in an increased content of malonaldehyde as well as a decreased ratio of reduced to oxidized glutathione, and a decreased level of superoxide dismutase and catalase activity in the liver (p < 0.05); however, pretreatment with DAS restored the perturbations of the antioxidant system in the liver. Beyond that, DAS pretreatment reduced the APAP-/CCl4-induced increase in phosphorylation of inhibitor of kappa B alpha (IκBα) and p65 subunit of nuclear factor kappa B (NF-κB) expression in the cytoplasm and nucleus in the liver. DAS pretreatment also decreased the excessive level of TNF-α caused by APAP or CCl4 in serum (p < 0.05). Moreover, DAS pretreatment regulated the expression of cleaved caspase 3, Bax and Bcl-2 in the liver and suppressed APAP-/CCl4-induced hepatocyte apoptosis. In conclusion, DAS exhibits hepatoprotective effects against drug-induced and chemical-induced liver injuries induced by APAP or CCl4 in mice, probably due to its ability to reduce hepatic oxidative stress and inhibit inflammatory injury and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Ming Li
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Shuo Wang
- School of Pharmaceutical , Liaocheng University , Liaocheng , Shandong Province 252000 , China
| | - Xianjie Li
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Ruirui Kou
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Qiong Wang
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Xujing Wang
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Ning Zhao
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Tao Zeng
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| | - Keqin Xie
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong Province 250012 , China .
| |
Collapse
|
24
|
Subramanya SB, Venkataraman B, Meeran MFN, Goyal SN, Patil CR, Ojha S. Therapeutic Potential of Plants and Plant Derived Phytochemicals against Acetaminophen-Induced Liver Injury. Int J Mol Sci 2018; 19:ijms19123776. [PMID: 30486484 PMCID: PMC6321362 DOI: 10.3390/ijms19123776] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/02/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Acetaminophen (APAP), which is also known as paracetamol or N-acetyl-p-aminophenol is a safe and potent drug for fever, pain and inflammation when used at its normal therapeutic doses. It is available as over-the-counter drug and used by all the age groups. The overdose results in acute liver failure that often requires liver transplantation. Current clinical therapy for APAP-induced liver toxicity is the administration of N-acetyl-cysteine (NAC), a sulphydryl compound an approved drug which acts by replenishing cellular glutathione (GSH) stores in the liver. Over the past five decades, several studies indicate that the safety and efficacy of herbal extracts or plant derived compounds that are used either as monotherapy or as an adjunct therapy along with conventional medicines for hepatotoxicity have shown favorable responses. Phytochemicals mitigate necrotic cell death and protect against APAP-induced liver toxicityby restoring cellular antioxidant defense system, limiting oxidative stress and subsequently protecting mitochondrial dysfunction and inflammation. Recent experimental evidences indicat that these phytochemicals also regulate differential gene expression to modulate various cellular pathways that are implicated in cellular protection. Therefore, in this review, we highlight the role of the phytochemicals, which are shown to be efficacious in clinically relevant APAP-induced hepatotoxicity experimental models. In this review, we have made comprehensive attempt to delineate the molecular mechanism and the cellular targets that are modulated by the phytochemicals to mediate the cytoprotective effect against APAP-induced hepatotoxicity. In this review, we have also defined the challenges and scope of phytochemicals to be developed as drugs to target APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sandeep B Subramanya
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Sameer N Goyal
- Department of Pharmacology, SVKM's Institute of Pharmacy, Dhule, Maharashtra 424 001, India.
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| |
Collapse
|
25
|
Ruyani A, Sinta BD, Emilia, Zulfikar, Anansyah F, Putri SR, Sundaryono A. Preliminary studies on therapeutic effect of ethanolic extract of Tylophora villosa leaves against paracetamol-induced hepatotoxicity in mice. J Tradit Complement Med 2018; 9:285-296. [PMID: 31453124 PMCID: PMC6702138 DOI: 10.1016/j.jtcme.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/27/2017] [Accepted: 08/07/2017] [Indexed: 12/26/2022] Open
Abstract
This study intended to investigate the therapeutic effect of ethanolic extract of Tylophora villosa leaves (E2TL) against paracetamol (PC)-induced hepatotoxicity (PCIH) in mice (Mus musculus). PCIH were generated using daily 250 mg/kg body weight (bw) PC administration by gavage for seven days, and then daily 27.5; 55.0; 82.5; 110.0; or 220.0 mg/kg bw E2TL were treated by gavage for seven or fourteen days. Meanwhile, the controls were given solvent only in the same manner. Mortality, blood glucose, and condition (color, weight, volume) of the livers were observed on day 15 (D15). Serum glutamate pyruvate transaminase (SGPT) and serum glutamate oxaloacetate transaminase (SG0T) were examined on D15, D22, and D30, and then malondialdehyde (MDA) was determined on D15. Results of this study revealed that on D15, the dosage of 110.0 mg/kg bw E2TL most effectively decreased MDA due to PCIH, from 6.78 ± 1.70 μmol/L to 3.45 ± 0.43 μmol/L, approaching the control condition (2.45 ± 0.05 μmol/L). PC administration was really toxic dosage and caused 13.3 % mortality. Blood glucose, weight, and volume of the liver decreased as the effect of PC administration, and then 220.0 mg/kg bw E2TL treatment could recover the condition as well as the controls. Color of the liver indicated a similar recovery by E2TL treatment. SGPT and SG0T increased significantly by PC administration, and this PCIH facts could be recovered gradually near the controls according to the dosages (55.0; 110.0; or 220.0 mg/kg bw) and duration (seven or fourteen days) of E2TL treatment. It could be concluded that E2TL showed therapeutic effect against PCIH in M. musculus.
Collapse
Affiliation(s)
- Aceng Ruyani
- Department of Biology Education, Bengkulu University, Jalan Raya Kandang Limun, Bengkulu 38371, Indonesia.,Graduate School of Science Education, Bengkulu University, Jalan Raya Kandang Limun, Bengkulu 38371, Indonesia
| | - Barbara Desbi Sinta
- Graduate School of Science Education, Bengkulu University, Jalan Raya Kandang Limun, Bengkulu 38371, Indonesia
| | - Emilia
- Graduate School of Science Education, Bengkulu University, Jalan Raya Kandang Limun, Bengkulu 38371, Indonesia
| | - Zulfikar
- Graduate School of Science Education, Bengkulu University, Jalan Raya Kandang Limun, Bengkulu 38371, Indonesia
| | - Fiqih Anansyah
- Department of Medicine, Bengkulu University, Jalan Raya Kandang Limun, Bengkulu 38371, Indonesia
| | - Sylvia Rianissa Putri
- Department of Medicine, Bengkulu University, Jalan Raya Kandang Limun, Bengkulu 38371, Indonesia
| | - Agus Sundaryono
- Department of Chemistry Education, Bengkulu University, Jalan Raya Kandang Limun, Bengkulu 38371, Indonesia.,Graduate School of Science Education, Bengkulu University, Jalan Raya Kandang Limun, Bengkulu 38371, Indonesia
| |
Collapse
|
26
|
Abdel-Daim M, Abushouk AI, Reggi R, Yarla NS, Palmery M, Peluso I. Association of antioxidant nutraceuticals and acetaminophen (paracetamol): Friend or foe? J Food Drug Anal 2017; 26:S78-S87. [PMID: 29703389 PMCID: PMC9326882 DOI: 10.1016/j.jfda.2017.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022] Open
Abstract
Acetaminophen (paracetamol or APAP) is an analgesic and antipyretic drug that can induce oxidative stress-mediated hepatotoxicity at high doses. Several studies reported that antioxidant nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae have hepatoprotective effects. Others, however, suggested that they may negatively impact the metabolism, efficacy and toxicity of APAP. The aim of this review is to discuss the pros and consofthe association of antioxidant nutraceuticals and APAP by reviewing the in vivo evidence, with particular reference to APAP pharmacokinetics and hepatotoxicity. Results from the murine models of APAP-induced hepatotoxicity showed amelioration of liver damage with nutraceuticals coadministration, as well as reductions in tissue markers of oxidative stress, and serum levels of hepatic enzymes, bilirubin, cholesterol, triglycerides and inflammatory cytokines. On the other hand, both increased and decreased APAP plasma levels have been reported, depending on the nutraceutical type and route of administration. For example, studies showed that repeated administration of flavonoids causes down-regulation of cytochrome P450 enzymes and up-regulation of uridine diphosphate glucuronosyltransferases (UGT). Moreover, nutraceuticals can alter the levels of APAP metabolites, such as mercapturate glucuronide, sulfate and cysteine conjugates. Overall, the reviewed in vivo studies indicate that interactions between APAP and nutraceuticals or plant foods exist. However, the majority of data come from animal models with doses of phytochemicals far from dietary ones. Human studies should investigate gene-diet interactions, as well as ethnic variability in order to clarify the pros and cons of co-administering antioxidant nutraceuticals and APAP.
Collapse
Affiliation(s)
- Mohamed Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt; Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan
| | | | - Raffaella Reggi
- Department of Physiology and Pharmacology "V. Erspamer", "Sapienza" University of Rome, Italy
| | - Nagendra Sastry Yarla
- Divisions of Biochemistry & Chemistry, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA
| | - Maura Palmery
- Department of Physiology and Pharmacology "V. Erspamer", "Sapienza" University of Rome, Italy
| | - Ilaria Peluso
- Research Center for Food and Nutrition, Council for Agricultural Research and Economics, (CREA-AN), Rome, Italy.
| |
Collapse
|
27
|
Zhang Y, Liu B, Chen X, Zhang N, Li G, Zhang LH, Tan LY. Naringenin Ameliorates Behavioral Dysfunction and Neurological Deficits in a d-Galactose-Induced Aging Mouse Model Through Activation of PI3K/Akt/Nrf2 Pathway. Rejuvenation Res 2017. [DOI: 10.1089/rej.2017.1960] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yan Zhang
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Bin Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jing Hong, China
| | - Ning Zhang
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Guang Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jing Hong, China
| | - Li-Hong Zhang
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Li-Yan Tan
- Department of Endocrinology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
28
|
Koul A, Kaur N, Chugh NA. Folic Acid Modulates DMBA/TPA-Induced Changes in Skin of Mice: A Study Relevant to Carcinogenesis. J Diet Suppl 2017; 15:72-87. [PMID: 28514181 DOI: 10.1080/19390211.2017.1322659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study was aimed at investigating the modulatory effects of folic acid (FA) on early stages of chemically induced skin cancer. For this, a two-stage model of skin tumorigenesis was employed. 7,12-Dimethylbenz(a)anthracene (DMBA, 500 nmol/100 ul of acetone) was applied topically for two weeks (twice weekly), followed by phorbol-12-myristate-13-acetate (TPA, 1.7 nmol/100 ul) twice weekly for six weeks on the depilated skin of mice, and FA was administered orally at a dose of 40 microgram/animal for 10 weeks daily. Balb/c mice were divided into four groups depending upon the treatment they received (control, DMBA/TPA, FA, and FA+DMBA/TPA). DMBA/TPA treatment led to the formation of papillomas in DMBA/TPA and FA+DMBA/TPA groups. Ornithine decarboxylase (ODC), proliferating cell nuclear antigen (PCNA), epidermal thickness, and cell count were evaluated to assess the beneficial effects in the early stages. FA exhibited its ameliorative potential as indicated by decreased epidermal thickness and cell count in FA+DMBA/TPA group when compared to DMBA/TPA group. Concomitantly, FA decreased the expression of ODC and PCNA in skin and activity of serum lactate dehydrogenase, suggesting inhibitory effects on cell proliferation and cell damage. Differential modulation in lipid peroxidation and reduced glutathione was observed in response to DMBA/TPA treatment and its intervention with FA. Although these findings suggest the inhibitory potential of FA during initial stages of murine skin cancer, detailed studies are warranted considering the ambiguous reports available in literature regarding the association of FA and cancer.
Collapse
Affiliation(s)
- Ashwani Koul
- a Department of Biophysics , Panjab University , Chandigarh , India
| | - Navneet Kaur
- a Department of Biophysics , Panjab University , Chandigarh , India
| | - Neha Arora Chugh
- a Department of Biophysics , Panjab University , Chandigarh , India
| |
Collapse
|
29
|
Jiménez-Arellanes MA, Gutiérrez-Rebolledo GA, Meckes-Fischer M, León-Díaz R. Medical plant extracts and natural compounds with a hepatoprotective effect against damage caused by antitubercular drugs: A review. ASIAN PAC J TROP MED 2016; 9:1141-1149. [DOI: 10.1016/j.apjtm.2016.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 11/26/2022] Open
|
30
|
Wang C, Fan RQ, Zhang YX, Nie H, Li K. Naringenin protects against isoniazid- and rifampicin-induced apoptosis in hepatic injury. World J Gastroenterol 2016; 22:9775-9783. [PMID: 27956801 PMCID: PMC5124982 DOI: 10.3748/wjg.v22.i44.9775] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/11/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the protective effects and mechanisms of naringenin (NRG) on hepatic injury induced by isoniazid (INH) and rifampicin (RIF).
METHODS Male mice were randomly divided into four groups and treated for 14 d as follows: normal control group was administered intragastrically with normal saline solution alone; model group was administered intragastrically with INH (100 mg/kg) and RIF (100 mg/kg); low- and high-dosage NRG pretreatment groups were administered intragastrically with different doses of NRG (50 or 100 mg/kg) 2 h before INH and RIF challenge. Mice were killed 16 h after the last dose of drug treatment to determine activity of serum transaminases. Oxidative stress was evaluated by measuring hepatic glutathione (GSH) and superoxide dismutase (SOD) and malondialdehyde (MDA) levels. Histopathological changes in hepatic tissue were observed under the optical microscope. Hepatocyte apoptosis was measured by TUNEL assay and caspase-3 activation. Expression of Bcl-2 and Bax in liver was determined by western blot.
RESULTS Both low- and high-dosage NRG pretreatment obviously alleviated serum levels of alanine aminotransferase and aspartate aminotransferase, liver index, hepatic MDA content, and increased hepatic GSH content and SOD activity compared with the INH and RIF-treated group (44.71 ± 8.15 U/L, 38.22 ± 6.64 U/L vs 58.15 ± 10.54 U/L; 98.36 ± 14.78 U/L, 92.41 ± 13.59 U/L vs 133.05 ± 19.36 U/L; 5.34% ± 0.26%, 4.93% ± 0.25% vs 5.71% ± 0.28%; 2.76 ± 0.67 nmol/mgprot, 2.64 ± 0.64 nmol/mgprot vs 4.49 ± 1.12 nmol/mgprot; 5.91 ± 1.31 mg/gprot, 6.42 ± 1.42 mg/gprot vs 3.11 ± 0.73 mg/gprot; 137.31 ± 24.62 U/mgprot, 148.83 ± 26.75 U/mgprot vs 102.34 ± 19.22 U/mgprot; all P < 0.01 or 0.05). Histopathological evaluation showed obvious necrosis and inflammatory cell infiltration in liver of mice administered INH and RIF; however, mice pretreated with NRG showed minor hepatic injury. In addition, INH and RIF resulted in hepatocyte apoptosis, and NRG pretreatment dramatically suppressed INH- and RIF-induced hepatocytes apoptosis. Furthermore, NRG-mediated anti-apoptotic effects seemed to be in connection with its regulation of Bax and Bcl-2 protein expression in hepatic tissue.
CONCLUSION NRG might attenuate INH- and RIF-induced hepatic injury via suppression of oxidative stress and hepatocyte apoptosis.
Collapse
|
31
|
Yang D, Zhang B, Zhang L, Lu Y. Certification of a New Naringenin Reference Material by Coulometric Titrimetry Combined HPLC-MS. ELECTROANAL 2016. [DOI: 10.1002/elan.201501123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dezhi Yang
- Beijing City Key Laboratory of Polymorphic Drugs; Center of Pharmaceutical Polymorphs; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 China
| | - Baoxi Zhang
- Beijing City Key Laboratory of Polymorphic Drugs; Center of Pharmaceutical Polymorphs; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 China
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs; Center of Pharmaceutical Polymorphs; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 China
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs; Center of Pharmaceutical Polymorphs; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 China
| |
Collapse
|
32
|
Klaren WD, Flor S, Gibson-Corley KN, Ludewig G, Robertson LW. Metallothionein's role in PCB126 induced hepatotoxicity and hepatic micronutrient disruption. Toxicol Rep 2016; 3:21-28. [PMID: 26770886 PMCID: PMC4710377 DOI: 10.1016/j.toxrep.2015.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polychlorinated biphenyls (PCBs), industrial chemicals and persistent environmental pollutants, are found in rural and urban settings. Rodent studies have shown that exposure to PCB126, a dioxin-like PCB, causes a significant disruption of hepatic micronutrient homeostasis and an increase in metallothionein (MT), an antioxidant protein and metal carrier. A MT knockout mouse strain was used to assess metallothionein’s role in micronutrient disruption and overall hepatotoxicity. Twenty four 129S male mice (12 wild type (WT) and 12 MT knockout (MTKO)) were placed on a purified diet (AIN-93G) for 3 weeks to achieve hepatic metal equilibrium. Mice were then given a single IP injection of either vehicle or 150 μmol/kg PCB126 in vehicle. The animals were sacrificed 2 weeks later and organs processed for analysis. Liver histology, hepatic lipids, gene expression, micronutrient and ROS status were investigated. Liver weights, liver lipids, ROS, and hepatocyte vacuolation were increased with PCB126 exposure along with AhR responsive genes. The MTKO animals had more severe histological changes in the liver and elevated liver lipids than their wild type counterparts. Hepatic and renal metals levels (Cu, Zn, Se and Mn) were mostly reduced by PCB126 treatment. Renal micronutrients were more affected by PCB126 treatment in the MTKO animals. This research suggests that MT may not be the sole/primary cause of the metal disruption caused by PCB126 exposure in mice, but may provide protection against overall hepatotoxicity.
Collapse
Affiliation(s)
- W D Klaren
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - S Flor
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | | | - G Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - L W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| |
Collapse
|
33
|
Naringenin inhibits dendritic cell maturation and has therapeutic effects in a murine model of collagen-induced arthritis. J Nutr Biochem 2015; 26:1467-78. [DOI: 10.1016/j.jnutbio.2015.07.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/19/2015] [Accepted: 07/19/2015] [Indexed: 12/20/2022]
|
34
|
Assessing the Effect of Leptin on Liver Damage in Case of Hepatic Injury Associated with Paracetamol Poisoning. Gastroenterol Res Pract 2015; 2015:357360. [PMID: 26697061 PMCID: PMC4677191 DOI: 10.1155/2015/357360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/24/2015] [Indexed: 11/24/2022] Open
Abstract
Background Aim. In case of high-dose acetaminophen intake, the active metabolite can not bind to the glutathione, thereby inducing cellular necrosis through binding to the cytosol proteins. This trial was performed to histologically and biochemically investigate whether leptin was protective against liver damage induced by paracetamol at toxic doses. Material and Method. In our trial, 30 female rats, divided into 5 groups, were used. IP leptin administration was performed after an hour in the group of rats, in which paracetamol poisoning was induced. The groups were as follows: Group 1: the control group, Group 2: 20 µg/kg leptin, Group 3: 2 g/kg paracetamol, Group 4: 2 g/kg paracetamol + 10 µg/kg leptin, and Group 5: 2 g/kg paracetamol + 20 µg/kg leptin. Results. The most significant increase was observed in the PARA 2 g/kg group, while the best improvement among the treatment groups occurred in the PARA 2 g/kg + LEP 10 µg/kg group (p < 0.05). While the most significant glutathione (GSH) reduction was observed in the PARA 2 g/kg group, the best improvement was in the PARA 2 g/kg + LEP 10 µg/kg group (p < 0.05). Conclusion. Liver damage occurring upon paracetamol poisoning manifests with hepatocyte breakdown occurring as a result of inflammation and oxidative stress. Leptin can prevent this damage thanks to its antioxidant and anti-inflammatory efficacy.
Collapse
|
35
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
36
|
Li RF, Feng YQ, Chen JH, Ge LT, Xiao SY, Zuo XL. Naringenin suppresses K562 human leukemia cell proliferation and ameliorates Adriamycin-induced oxidative damage in polymorphonuclear leukocytes. Exp Ther Med 2015; 9:697-706. [PMID: 25667616 PMCID: PMC4316947 DOI: 10.3892/etm.2015.2185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022] Open
Abstract
Treatments for leukemia remain unsatisfactory. Conventional chemotherapy agents that aim to kill tumor cells may also damage normal cells and thus result in severe side-effects. Naringenin, a natural polyphenolic compound with antioxidant effects, has been revealed to have significant antitumor effects with low toxicity in preliminary studies. Thus, it is considered as one of the most promising flavonoids in the treatment of leukemia. In the present study, the effects of naringenin on the K562 human leukemia cell line and the underlying mechanisms were explored in vitro. In addition, human peripheral blood polymorphonuclear leukocytes (PMNs) were used as a normal control in order to evaluate the effects of naringenin on normal granulocytes and in the mediation of Adriamycin (ADM)-induced oxidative damage. The results revealed that K562 proliferation was significantly inhibited by naringenin in a time- and concentration-dependent manner; however, minimal cytotoxic effects were observed in PMNs when naringenin was used at concentrations <400 μmol/l. Morphological changes indicative of apoptosis were observed in naringenin-treated K562 cells. Flow cytometric analysis indicated that the K562 cells were arrested in the G0/G1 phase of the cell cycle with a significantly upregulated rate of apoptosis. Furthermore, in the naringenin-treated K562 cells, the labeling index of proliferating cell nuclear antigen was observed to be increased by immunochemical staining, the mRNA and protein expression levels of p21/WAF1 were strongly upregulated in reverse transcription-polymerase chain reaction and western blot analyses, whereas p53 gene expression was not significantly changed. In PMNs to which naringenin (50~80 μmol/l) was added 1 h subsequent to ADM, the cell damage induced by ADM was significantly reduced, coincident with reductions in the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increases in the activity of superoxide dismutase and glutathione peroxidase. However, the cytotoxic effect of ADM in K562 cells was not significantly altered by naringenin, and the oxidative stress indices in K562 cells remained stable. In conclusion, the present study revealed the promising value of naringenin in leukemia treatment. Naringenin demonstrated a significant inhibitory effect on the growth of K562 cells but not on normal PMNs. Furthermore, naringenin protected PMNs from ADM-induced oxidative damage at low concentrations. Cell cycle arrest and apoptosis-inducing effects, achieved through p53-independent p21/WAF1 upregulation, are likely to be the mechanism of the antileukemic effects of naringenin, and the protective effect against ADM chemotherapy-induced damage in PMNs may be due to the antioxidant capability of this agent at low concentrations.
Collapse
Affiliation(s)
- Rui-Fang Li
- Department of Neurology, Hubei Zhongshan Hospital, Wuhan, Hubei 430033, P.R. China ; Department of Pathology, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA
| | - Ying-Qian Feng
- Department of Endocrinology, Weapon Industry 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | - Jun-Hui Chen
- Department of Science and Education, Hubei Zhongshan Hospital, Wuhan, Hubei 430033, P.R. China
| | - Lin-Tong Ge
- Department of Neurology, Hubei Zhongshan Hospital, Wuhan, Hubei 430033, P.R. China
| | - Shu-Yuan Xiao
- Department of Pathology, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA
| | - Xue-Lan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|