1
|
Butt AM, Mohd Amin MCI, Katas H. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs. Int J Nanomedicine 2015; 10:1321-34. [PMID: 25709451 PMCID: PMC4335624 DOI: 10.2147/ijn.s78438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. METHODS FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue(®) assay. RESULTS The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. CONCLUSION FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.
Collapse
Affiliation(s)
- Adeel Masood Butt
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Moreno-Fuquen R, Soto DM, Jaramillo-Gómez LM, Ellena J, Tenorio JC. 2-[1'-(Benz-yloxy)spiro-[indane-1,2'-pyrrolidine]-5'-yl]aceto-nitrile. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o1192-3. [PMID: 24109293 PMCID: PMC3793706 DOI: 10.1107/s1600536813017674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 11/22/2022]
Abstract
In the title compound, C21H22N2O, the planes of the two six-membered rings make a dihedral angle of 89.51 (7)°. The pyrrolidine ring has a puckering amplitude q2 = 0.418 (3) and a pseudo-rotation phase angle ϕ2 = −166.8 (5), adopting a twist conformation (T). The other five-membered ring has a puckering amplitude q2 = 0.247 (2) and a pseudo-rotation phase angle ϕ2 = −173.7 (5), adopting an envelope conformation with the CH2 atom adjacent to the C atom common with the pyrrolidine ring as the flap. In the crystal, molecules are linked via C—H⋯N, enclosing R22(20) rings, forming chains propagating along [100]. The acetonitrile group is disordered over two positions and was refined with a fixed occupancy ratio of 0.56:0.44.
Collapse
Affiliation(s)
- Rodolfo Moreno-Fuquen
- Departamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia
| | | | | | | | | |
Collapse
|
3
|
Chen JLY, Sperry J, Ip NY, Brimble MA. Natural products targeting telomere maintenance. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00241k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Jin J, Jones AT. The pH sensitive probe 5-(and-6)-carboxyl seminaphthorhodafluor is a substrate for the multidrug resistance-related protein MRP1. Int J Cancer 2009; 124:233-8. [PMID: 18924151 DOI: 10.1002/ijc.23892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cellular function is dependent on tight regulation of intracellular pH and numerous reports show cancer cells have abnormal pH values in the cytosol and organelles, such as lysosomes. 5-(and-6)-carboxyl seminaphthorhodafluor (SNARF-1) is a commonly used pH sensitive probe and was used here to determine cytosolic pH of HL-60 leukemia cells and a drug-resistant variant overexpressing multidrug-resistance related protein 1 (MRP1). Resistant cells accumulated significantly less SNARF-1 compared to parental cells but near control levels of probe accumulation were observed by preincubating cells with the specific MRP1 inhibitor MK571. Two new drug-resistant cell lines were generated following exposure to doxorubicin or daunorubicin and these upregulated MRP1 or P-glycoprotein expression, respectively. Experiments in these cells showed that reduced SNARF-1 accumulation was specific to MRP1 overexpression, as cells upregulating P-glycoprotein accumulated control levels of the probe. Confirmation that SNARF-1 is a MRP1 substrate was obtained using K562 and KG1a cells that have been shown to, respectively, constitutively express MRP1 and P-glycoprotein. Together, the data suggest that SNARF-1 is a substrate for MRP1 but not P-glycoprotein, and could therefore be used as a probe to distinguish between expression and activity of these 2 efflux proteins. Finally, we confirm that doxorubicin but not daunorubicin challenged MRP1 overexpressing HL-60 cells have elevated cytosolic pH.
Collapse
Affiliation(s)
- Jing Jin
- Welsh School of Pharmacy, Cardiff University, Cardiff, Wales, United Kingdom
| | | |
Collapse
|
5
|
Abonia R, Cuervo P, Insuasty B, Quiroga J, Nogueras M, Cobo J. A Simple Two-Step Sequence for the Synthesis of Novel 4-Aryl-4,5-dihydro-6H-[1,3]dioxolo[4,5-h]pyrrolo[1,2-a][1]benzazepin-6-ones from 6-Amino-3,4-methylenedioxyacetophenone. European J Org Chem 2008. [DOI: 10.1002/ejoc.200800493] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Eckelbarger JD, Wilmot JT, Epperson MT, Thakur CS, Shum D, Antczak C, Tarassishin L, Djaballah H, Gin DY. Synthesis of antiproliferative Cephalotaxus esters and their evaluation against several human hematopoietic and solid tumor cell lines: uncovering differential susceptibilities to multidrug resistance. Chemistry 2008; 14:4293-306. [PMID: 18366032 PMCID: PMC2631657 DOI: 10.1002/chem.200701998] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Deoxyharringtonine (2), homoharringtonine (3), homodeoxyharringtonine (4), and anhydroharringtonine (5) are reported to be among the most potent members of the antileukemia alkaloids isolated from the Cephalotaxus genus. Convergent syntheses of these four natural products are described, each involving novel synthetic methods and strategies. These syntheses enabled evaluation of several advanced natural and non-natural compounds against an array of human hematopoietic and solid tumor cells. Potent cytotoxicity was observed in several cell lines previously not challenged with these alkaloids. Variations in the structure of the ester chain within this family of alkaloids confer differing activity profiles against vincristine-resistant HL-60/RV+, signalling new avenues for molecular design of these natural products to combat multi-drug resistance.
Collapse
Affiliation(s)
- Joseph D. Eckelbarger
- J. D. Eckelbarger, M. T. Epperson, Department of Chemistry, University of Illinois, Urbana, IL 61801 (USA)
| | - Jeremy T. Wilmot
- J. T. Wilmot, C. S. Thakur, D. Shum, C. Antczak, L. Tarassishin, Dr. H. Djaballah, Prof. D. Y. Gin, Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, 1275 York Avenue, New York, NY 10065 (USA)
| | - Matthew T. Epperson
- J. D. Eckelbarger, M. T. Epperson, Department of Chemistry, University of Illinois, Urbana, IL 61801 (USA)
| | - Chandar S. Thakur
- J. T. Wilmot, C. S. Thakur, D. Shum, C. Antczak, L. Tarassishin, Dr. H. Djaballah, Prof. D. Y. Gin, Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, 1275 York Avenue, New York, NY 10065 (USA)
| | - David Shum
- J. T. Wilmot, C. S. Thakur, D. Shum, C. Antczak, L. Tarassishin, Dr. H. Djaballah, Prof. D. Y. Gin, Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, 1275 York Avenue, New York, NY 10065 (USA)
| | - Christophe Antczak
- J. T. Wilmot, C. S. Thakur, D. Shum, C. Antczak, L. Tarassishin, Dr. H. Djaballah, Prof. D. Y. Gin, Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, 1275 York Avenue, New York, NY 10065 (USA)
| | - Leonid Tarassishin
- J. T. Wilmot, C. S. Thakur, D. Shum, C. Antczak, L. Tarassishin, Dr. H. Djaballah, Prof. D. Y. Gin, Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, 1275 York Avenue, New York, NY 10065 (USA)
| | - Hakim Djaballah
- J. T. Wilmot, C. S. Thakur, D. Shum, C. Antczak, L. Tarassishin, Dr. H. Djaballah, Prof. D. Y. Gin, Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, 1275 York Avenue, New York, NY 10065 (USA)
| | - David Y. Gin
- J. T. Wilmot, C. S. Thakur, D. Shum, C. Antczak, L. Tarassishin, Dr. H. Djaballah, Prof. D. Y. Gin, Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, 1275 York Avenue, New York, NY 10065 (USA)
| |
Collapse
|
7
|
Tietze LF, Braun H, Steck PL, El Bialy SA, Tölle N, Düfert A. Efficient synthesis of cephalotaxine- and deoxyharringtonine analogues by a trimethylaluminium-mediated domino reaction. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Grujić M, Renko M. Aminopeptidase inhibitors bestatin and actinonin inhibit cell proliferation of myeloma cells predominantly by intracellular interactions. Cancer Lett 2002; 182:113-9. [PMID: 12048155 PMCID: PMC7127609 DOI: 10.1016/s0304-3835(02)00086-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The antiproliferative effects of bestatin and actinonin on U937 and K562 cells have been compared with their inhibitory activity on cell surface aminopeptidases. The results strongly suggest that the inhibition of cell surface aminopeptidases cannot be the main reason for the inhibition of cell proliferation. This was confirmed by studying the effect of buthionine sulfoximine (BSO), MK-571 (3-([[3-(2-[7-chloro-2-quinolinyl]-ethenyl)-phenyl]-[(3-dimethyl-amino-3-oxopropyl)-thio]-methyl]thio)propanoic acid) and verapamil on the inhibition of cell proliferation by bestatin and actinonin. BSO and MK-571, which inhibit the efflux of drugs mediated by multidrug resistance-associated protein (MRP), increased the action of both inhibitors, indicating that the latter enter the cells and that their export is mediated by MRP in both cell lines. Verapamil significantly increased the inhibitory activity of bestatin on K562 cells, indicating that the intracellular concentration of bestatin can be mediated also by P-glycoprotein.
Collapse
Affiliation(s)
- Mirjana Grujić
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| | | |
Collapse
|
9
|
Yang JY, Luo HY, Lin QY, Liu ZM, Yan LN, Lin P, Zhang J, Lei S. Subcellular daunorubicin distribution and its relation to multidrug resistance phenotype in drug-resistant cell line SMMC-7721/R. World J Gastroenterol 2002; 8:644-9. [PMID: 12174371 PMCID: PMC4656313 DOI: 10.3748/wjg.v8.i4.644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the correlation between subcellular daunorubicin distribution and the multidrug resistance phenotype in drug-resistant cell line SMMC-7721/R.
METHODS: The multidrug resistant cell line SMMC-7721/R, a human hepatocellular carcinoma cell line, was established. Antisense oligonucleotides (AS-ODN) were used to obtain different multidrug resistance phenotypes by inhibiting the expression of mdr1 gene and/or multidrug resistance-related protein gene (mrp) using Lipofectamine as delivery agent. Expression of mdr1 and mrp genes was evaluated by RT-PCR and Western blotting. Intracellular daunorubicin (DNR) concentration was measured by flow cytometry. Subcellular DNR distribution was analyzed by confocal laser scanning microscopy. Adriamycin (ADM) and DNR sensitivity was examined by MTT method.
RESULTS: Low level expression of mdr1 and mrp mRNAs and no expression of P-Glycoprotein (P-gp) and multidrug resistance-related protein (P190) were detected in parental sensitive cells SMMC-7721/S, but over-expression of these two genes was observed in drug-resistant cell SMMC-7721/R. The expression of mdr1 and mrp genes in SMMC-7721/R cells was down-regulated to the level in the SMMC-7721/S cells by AS-ODN. Intracellular DNR concentration in SMMC-7721/S cells was 10 times higher than that in SMMC-7721/R cells. In SMMC7721/S cells intracellular DNR distributed evenly in the nucleus and cytoplasm, while in SMMC-7721/R cells DNR distributed in a punctate pattern in the cytoplasm and was reduced in the nucleus. DNR concentration in SMMC-7721/R cells co-transfected with AS-ODNs targeting to mdr1 and mrp mRNAs recovered to 25 percent of that in SMMC7721/S cells. Intracellular DNR distribution pattern in drug-resistant cells treated by AS-ODN was similar to drug-sensitive cell, and the cells resistance index (RI) to DNR and ADM decreased at most from 88.0 and 116.0 to 4.0 and 2.3, respectively. Co-Transfection of two AS-ODNs showed a stronger synergistic effect than separate transfection.
CONCLUSIONS: P-gp and P190 are two members mediating MDR in cell line SMMC7721/R. Intracellular drug concentration increase and subcellular distribution change are two important factors in multidrug resistance (MDR) formation. The second factor, drugs transport by P-gp and P190 from cell nucleus to organell in cytoplasm, may play a more important role.
Collapse
Affiliation(s)
- Jia-Yin Yang
- Department of General surgery, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chauvier D, Kegelaer G, Morjani H, Manfait M. Reversal of multidrug resistance-associated protein-mediated daunorubicin resistance by camptothecin. J Pharm Sci 2002; 91:1765-75. [PMID: 12115804 DOI: 10.1002/jps.10162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The multidrug-resistance (MR) status of camptothecin (CPT) was investigated in colon adenocarcinoma HT29 cells, leukemia K562, and breast carcinoma MCF7 cells expressing P-glycoprotein (Pgp) and/or MR-associated protein (MRP1). The concentration that induced 50% growth inhibition (IC(50)) against CPT was 0.14 and 0.20 microM in parental K562/WT and MCF7/WT cells, respectively. The drug resistant subline KH30 and MCF7/VP cells, which both overexpress MRP1, presented IC(50) values of 0.63 and 3.10 microM, respectively. The resulting resistance indexes were 3.80 and 12.50, respectively. However, in KH300 cells, a cell line that preferentially overexpresses Pgp, the IC(50) of CPT was 0.08 microM and thus did not exhibit resistance against CPT. In MCF7/DoX cells, preferentially overexpressing Pgp, but also a significant level of MRP1, the IC(50) of CPT was 0.64 microM and thus presented a resistance index of 3.26 against CPT. The cytotoxic effect of CPT was modulated in cells expressing MRP1 (MCF7/VP, HT29 cells) by the specific MRP1 modulators, probenecid and MK571. These results led us to consider CPT as a substrate for MRP1 and a potential modulator of MRP1 activity. To test this hypothesis, we examined the ability of nontoxic concentrations of CPT to sensitize MRP1-overexpressing cells to daunorubicin (DNR). In MCF7/VP and KH30 cells, nontoxic concentrations of CPT were able to enhance cytotoxicity of DNR and its nuclear accumulation. Sequential and simultaneous associations of CPT (100 nM) and DNR provided complete reversal of resistance, thus showing a synergistic effect in KH30 cells. However, simultaneous association (with 10 or 20 nM CPT) had an additive effect in MCF7/VP. These data suggest that CPT could be proposed as a candidate for the reversal of the MRP1 phenotype at clinically achievable concentrations.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Antineoplastic Agents, Phytogenic/pharmacology
- Breast Neoplasms/pathology
- Camptothecin/pharmacology
- Cell Line
- Cell Nucleus/metabolism
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Daunorubicin/metabolism
- Daunorubicin/pharmacology
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Flow Cytometry
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia/pathology
- Microscopy, Confocal
- Reverse Transcriptase Polymerase Chain Reaction
- Tetrazolium Salts
- Thiazoles
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- David Chauvier
- Unité MéDIAN, CNRS UMR 6142, UFR de Pharmacie, IFR53, 51 rue Cognacq Jay, 51096 Reims, France
| | | | | | | |
Collapse
|
11
|
Chauvier D, Morjani H, Manfait M. Homocamptothecin-daunorubicin association overcomes multidrug-resistance in breast cancer MCF7 cells. Breast Cancer Res Treat 2002; 73:113-25. [PMID: 12088114 DOI: 10.1023/a:1015244604336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The multidrug-resistance (MDR) status of a novel camptothecin analogue, homocamptothecin (hCPT), was investigated in human colon adenocarcinoma HT29 cells, myelogenous leukemia K562 cells and breast carcinoma MCF7 cells. The cytotoxicity of hCPT was not sensitive to the MDR status in K562 cell lines. However, its cytotoxicity was altered by MRP1, but not Pgp, in naturally MRP1-expressing HT29 cells, and etoposide- and doxorubicin-resistant MCF7/VP and MCF7/DOX cells, respectively. These cells were sensitized to hCPT in presence of MK571, probenecid but not verapamil. These results led to consider hCPT as a substrate for MRP1 and a potential modulator of MRP1 activity. The relationship between the cytotoxic effect of anthracyclines and their nuclear localization had been previously demonstrated. We show that MRPI mediated the daunorubicin (DNR) efflux in MCF7/VP and MCF7/DOX cells. The combination of sub-toxic doses of hCPT with DNR resulted in the potentiation of DNR activity, well-correlated with an increase in its nuclear accumulation in MCF7/VP cells. Simultaneous pattern was shown to provide higher cytotoxic response than sequential one. In agreement, hCPT increased also the DNR nuclear accumulation in low MRP1-expressing MCF7/DOX cells. However, the enhancement of cytotoxicity in the DNR-hCPT combination was poorly correlated with the nuclear concentration of DNR in MCF7/DOX cells. In addition to the increase in DNR accumulation, the potentiation of DNR activity by hCPT in MCF7/DOX cells implied a synergistic mechanism between both drugs. These data suggest that the present topoisomerase I/II inhibitors combination may be of clinical interest to overcome MDR phenotype in DNR-treated breast cancer patients.
Collapse
Affiliation(s)
- David Chauvier
- Unité Médian, CNRS FRE2141, UFR Pharmacie, IFR53, Reims, France.
| | | | | |
Collapse
|
12
|
Rapoport N, Marin A, Luo Y, Prestwich GD, Muniruzzaman MD. Intracellular uptake and trafficking of Pluronic micelles in drug-sensitive and MDR cells: effect on the intracellular drug localization. J Pharm Sci 2002; 91:157-70. [PMID: 11782905 DOI: 10.1002/jps.10006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular uptake and localization of a fluorescently labeled Pluronic P-105 in HL-60 leukemia cells and in A2780 drug-sensitive and A2780/ADR MDR ovarian carcinoma cells were characterized by flow cytometry and fluorescence microscopy. Pluronic P-105 molecules were labeled with a pH-sensitive fluorescent label, 5-(and 6-)carboxy-2'7'-dichlorofluorescein. The fluorescence intensity of labeled Pluronic was about twofold higher at pH 7.4 than at pH 5.5. At Pluronic concentrations exceeding the critical micelle concentration (cmc), flow cytometry histograms manifested bimodal distribution of cell fluorescence for all types of cells. Cell population characterized by higher fluorescence intensity presumably resulted from Pluronic transfer from the acidic environment of cytoplasmic vesicles (endosomes or lysosomes) into the neutral environment of the cytoplasm and cell nuclei, which suggested the permeabilization of the membranes of acidic vesicle by Pluronic molecules. For the MDR cells, the bimodal distribution of cell fluorescence was already observed at very low Pluronic concentrations in the incubation medium (i.e., below the cmc). The data suggest that the membranes of acidic vesicles of MDR cells are more susceptible to the action of polymeric surfactants than those of drug-sensitive cells. Permeabilization of acidic vesicles had a dramatic effect on the intracellular trafficking of drugs: when delivered in PBS, the anthracyclin drug ruboxyl (Rb) sequestered in cytoplasmic vesicles and was excluded from cell nuclei; however, when delivered in Pluronic micelles, drug accumulated in cell nuclei. Drug uptake from/with Pluronic micelles was substantially enhanced by ultrasound. These findings suggest that the nuclear accumulation of drugs internalized via fluid-phase endocytosis can be enhanced by the application of Pluronic micelles and can be further augmented by ultrasonic irradiation.
Collapse
Affiliation(s)
- Natalya Rapoport
- Department of Bioengineering, University of Utah, 20 S. 2030 E., Room 108, Salt Lake City, Utah, USA.
| | | | | | | | | |
Collapse
|
13
|
Feuring-Buske M, Hogge DE. Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(-) progenitor cells from patients with acute myeloid leukemia. Blood 2001; 97:3882-9. [PMID: 11389030 DOI: 10.1182/blood.v97.12.3882] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Efflux of Hoechst 33342 from normal hematopoietic cells identifies a "side population" (SP(+)) of negatively staining cells that, in the mouse, are largely CD34(-) and are enriched for primitive progenitors. To further characterize human SP(+) cells, blood or bone marrow from 16 patients with acute myeloid leukemia (AML) was analyzed for their presence, immunophenotype, and cytogenetic and functional properties, and for the relation between SP phenotype and multidrug resistance-1 (MDR-1) expression. The mean percentages of SP(+) and MDR(+) cells was 8.1% (range, 0.5%-29.9%) and 12.8% (range, 0%-54.8%), respectively, with no correlation between the 2 values. The percentages of SP(+) cells that were CD34(+)CD38(-), CD34(+)CD38(+), or CD34(-) were 12% (range, 0.4%-50%), 25% (range, 0.5%-96%), and 63% (range, 4%-99%). Cytogenetically abnormal cells were always detected in the SP(-)CD34(+)CD38(-) and SP(+)CD34(-) fractions, and abnormal colonies (CFC), long-term culture-initiating cells (LTC-IC), and nonobese diabetic-severe combined immunodeficiency (NOD/SCID) mouse leukemia-IC were detected in the former fraction. No progenitors were detected among SP(+)CD34(-) cells in any of these assays from 9 of 10 samples. In contrast, exclusively normal cells were detected in the SP(+)CD34(+)CD38(-) fraction from 9 of 15 samples, and CFC, LTC-IC, and multilineage engraftment in NOD/SCID mice from this subpopulation were also cytogenetically normal in 6 of 8, 6 of 7, and 2 of 2 cases studied, respectively. In contrast to murine studies, primitive progenitors are enriched among SP(+)CD34(+)CD38(-) cells from patients with AML. The molecular basis for Hoechst dye efflux is uncertain because it does not appear to be related to MDR-1 expression. (Blood. 2001;97:3882-3889)
Collapse
Affiliation(s)
- M Feuring-Buske
- Terry Fox Laboratory, British Columbia Cancer Agency, 610 West 10th Ave., Vancouver, British Columbia, Canada V5Z 1L3
| | | |
Collapse
|
14
|
Benderra Z, Trussardi A, Morjani H, Villa AM, Doglia SM, Manfait M. Regulation of cellular glutathione modulates nuclear accumulation of daunorubicin in human MCF7 cells overexpressing multidrug resistance associated protein. Eur J Cancer 2000; 36:428-34. [PMID: 10708946 DOI: 10.1016/s0959-8049(99)00288-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multidrug resistance (MDR) is frequently associated with the overexpression of P-glycoprotein (Pgp) and/or multidrug resistance associated protein (MRP1), both members of the ABC superfamily of transporters. Pgp and MRP1 function as ATP-dependent efflux pumps that extrude cytotoxic drugs from tumour cells. Glutathione (GSH) has been considered to play an important role in the MRP1-mediated MDR. In our study, we examined the effects of buthionine sulphoximine (BSO), an inhibitor of GSH biosynthesis, on the nuclear accumulation of daunorubicin (DNR), in etoposide (VP16) and doxorubicin (ADR) resistant MCF7 cell lines, overexpressing respectively MRP1 (MCF7/VP) and Pgp (MCF7/ADR). The study of DNR transport was carried out using scanning confocal microspectrofluorometry. This technique allows the determination of the nuclear accumulation of anthracyclines in single living tumour cells. Treatment of MCF7/VP cells with BSO increased the sensitivity of these cells to DNR whilst the cytotoxicity of the drug in MCF7/ADR cells remained unchanged. In MCF7 resistant cells treated with BSO, their GSH level decreased as observed by confocal microscopy. DNR nuclear accumulation in MCF7/VP cells was increased by BSO whereas in MCF7/ADR cells BSO was unable to significantly increase the DNR nuclear accumulation. These data suggest a requirement for GSH in MRP1-mediated resistance whilst the nuclear efflux of GSH conjugates is probably not the primary mechanism of Pgp-mediated MDR. Finally, BSO might be a useful agent in clinical assays for facilitating detection of MRP1 expression.
Collapse
Affiliation(s)
- Z Benderra
- Unité MéDIAN, UFR de Pharmacie, IFR53, EA2063 51 rue Cognacq Jay, 51096, Reims, France
| | | | | | | | | | | |
Collapse
|
15
|
Alakhov V, Klinski E, Li S, Pietrzynski G, Venne A, Batrakova E, Bronitch T, Kabanov A. Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloids Surf B Biointerfaces 1999. [DOI: 10.1016/s0927-7765(99)00064-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|