1
|
James NR, O'Neill JS. Circadian Control of Protein Synthesis. Bioessays 2025; 47:e202300158. [PMID: 39668398 PMCID: PMC11848126 DOI: 10.1002/bies.202300158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Daily rhythms in the rate and specificity of protein synthesis occur in most mammalian cells through an interaction between cell-autonomous circadian regulation and daily cycles of systemic cues. However, the overall protein content of a typical cell changes little over 24 h. For most proteins, translation appears to be coordinated with protein degradation, producing phases of proteomic renewal that maximize energy efficiency while broadly maintaining proteostasis across the solar cycle. We propose that a major function of this temporal compartmentalization-and of circadian rhythmicity in general-is to optimize the energy efficiency of protein synthesis and associated processes such as complex assembly. We further propose that much of this temporal compartmentalization is achieved at the level of translational initiation, such that the translational machinery alternates between distinct translational mechanisms, each using a distinct toolkit of phosphoproteins to preferentially recognize and translate different classes of mRNA.
Collapse
Affiliation(s)
- Nathan R. James
- Division of Cell BiologyMRC Laboratory of Molecular BiologyCambridgeUK
| | - John S. O'Neill
- Division of Cell BiologyMRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
2
|
Khan D, Fox PL. Host-like RNA Elements Regulate Virus Translation. Viruses 2024; 16:468. [PMID: 38543832 PMCID: PMC10976276 DOI: 10.3390/v16030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Viruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA termini, i.e., at the 5' or 3' ends, including the untranslated regions (UTRs). Translation of most eukaryotic mRNAs is initiated by 5' cap-dependent scanning. In contrast, many viruses initiate translation at internal RNA regions at internal ribosome entry sites (IRESs). Eukaryotic mRNAs often contain upstream open reading frames (uORFs) that permit condition-dependent control of downstream major ORFs. To offset genome compression and increase coding capacity, some viruses take advantage of out-of-frame overlapping uORFs (oORFs). Lacking the essential machinery of protein synthesis, for example, ribosomes and other translation factors, all viruses utilize the host apparatus to generate virus protein. In addition, some viruses exhibit RNA elements that bind host regulatory factors that are not essential components of the translation machinery. SARS-CoV-2 is a paradigm example of a virus taking advantage of multiple features of eukaryotic host translation control: the virus mimics the established human GAIT regulatory element and co-opts four host aminoacyl tRNA synthetases to form a stimulatory binding complex. Utilizing discontinuous transcription, the elements are present and identical in all SARS-CoV-2 subgenomic RNAs (and the genomic RNA). Thus, the virus exhibits a post-transcriptional regulon that improves upon analogous eukaryotic regulons, in which a family of functionally related mRNA targets contain elements that are structurally similar but lacking sequence identity. This "thrifty" virus strategy can be exploited against the virus since targeting the element can suppress the expression of all subgenomic RNAs as well as the genomic RNA. Other 3' end viral elements include 3'-cap-independent translation elements (3'-CITEs) and 3'-tRNA-like structures. Elucidation of virus translation control elements, their binding proteins, and their mechanisms can lead to novel therapeutic approaches to reduce virus replication and pathogenicity.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
3
|
Barik S. Suppression of Innate Immunity by the Hepatitis C Virus (HCV): Revisiting the Specificity of Host-Virus Interactive Pathways. Int J Mol Sci 2023; 24:16100. [PMID: 38003289 PMCID: PMC10671098 DOI: 10.3390/ijms242216100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The hepatitis C virus (HCV) is a major causative agent of hepatitis that may also lead to liver cancer and lymphomas. Chronic hepatitis C affects an estimated 2.4 million people in the USA alone. As the sole member of the genus Hepacivirus within the Flaviviridae family, HCV encodes a single-stranded positive-sense RNA genome that is translated into a single large polypeptide, which is then proteolytically processed to yield the individual viral proteins, all of which are necessary for optimal viral infection. However, cellular innate immunity, such as type-I interferon (IFN), promptly thwarts the replication of viruses and other pathogens, which forms the basis of the use of conjugated IFN-alpha in chronic hepatitis C management. As a countermeasure, HCV suppresses this form of immunity by enlisting diverse gene products, such as HCV protease(s), whose primary role is to process the large viral polyprotein into individual proteins of specific function. The exact number of HCV immune suppressors and the specificity and molecular mechanism of their action have remained unclear. Nonetheless, the evasion of host immunity promotes HCV pathogenesis, chronic infection, and carcinogenesis. Here, the known and putative HCV-encoded suppressors of innate immunity have been reviewed and analyzed, with a predominant emphasis on the molecular mechanisms. Clinically, the knowledge should aid in rational interventions and the management of HCV infection, particularly in chronic hepatitis.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
4
|
Fedorovskiy AG, Burakov AV, Terenin IM, Bykov DA, Lashkevich KA, Popenko VI, Makarova NE, Sorokin II, Sukhinina AP, Prassolov VS, Ivanov PV, Dmitriev SE. A Solitary Stalled 80S Ribosome Prevents mRNA Recruitment to Stress Granules. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1786-1799. [PMID: 38105199 DOI: 10.1134/s000629792311010x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023]
Abstract
In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.
Collapse
Affiliation(s)
- Artem G Fedorovskiy
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anton V Burakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Sirius University of Science and Technology, Sirius, Krasnodar Region, 354340, Russia
| | - Dmitry A Bykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir I Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Nadezhda E Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia P Sukhinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir S Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel V Ivanov
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
5
|
Harris MT, Marr MT. The intrinsically disordered region of eIF5B stimulates IRES usage and nucleates biological granule formation. Cell Rep 2023; 42:113283. [PMID: 37862172 PMCID: PMC10680144 DOI: 10.1016/j.celrep.2023.113283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/22/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Cells activate stress response pathways to survive adverse conditions. Such responses involve the inhibition of global cap-dependent translation. This inhibition is a block that essential transcripts must escape via alternative methods of translation initiation, e.g., an internal ribosome entry site (IRES). IRESs have distinct structures and generally require a limited repertoire of translation factors. Cellular IRESs have been identified in many critical cellular stress response transcripts. We previously identified cellular IRESs in the murine insulin receptor (Insr) and insulin-like growth factor 1 receptor (Igf1r) transcripts and demonstrated their resistance to eukaryotic initiation factor 4F (eIF4F) inhibition. Here, we find that eIF5B preferentially promotes Insr, Igf1r, and hepatitis C virus IRES activity through a non-canonical mechanism that requires its highly charged and disordered N terminus. We find that the N-terminal region of eIF5B can drive cytoplasmic granule formation. This eIF5B granule is triggered by cellular stress and is sufficient to specifically promote IRES activity.
Collapse
Affiliation(s)
- Meghan T Harris
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Michael T Marr
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
6
|
Song Z, Lin J, Su R, Ji Y, Jia R, Li S, Shan G, Huang C. eIF3j inhibits translation of a subset of circular RNAs in eukaryotic cells. Nucleic Acids Res 2022; 50:11529-11549. [PMID: 36330957 PMCID: PMC9723666 DOI: 10.1093/nar/gkac980] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Increasing studies have revealed that a subset of circular RNAs (circRNAs) harbor an open reading frame and can act as protein-coding templates to generate functional proteins that are closely associated with multiple physiological and disease-relevant processes, and thus proper regulation of synthesis of these circRNA-derived proteins is a fundamental cellular process required for homeostasis maintenance. However, how circRNA translation initiation is coordinated by different trans-acting factors remains poorly understood. In particular, the impact of different eukaryotic translation initiation factors (eIFs) on circRNA translation and the physiological relevance of this distinct regulation have not yet been characterized. In this study, we screened all 43 Drosophila eIFs and revealed the conflicting functions of eIF3 subunits in the translational control of the translatable circRNA circSfl: eIF3 is indispensable for circSfl translation, while the eIF3-associated factor eIF3j is the most potent inhibitor. Mechanistically, the binding of eIF3j to circSfl promotes the disassociation of eIF3. The C-terminus of eIF3j and an RNA regulon within the circSfl untranslated region (UTR) are essential for the inhibitory effect of eIF3j. Moreover, we revealed the physiological relevance of eIF3j-mediated circSfl translation repression in response to heat shock. Finally, additional translatable circRNAs were identified to be similarly regulated in an eIF3j-dependent manner. Altogether, our study provides a significant insight into the field of cap-independent translational regulation and undiscovered functions of eIF3.
Collapse
Affiliation(s)
| | | | - Rui Su
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yu Ji
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ruirui Jia
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ge Shan
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuan Huang
- To whom correspondence should be addressed. Tel: +86 19956025374;
| |
Collapse
|
7
|
Brown ZP, Abaeva IS, De S, Hellen CUT, Pestova TV, Frank J. Molecular architecture of 40S translation initiation complexes on the hepatitis C virus IRES. EMBO J 2022; 41:e110581. [PMID: 35822879 DOI: 10.15252/embj.2022110581] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus mRNA contains an internal ribosome entry site (IRES) that mediates end-independent translation initiation, requiring a subset of eukaryotic initiation factors (eIFs). Biochemical studies revealed that direct binding of the IRES to the 40S ribosomal subunit places the initiation codon into the P site, where it base pairs with eIF2-bound Met-tRNAiMet forming a 48S initiation complex. Subsequently, eIF5 and eIF5B mediate subunit joining, yielding an elongation-competent 80S ribosome. Initiation can also proceed without eIF2, in which case Met-tRNAiMet is recruited directly by eIF5B. However, the structures of initiation complexes assembled on the HCV IRES, the transitions between different states, and the accompanying conformational changes have remained unknown. To fill these gaps, we now obtained cryo-EM structures of IRES initiation complexes, at resolutions up to 3.5 Å, that cover all major stages from the initial ribosomal association, through eIF2-containing 48S initiation complexes, to eIF5B-containing complexes immediately prior to subunit joining. These structures provide insights into the dynamic network of 40S/IRES contacts, highlight the role of IRES domain II, and reveal conformational changes that occur during the transition from eIF2- to eIF5B-containing 48S complexes and prepare them for subunit joining.
Collapse
Affiliation(s)
- Zuben P Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Swastik De
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Arhab Y, Miścicka A, Pestova TV, Hellen CUT. Horizontal gene transfer as a mechanism for the promiscuous acquisition of distinct classes of IRES by avian caliciviruses. Nucleic Acids Res 2021; 50:1052-1068. [PMID: 34928389 PMCID: PMC8789048 DOI: 10.1093/nar/gkab1243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
In contrast to members of Picornaviridae which have long 5'-untranslated regions (5'UTRs) containing internal ribosomal entry sites (IRESs) that form five distinct classes, members of Caliciviridae typically have short 5'UTRs and initiation of translation on them is mediated by interaction of the viral 5'-terminal genome-linked protein (VPg) with subunits of eIF4F rather than by an IRES. The recent description of calicivirus genomes with 500-900nt long 5'UTRs was therefore unexpected and prompted us to examine them in detail. Sequence analysis and structural modelling of the atypically long 5'UTRs of Caliciviridae sp. isolate yc-13 and six other caliciviruses suggested that they contain picornavirus-like type 2 IRESs, whereas ruddy turnstone calicivirus (RTCV) and Caliciviridae sp. isolate hwf182cal1 calicivirus contain type 4 and type 5 IRESs, respectively. The suggestion that initiation on RTCV mRNA occurs by the type 4 IRES mechanism was confirmed experimentally using in vitro reconstitution. The high sequence identity between identified calicivirus IRESs and specific picornavirus IRESs suggests a common evolutionary origin. These calicivirus IRESs occur in a single phylogenetic branch of Caliciviridae and were likely acquired by horizontal gene transfer.
Collapse
Affiliation(s)
- Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| |
Collapse
|
9
|
Anderson R, Agarwal A, Ghosh A, Guan B, Casteel J, Dvorina N, Baldwin WM, Mazumder B, Nazarko TY, Merrick WC, Buchner DA, Hatzoglou M, Kondratov RV, Komar AA. eIF2A-knockout mice reveal decreased life span and metabolic syndrome. FASEB J 2021; 35:e21990. [PMID: 34665898 PMCID: PMC8848898 DOI: 10.1096/fj.202101105r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Eukaryotic initiation factor 2A (eIF2A) is a 65 kDa protein that functions in minor initiation pathways, which affect the translation of only a subset of messenger ribonucleic acid (mRNAs), such as internal ribosome entry site (IRES)-containing mRNAs and/or mRNAs harboring upstream near cognate/non-AUG start codons. These non-canonical initiation events are important for regulation of protein synthesis during cellular development and/or the integrated stress response. Selective eIF2A knockdown in cellular systems significantly inhibits translation of such mRNAs, which rely on alternative initiation mechanisms for their translation. However, there exists a gap in our understanding of how eIF2A functions in mammalian systems in vivo (on the organismal level) and ex vivo (in cells). Here, using an eIF2A-knockout (KO) mouse model, we present evidence implicating eIF2A in the biology of aging, metabolic syndrome and central tolerance. We discovered that eIF2A-KO mice have reduced life span and that eIF2A plays an important role in maintenance of lipid homeostasis, the control of glucose tolerance, insulin resistance and also reduces the abundance of B lymphocytes and dendritic cells in the thymic medulla of mice. We also show the eIF2A KO affects male and female mice differently, suggesting that eIF2A may affect sex-specific pathways. Interestingly, our experiments involving pharmacological induction of endoplasmic reticulum (ER) stress with tunicamycin did not reveal any substantial difference between the response to ER stress in eIF2A-KO and wild-type mice. The identification of eIF2A function in the development of metabolic syndrome bears promise for the further identification of specific eIF2A targets responsible for these changes.
Collapse
Affiliation(s)
- Richard Anderson
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Anchal Agarwal
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Arnab Ghosh
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Bo‐Jhih Guan
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Jackson Casteel
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Nina Dvorina
- Department of Inflammation and ImmunityCleveland Clinic Lerner College of MedicineClevelandOhioUSA
| | - William M. Baldwin
- Department of Inflammation and ImmunityCleveland Clinic Lerner College of MedicineClevelandOhioUSA
| | - Barsanjit Mazumder
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | | | - William C. Merrick
- Department of BiochemistryCase Western Reserve University School of MedicineClevelandOhioUSA
| | - David A. Buchner
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA,Department of BiochemistryCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Maria Hatzoglou
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Roman V. Kondratov
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Anton A. Komar
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA,Department of BiochemistryCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
10
|
Jobava R, Mao Y, Guan BJ, Hu D, Krokowski D, Chen CW, Shu XE, Chukwurah E, Wu J, Gao Z, Zagore LL, Merrick WC, Trifunovic A, Hsieh AC, Valadkhan S, Zhang Y, Qi X, Jankowsky E, Topisirovic I, Licatalosi DD, Qian SB, Hatzoglou M. Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress. Mol Cell 2021; 81:4191-4208.e8. [PMID: 34686314 PMCID: PMC8559772 DOI: 10.1016/j.molcel.2021.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.
Collapse
Affiliation(s)
- Raul Jobava
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, CWRU, Cleveland, OH 44106, USA
| | - Dawid Krokowski
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA; Department of Molecular Biology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin 20-033, Poland
| | - Chien-Wen Chen
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Xin Erica Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Evelyn Chukwurah
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Jing Wu
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Leah L Zagore
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Center for RNA Science and Therapeutics, CWRU, Cleveland, OH 44106, USA
| | | | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Andrew C Hsieh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, CWRU, Cleveland, OH 44106, USA
| | - Youwei Zhang
- Department of Pharmacology, CWRU, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, CWRU, Cleveland, OH 44106, USA
| | - Eckhard Jankowsky
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Center for RNA Science and Therapeutics, CWRU, Cleveland, OH 44106, USA
| | - Ivan Topisirovic
- Gerald Bronfman Department of Oncology, Departments of Biochemistry and Experimental Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
| | - Donny D Licatalosi
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Center for RNA Science and Therapeutics, CWRU, Cleveland, OH 44106, USA.
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Chukka PAR, Wetmore SD, Thakor N. Established and Emerging Regulatory Roles of Eukaryotic Translation Initiation Factor 5B (eIF5B). Front Genet 2021; 12:737433. [PMID: 34512736 PMCID: PMC8430213 DOI: 10.3389/fgene.2021.737433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Translational control (TC) is one the crucial steps that dictate gene expression and alter the outcome of physiological process like programmed cell death, metabolism, and proliferation in a eukaryotic cell. TC occurs mainly at the translation initiation stage. The initiation factor eIF5B tightly regulates global translation initiation and facilitates the expression of a subset of proteins involved in proliferation, inhibition of apoptosis, and immunosuppression under stress conditions. eIF5B enhances the expression of these survival proteins to allow cancer cells to metastasize and resist chemotherapy. Using eIF5B as a biomarker or drug target could help with diagnosis and improved prognosis, respectively. To achieve these goals, it is crucial to understand the role of eIF5B in translational regulation. This review recapitulates eIF5B's regulatory roles in the translation initiation of viral mRNA as well as the cellular mRNAs in cancer and stressed eukaryotic cells.
Collapse
Affiliation(s)
- Prakash Amruth Raj Chukka
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, Lethbridge, AB, Canada.,Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada.,Canadian Centre of Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, Lethbridge, AB, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, Lethbridge, AB, Canada.,Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada.,Canadian Centre of Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, Lethbridge, AB, Canada
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, Lethbridge, AB, Canada.,Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.,Department of Neuroscience, Canadian Centre for Behavioral Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, Canada.,Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Sorokin II, Vassilenko KS, Terenin IM, Kalinina NO, Agol VI, Dmitriev SE. Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1060-1094. [PMID: 34565312 PMCID: PMC8436584 DOI: 10.1134/s0006297921090042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Viruses exploit the translation machinery of an infected cell to synthesize their proteins. Therefore, viral mRNAs have to compete for ribosomes and translation factors with cellular mRNAs. To succeed, eukaryotic viruses adopt multiple strategies. One is to circumvent the need for m7G-cap through alternative instruments for ribosome recruitment. These include internal ribosome entry sites (IRESs), which make translation independent of the free 5' end, or cap-independent translational enhancers (CITEs), which promote initiation at the uncapped 5' end, even if located in 3' untranslated regions (3' UTRs). Even if a virus uses the canonical cap-dependent ribosome recruitment, it can still perturb conventional ribosomal scanning and start codon selection. The pressure for genome compression often gives rise to internal and overlapping open reading frames. Their translation is initiated through specific mechanisms, such as leaky scanning, 43S sliding, shunting, or coupled termination-reinitiation. Deviations from the canonical initiation reduce the dependence of viral mRNAs on translation initiation factors, thereby providing resistance to antiviral mechanisms and cellular stress responses. Moreover, viruses can gain advantage in a competition for the translational machinery by inactivating individual translational factors and/or replacing them with viral counterparts. Certain viruses even create specialized intracellular "translation factories", which spatially isolate the sites of their protein synthesis from cellular antiviral systems, and increase availability of translational components. However, these virus-specific mechanisms may become the Achilles' heel of a viral life cycle. Thus, better understanding of the unconventional mechanisms of viral mRNA translation initiation provides valuable insight for developing new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Ivan I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Konstantin S Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Natalia O Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Vadim I Agol
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Poliomyelitis, Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, Moscow, 108819, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
13
|
Li HC, Yang CH, Lo SY. Cellular factors involved in the hepatitis C virus life cycle. World J Gastroenterol 2021; 27:4555-4581. [PMID: 34366623 PMCID: PMC8326260 DOI: 10.3748/wjg.v27.i28.4555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV), an obligatory intracellular pathogen, highly depends on its host cells to propagate successfully. The HCV life cycle can be simply divided into several stages including viral entry, protein translation, RNA replication, viral assembly and release. Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research. Characterization of these cellular factors has provided extensive insight into HCV replication strategies. Some of these cellular factors are targets for anti-HCV therapies. In this review, we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| |
Collapse
|
14
|
Dmitriev SE, Vladimirov DO, Lashkevich KA. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. BIOCHEMISTRY (MOSCOW) 2021; 85:1389-1421. [PMID: 33280581 PMCID: PMC7689648 DOI: 10.1134/s0006297920110097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru/) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- S E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - D O Vladimirov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - K A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
15
|
Kalish BT, Kim E, Finander B, Duffy EE, Kim H, Gilman CK, Yim YS, Tong L, Kaufman RJ, Griffith EC, Choi GB, Greenberg ME, Huh JR. Maternal immune activation in mice disrupts proteostasis in the fetal brain. Nat Neurosci 2021; 24:204-213. [PMID: 33361822 PMCID: PMC7854524 DOI: 10.1038/s41593-020-00762-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Maternal infection and inflammation during pregnancy are associated with neurodevelopmental disorders in offspring, but little is understood about the molecular mechanisms underlying this epidemiologic phenomenon. Here, we leveraged single-cell RNA sequencing to profile transcriptional changes in the mouse fetal brain in response to maternal immune activation (MIA) and identified perturbations in cellular pathways associated with mRNA translation, ribosome biogenesis and stress signaling. We found that MIA activates the integrated stress response (ISR) in male, but not female, MIA offspring in an interleukin-17a-dependent manner, which reduced global mRNA translation and altered nascent proteome synthesis. Moreover, blockade of ISR activation prevented the behavioral abnormalities as well as increased cortical neural activity in MIA male offspring. Our data suggest that sex-specific activation of the ISR leads to maternal inflammation-associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Brian T Kalish
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
| | - Eunha Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Benjamin Finander
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Erin E Duffy
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hyunju Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Casey K Gilman
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yeong Shin Yim
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lilin Tong
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Randal J Kaufman
- Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eric C Griffith
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael E Greenberg
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Reovirus and the Host Integrated Stress Response: On the Frontlines of the Battle to Survive. Viruses 2021; 13:v13020200. [PMID: 33525628 PMCID: PMC7910986 DOI: 10.3390/v13020200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Cells are continually exposed to stressful events, which are overcome by the activation of a number of genetic pathways. The integrated stress response (ISR) is a large component of the overall cellular response to stress, which ultimately functions through the phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF2α) to inhibit the energy-taxing process of translation. This response is instrumental in the inhibition of viral infection and contributes to evolution in viruses. Mammalian orthoreovirus (MRV), an oncolytic virus that has shown promise in over 30 phase I–III clinical trials, has been shown to induce multiple arms within the ISR pathway, but it successfully evades, modulates, or subverts each cellular attempt to inhibit viral translation. MRV has not yet received Food and Drug Administration (FDA) approval for general use in the clinic; therefore, researchers continue to study virus interactions with host cells to identify circumstances where MRV effectiveness in tumor killing can be improved. In this review, we will discuss the ISR, MRV modulation of the ISR, and discuss ways in which MRV interaction with the ISR may increase the effectiveness of cancer therapeutics whose modes of action are altered by the ISR.
Collapse
|
17
|
Bressler KR, Ross JA, Ilnytskyy S, Vanden Dungen K, Taylor K, Patel K, Zovoilis A, Kovalchuk I, Thakor N. Depletion of eukaryotic initiation factor 5B (eIF5B) reprograms the cellular transcriptome and leads to activation of endoplasmic reticulum (ER) stress and c-Jun N-terminal kinase (JNK). Cell Stress Chaperones 2021; 26:253-264. [PMID: 33123915 PMCID: PMC7736443 DOI: 10.1007/s12192-020-01174-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022] Open
Abstract
During the integrated stress response (ISR), global translation initiation is attenuated; however, noncanonical mechanisms allow for the continued translation of specific transcripts. Eukaryotic initiation factor 5B (eIF5B) has been shown to play a critical role in canonical translation as well as in noncanonical mechanisms involving internal ribosome entry site (IRES) and upstream open reading frame (uORF) elements. The uORF-mediated translation regulation of activating transcription factor 4 (ATF4) mRNA plays a pivotal role in the cellular ISR. Our recent study confirmed that eIF5B depletion removes uORF2-mediated repression of ATF4 translation, which results in the upregulation of growth arrest and DNA damage-inducible protein 34 (GADD34) transcription. Accordingly, we hypothesized that eIF5B depletion may reprogram the transcriptome profile of the cell. Here, we employed genome-wide transcriptional analysis on eIF5B-depleted cells. Further, we validate the up- and downregulation of several transcripts from our RNA-seq data using RT-qPCR. We identified upregulated pathways including cellular response to endoplasmic reticulum (ER) stress, and mucin-type O-glycan biosynthesis, as well as downregulated pathways of transcriptional misregulation in cancer and T cell receptor signaling. We also confirm that depletion of eIF5B leads to activation of the c-Jun N-terminal kinase (JNK) arm of the mitogen-activated protein kinase (MAPK) pathway. This data suggests that depletion of eIF5B reprograms the cellular transcriptome and influences critical cellular processes such as ER stress and ISR.
Collapse
Affiliation(s)
- Kamiko R Bressler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
- Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada
| | - Joseph A Ross
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
- Chinook Contract Research Inc., 97 East Lake Ramp NE, Airdrie, Alberta, T4A 2 K4, Canada
| | - Slava Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
| | - Keiran Vanden Dungen
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
| | - Katrina Taylor
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
| | - Kush Patel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
- Canadian Centre for Behavioral Neuroscience (CCBN), Department of Neuroscience, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3 M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3 M4, Canada
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada.
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada.
- Canadian Centre for Behavioral Neuroscience (CCBN), Department of Neuroscience, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada.
- Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3 M4, Canada.
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
18
|
Hajj GNM, Nunes PBC, Roffe M. Genome-wide translation patterns in gliomas: An integrative view. Cell Signal 2020; 79:109883. [PMID: 33321181 DOI: 10.1016/j.cellsig.2020.109883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Gliomas are the most frequent tumors of the central nervous system (CNS) and include the highly malignant glioblastoma (GBM). Characteristically, gliomas have translational control deregulation related to overactivation of signaling pathways such as PI3K/AKT/mTORC1 and Ras/ERK1/2. Thus, mRNA translation appears to play a dominant role in glioma gene expression patterns. The, analysis of genome-wide translated transcripts, together known as the translatome, may reveal important information for understanding gene expression patterns in gliomas. This review provides a brief overview of translational control mechanisms altered in gliomas with a focus on the current knowledge related to the translatomes of glioma cells and murine glioma models. We present an integrative meta-analysis of selected glioma translatome data with the aim of identifying recurrent patterns of gene expression preferentially regulated at the level of translation and obtaining clues regarding the pathological significance of these alterations. Re-analysis of several translatome datasets was performed to compare the translatomes of glioma models with those of their non-tumor counterparts and to document glioma cell responses to radiotherapy and MNK modulation. The role of recurrently altered genes in the context of translational control and tumorigenesis are discussed.
Collapse
Affiliation(s)
- Glaucia Noeli Maroso Hajj
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil; National Institute of Oncogenomics and Innovation, Brazil.
| | - Paula Borzino Cordeiro Nunes
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil
| | - Martin Roffe
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil; National Institute of Oncogenomics and Innovation, Brazil.
| |
Collapse
|
19
|
Schmitt E, Coureux PD, Kazan R, Bourgeois G, Lazennec-Schurdevin C, Mechulam Y. Recent Advances in Archaeal Translation Initiation. Front Microbiol 2020; 11:584152. [PMID: 33072057 PMCID: PMC7531240 DOI: 10.3389/fmicb.2020.584152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Translation initiation (TI) allows accurate selection of the initiation codon on a messenger RNA (mRNA) and defines the reading frame. In all domains of life, translation initiation generally occurs within a macromolecular complex made up of the small ribosomal subunit, the mRNA, a specialized methionylated initiator tRNA, and translation initiation factors (IFs). Once the start codon is selected at the P site of the ribosome and the large subunit is associated, the IFs are released and a ribosome competent for elongation is formed. However, even if the general principles are the same in the three domains of life, the molecular mechanisms are different in bacteria, eukaryotes, and archaea and may also vary depending on the mRNA. Because TI mechanisms have evolved lately, their studies bring important information about the evolutionary relationships between extant organisms. In this context, recent structural data on ribosomal complexes and genome-wide studies are particularly valuable. This review focuses on archaeal translation initiation highlighting its relationships with either the eukaryotic or the bacterial world. Eukaryotic features of the archaeal small ribosomal subunit are presented. Ribosome evolution and TI mechanisms diversity in archaeal branches are discussed. Next, the use of leaderless mRNAs and that of leadered mRNAs having Shine-Dalgarno sequences is analyzed. Finally, the current knowledge on TI mechanisms of SD-leadered and leaderless mRNAs is detailed.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Ramy Kazan
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
20
|
Liu Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. The role of host eIF2α in viral infection. Virol J 2020; 17:112. [PMID: 32703221 PMCID: PMC7376328 DOI: 10.1186/s12985-020-01362-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background eIF2α is a regulatory node that controls protein synthesis initiation by its phosphorylation or dephosphorylation. General control nonderepressible-2 (GCN2), protein kinase R-like endoplasmic reticulum kinase (PERK), double-stranded RNA (dsRNA)-dependent protein kinase (PKR) and heme-regulated inhibitor (HRI) are four kinases that regulate eIF2α phosphorylation. Main body In the viral infection process, dsRNA or viral proteins produced by viral proliferation activate different eIF2α kinases, resulting in eIF2α phosphorylation, which hinders ternary tRNAMet-GTP-eIF2 complex formation and inhibits host or viral protein synthesis. The stalled messenger ribonucleoprotein (mRNP) complex aggregates under viral infection stress to form stress granules (SGs), which encapsulate viral RNA and transcription- and translation-related proteins, thereby limiting virus proliferation. However, many viruses have evolved a corresponding escape mechanism to synthesize their own proteins in the event of host protein synthesis shutdown and SG formation caused by eIF2α phosphorylation, and viruses can block the cell replication cycle through the PERK-eIF2α pathway, providing a favorable environment for their own replication. Subsequently, viruses can induce host cell autophagy or apoptosis through the eIF2α-ATF4-CHOP pathway. Conclusions This review summarizes the role of eIF2α in viral infection to provide a reference for studying the interactions between viruses and hosts.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| |
Collapse
|
21
|
Arhab Y, Bulakhov AG, Pestova TV, Hellen CU. Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses 2020; 12:E612. [PMID: 32512856 PMCID: PMC7354566 DOI: 10.3390/v12060612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5'-untranslated region (5'UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5'-end-independent initiation of translation by a different mechanism. Picornavirus 5'UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.
Collapse
Affiliation(s)
| | | | | | - Christopher U.T. Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (Y.A.); (A.G.B.); (T.V.P.)
| |
Collapse
|
22
|
Hepatitis C Virus Translation Regulation. Int J Mol Sci 2020; 21:ijms21072328. [PMID: 32230899 PMCID: PMC7178104 DOI: 10.3390/ijms21072328] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Translation of the hepatitis C virus (HCV) RNA genome is regulated by the internal ribosome entry site (IRES), located in the 5’-untranslated region (5′UTR) and part of the core protein coding sequence, and by the 3′UTR. The 5′UTR has some highly conserved structural regions, while others can assume different conformations. The IRES can bind to the ribosomal 40S subunit with high affinity without any other factors. Nevertheless, IRES activity is modulated by additional cis sequences in the viral genome, including the 3′UTR and the cis-acting replication element (CRE). Canonical translation initiation factors (eIFs) are involved in HCV translation initiation, including eIF3, eIF2, eIF1A, eIF5, and eIF5B. Alternatively, under stress conditions and limited eIF2-Met-tRNAiMet availability, alternative initiation factors such as eIF2D, eIF2A, and eIF5B can substitute for eIF2 to allow HCV translation even when cellular mRNA translation is downregulated. In addition, several IRES trans-acting factors (ITAFs) modulate IRES activity by building large networks of RNA-protein and protein–protein interactions, also connecting 5′- and 3′-ends of the viral RNA. Moreover, some ITAFs can act as RNA chaperones that help to position the viral AUG start codon in the ribosomal 40S subunit entry channel. Finally, the liver-specific microRNA-122 (miR-122) stimulates HCV IRES-dependent translation, most likely by stabilizing a certain structure of the IRES that is required for initiation.
Collapse
|
23
|
Komar AA, Merrick WC. A Retrospective on eIF2A-and Not the Alpha Subunit of eIF2. Int J Mol Sci 2020; 21:E2054. [PMID: 32192132 PMCID: PMC7139343 DOI: 10.3390/ijms21062054] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/29/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Initiation of protein synthesis in eukaryotes is a complex process requiring more than 12 different initiation factors, comprising over 30 polypeptide chains. The functions of many of these factors have been established in great detail; however, the precise role of some of them and their mechanism of action is still not well understood. Eukaryotic initiation factor 2A (eIF2A) is a single chain 65 kDa protein that was initially believed to serve as the functional homologue of prokaryotic IF2, since eIF2A and IF2 catalyze biochemically similar reactions, i.e., they stimulate initiator Met-tRNAi binding to the small ribosomal subunit. However, subsequent identification of a heterotrimeric 126 kDa factor, eIF2 (α,β,γ) showed that this factor, and not eIF2A, was primarily responsible for the binding of Met-tRNAi to 40S subunit in eukaryotes. It was found however, that eIF2A can promote recruitment of Met-tRNAi to 40S/mRNA complexes under conditions of inhibition of eIF2 activity (eIF2α-phosphorylation), or its absence. eIF2A does not function in major steps in the initiation process, but is suggested to act at some minor/alternative initiation events such as re-initiation, internal initiation, or non-AUG initiation, important for translational control of specific mRNAs. This review summarizes our current understanding of the eIF2A structure and function.
Collapse
Affiliation(s)
- Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - William C. Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
24
|
Romero-López C, Berzal-Herranz A. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Int J Mol Sci 2020; 21:1479. [PMID: 32098260 PMCID: PMC7073135 DOI: 10.3390/ijms21041479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| |
Collapse
|
25
|
Abstract
Viruses must co-opt the cellular translation machinery to produce progeny virions. Eukaryotic viruses have evolved a variety of ways to manipulate the cellular translation apparatus, in many cases using elegant RNA-centred strategies. Viral RNAs can alter or control every phase of protein synthesis and have diverse targets, mechanisms and structures. In addition, as cells attempt to limit infection by downregulating translation, some of these viral RNAs enable the virus to overcome this response or even take advantage of it to promote viral translation over cellular translation. In this Review, we present important examples of viral RNA-based strategies to exploit the cellular translation machinery. We describe what is understood of the structures and mechanisms of diverse viral RNA elements that alter or regulate translation, the advantages that are conferred to the virus and some of the major unknowns that provide motivation for further exploration. Eukaryotic viruses have evolved a variety of ways to manipulate the cellular translation apparatus. In this Review, Jaafar and Kieft present important examples of viral RNA-based strategies to exploit the cellular translation machinery.
Collapse
Affiliation(s)
- Zane A Jaafar
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA. .,RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, CO, USA.
| |
Collapse
|
26
|
Long-range interdomain communications in eIF5B regulate GTP hydrolysis and translation initiation. Proc Natl Acad Sci U S A 2020; 117:1429-1437. [PMID: 31900355 PMCID: PMC6983393 DOI: 10.1073/pnas.1916436117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Translation is a key regulatory step in the control of gene expression. The first stage of translation, initiation, establishes the foundation for the sequential synthesis of a protein. In eukaryotes, 2 GTP-regulated checkpoints ensure the efficiency and fidelity of translation initiation. The GTPase eIF5B is responsible for the correct functioning of the second checkpoint. Molecular interactions of eIF5B with other correctly assembled components on the ribosome lead to GTP hydrolysis that allows the machinery of protein production to transition from initiation into elongation. Here, we show how a highly conserved stretch of residues in eIF5B, identified using electron cryomicroscopy, coordinates the gating into elongation, underscoring the importance of modular architecture in translation factors to sense and communicate ribosomal states. Translation initiation controls protein synthesis by regulating the delivery of the first aminoacyl-tRNA to messenger RNAs (mRNAs). In eukaryotes, initiation is sophisticated, requiring dozens of protein factors and 2 GTP-regulated steps. The GTPase eIF5B gates progression to elongation during the second GTP-regulated step. Using electron cryomicroscopy (cryo-EM), we imaged an in vitro initiation reaction which is set up with purified yeast components and designed to stall with eIF5B and a nonhydrolyzable GTP analog. A high-resolution reconstruction of a “dead-end” intermediate at 3.6 Å allowed us to visualize eIF5B in its ribosome-bound conformation. We identified a stretch of residues in eIF5B, located close to the γ-phosphate of GTP and centered around the universally conserved tyrosine 837 (Saccharomyces cerevisiae numbering), that contacts the catalytic histidine of eIF5B (H480). Site-directed mutagenesis confirmed the essential role that these residues play in regulating ribosome binding, GTP hydrolysis, and translation initiation both in vitro and in vivo. Our results illustrate how eIF5B transmits the presence of a properly delivered initiator aminoacyl-tRNA at the P site to the distant GTPase center through interdomain communications and underscore the importance of the multidomain architecture in translation factors to sense and communicate ribosomal states.
Collapse
|
27
|
Neupane R, Pisareva VP, Rodriguez CF, Pisarev AV, Fernández IS. A complex IRES at the 5'-UTR of a viral mRNA assembles a functional 48S complex via an uAUG intermediate. eLife 2020; 9:54575. [PMID: 32286223 PMCID: PMC7190351 DOI: 10.7554/elife.54575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 01/21/2023] Open
Abstract
Taking control of the cellular apparatus for protein production is a requirement for virus progression. To ensure this control, diverse strategies of cellular mimicry and/or ribosome hijacking have evolved. The initiation stage of translation is especially targeted as it involves multiple steps and the engagement of numerous initiation factors. The use of structured RNA sequences, called Internal Ribosomal Entry Sites (IRES), in viral RNAs is a widespread strategy for the exploitation of eukaryotic initiation. Using a combination of electron cryo-microscopy (cryo-EM) and reconstituted translation initiation assays with native components, we characterized how a novel IRES at the 5'-UTR of a viral RNA assembles a functional initiation complex via an uAUG intermediate. The IRES features a novel extended, multi-domain architecture, that circles the 40S head. The structures and accompanying functional data illustrate the importance of 5'-UTR regions in translation regulation and underline the relevance of the untapped diversity of viral IRESs.
Collapse
Affiliation(s)
- Ritam Neupane
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States,Department of Biochemistry and Molecular Biophysics, Columbia UniversityNew YorkUnited States
| | - Vera P Pisareva
- Department of Cell Biology, SUNY Downstate Medical CenterBrooklynUnited States
| | - Carlos F Rodriguez
- Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)MadridSpain
| | - Andrey V Pisarev
- Department of Cell Biology, SUNY Downstate Medical CenterBrooklynUnited States
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia UniversityNew YorkUnited States
| |
Collapse
|
28
|
Johnson AG, Petrov AN, Fuchs G, Majzoub K, Grosely R, Choi J, Puglisi JD. Fluorescently-tagged human eIF3 for single-molecule spectroscopy. Nucleic Acids Res 2019; 46:e8. [PMID: 29136179 PMCID: PMC5778468 DOI: 10.1093/nar/gkx1050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
Human translation initiation relies on the combined activities of numerous ribosome-associated eukaryotic initiation factors (eIFs). The largest factor, eIF3, is an ∼800 kDa multiprotein complex that orchestrates a network of interactions with the small 40S ribosomal subunit, other eIFs, and mRNA, while participating in nearly every step of initiation. How these interactions take place during the time course of translation initiation remains unclear. Here, we describe a method for the expression and affinity purification of a fluorescently-tagged eIF3 from human cells. The tagged eIF3 dodecamer is structurally intact, functions in cell-based assays, and interacts with the HCV IRES mRNA and the 40S-IRES complex in vitro. By tracking the binding of single eIF3 molecules to the HCV IRES RNA with a zero-mode waveguides-based instrument, we show that eIF3 samples both wild-type IRES and an IRES that lacks the eIF3-binding region, and that the high-affinity eIF3-IRES interaction is largely determined by slow dissociation kinetics. The application of single-molecule methods to more complex systems involving eIF3 may unveil dynamics underlying mRNA selection and ribosome loading during human translation initiation.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexey N Petrov
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Gabriele Fuchs
- The RNA Institute, Department of Biological Sciences, University of Albany, Albany, NY 12222, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Junhong Choi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Raja R, Baral S, Dixit NM. Interferon at the cellular, individual, and population level in hepatitis C virus infection: Its role in the interferon-free treatment era. Immunol Rev 2019; 285:55-71. [PMID: 30129199 DOI: 10.1111/imr.12689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The advent of powerful direct-acting antiviral agents (DAAs) has revolutionized the treatment of hepatitis C. DAAs cure nearly all patients with short duration, oral treatments. Significant efforts are now underway to optimize DAA-based treatments. We discuss the potential role of interferon in this optimization. Clinical studies present compelling evidence that DAAs perform better in treatment-naive individuals than in individuals who previously failed treatment with interferon, a surprising correlation because interferon and DAAs are thought to act independently. Recent mathematical models explore a mechanistic hypothesis underlying this correlation. The hypothesis invokes the action of interferon at the cellular, individual, and population levels. Strong interferon responses prevent the productive infection of cells, reduce viral replication, and impede the development of resistance to DAAs in infected individuals and improve cure rates elicited by DAAs in treated populations. The models develop descriptions of these processes, integrate them into a comprehensive framework, and capture clinical data quantitatively, providing a successful test of the hypothesis. Individuals with strong endogenous interferon responses thus present a promising subpopulation for reducing DAA treatment durations. This review discusses the conceptual advances made by the models, highlights the new insights they unravel, and examines their applicability to optimize DAA-based treatments.
Collapse
Affiliation(s)
- Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Subhasish Baral
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
30
|
Kwan T, Thompson SR. Noncanonical Translation Initiation in Eukaryotes. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032672. [PMID: 29959190 DOI: 10.1101/cshperspect.a032672] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vast majority of eukaryotic messenger RNAs (mRNAs) initiate translation through a canonical, cap-dependent mechanism requiring a free 5' end and 5' cap and several initiation factors to form a translationally active ribosome. Stresses such as hypoxia, apoptosis, starvation, and viral infection down-regulate cap-dependent translation during which alternative mechanisms of translation initiation prevail to express proteins required to cope with the stress, or to produce viral proteins. The diversity of noncanonical initiation mechanisms encompasses a broad range of strategies and cellular cofactors. Herein, we provide an overview and, whenever possible, a mechanistic understanding of the various noncanonical mechanisms of initiation used by cells and viruses. Despite many unanswered questions, recent advances have propelled our understanding of the scope, diversity, and mechanisms of alternative initiation.
Collapse
Affiliation(s)
- Thaddaeus Kwan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
31
|
Oxygen-Sensitive Remodeling of Central Carbon Metabolism by Archaic eIF5B. Cell Rep 2019; 22:17-26. [PMID: 29298419 PMCID: PMC5786279 DOI: 10.1016/j.celrep.2017.12.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/20/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
The eukaryotic translation initiation factor 5B (eIF5B) is a homolog of IF2, an ancient translation factor that enables initiator methionine-tRNAiMet (met-tRNAiMet) loading on prokaryotic ribosomes. While it can be traced back to the last universal common ancestor, eIF5B is curiously dispensable in modern aerobic yeast and mammalian cells. Here, we show that eIF5B is an essential element of the cellular hypoxic cap-dependent protein synthesis machinery. System-wide interrogation of dynamic translation machineries by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) demonstrated augmented eIF5B activity in hypoxic translating ribosomes. Global translatome studies revealed central carbon metabolism, cellular hypoxic adaptation, and ATF4-mediated stress response as major eIF5B-dependent pathways. These primordial processes rely on eIF5B even in the presence of oxygen and active eIF2, the canonical recruiter of met-tRNAiMet in eukaryotes. We suggest that aerobic eukarya retained eIF5B/IF2 to remodel anaerobic pathways during episodes of oxygen deficiency.
Collapse
|
32
|
Start Codon Recognition in Eukaryotic and Archaeal Translation Initiation: A Common Structural Core. Int J Mol Sci 2019; 20:ijms20040939. [PMID: 30795538 PMCID: PMC6412873 DOI: 10.3390/ijms20040939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 01/12/2023] Open
Abstract
Understanding molecular mechanisms of ribosomal translation sheds light on the emergence and evolution of protein synthesis in the three domains of life. Universally, ribosomal translation is described in three steps: initiation, elongation and termination. During initiation, a macromolecular complex assembled around the small ribosomal subunit selects the start codon on the mRNA and defines the open reading frame. In this review, we focus on the comparison of start codon selection mechanisms in eukaryotes and archaea. Eukaryotic translation initiation is a very complicated process, involving many initiation factors. The most widespread mechanism for the discovery of the start codon is the scanning of the mRNA by a pre-initiation complex until the first AUG codon in a correct context is found. In archaea, long-range scanning does not occur because of the presence of Shine-Dalgarno (SD) sequences or of short 5′ untranslated regions. However, archaeal and eukaryotic translation initiations have three initiation factors in common: e/aIF1, e/aIF1A and e/aIF2 are directly involved in the selection of the start codon. Therefore, the idea that these archaeal and eukaryotic factors fulfill similar functions within a common structural ribosomal core complex has emerged. A divergence between eukaryotic and archaeal factors allowed for the adaptation to the long-range scanning process versus the SD mediated prepositioning of the ribosome.
Collapse
|
33
|
Suzuki R, Matsuda M, Shimoike T, Watashi K, Aizaki H, Kato T, Suzuki T, Muramatsu M, Wakita T. Activation of protein kinase R by hepatitis C virus RNA-dependent RNA polymerase. Virology 2019; 529:226-233. [PMID: 30738360 DOI: 10.1016/j.virol.2019.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) was shown to activate protein kinase R (PKR), which inhibits expression of interferon (IFN) and IFN-stimulated genes by controlling the translation of newly transcribed mRNAs. However, it is unknown exactly how HCV activates PKR. To address the molecular mechanism(s) of PKR activation mediated by HCV infection, we examined the effects of viral proteins on PKR activation. Here, we show that expression of HCV NS5B strongly induced PKR and eIF2α phosphorylation, and attenuated MHC class I expression. In contrast, expression of Japanese encephalitis virus RNA-dependent RNA polymerase did not induce phosphorylation of PKR. Co-immunoprecipitation analyses showed that HCV NS5B interacted with PKR. Furthermore, expression of NS5B with polymerase activity-deficient mutation failed to phosphorylate PKR, suggesting that RNA polymerase activity is required for PKR activation. These results suggest that HCV activates PKR by association with NS5B, resulting in translational suppression of MHC class I to establish chronic infection.
Collapse
Affiliation(s)
- Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama-shi, Tokyo 208-0011, Japan.
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takashi Shimoike
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama-shi, Tokyo 208-0011, Japan.
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan.
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
34
|
Hassanzadeh G, Naing T, Graber T, Jafarnejad SM, Stojdl DF, Alain T, Holcik M. Characterizing Cellular Responses During Oncolytic Maraba Virus Infection. Int J Mol Sci 2019; 20:ijms20030580. [PMID: 30700020 PMCID: PMC6387032 DOI: 10.3390/ijms20030580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
The rising demand for powerful oncolytic virotherapy agents has led to the identification of Maraba virus, one of the most potent oncolytic viruses from Rhabdoviridae family which displays high selectivity for killing malignant cells and low cytotoxicity in normal cells. Although the virus is readied to be used for clinical trials, the interactions between the virus and the host cells is still unclear. Using a newly developed interferon-sensitive mutant Maraba virus (MG1), we have identified two key regulators of global translation (4E-BP1 and eIF2α) as being involved in the regulation of protein synthesis in the infected cells. Despite the translational arrest upon viral stress, we showed an up-regulation of anti-apoptotic Bcl-xL protein that provides a survival benefit for the host cell, yet facilitates effective viral propagation. Given the fact that eIF5B canonically regulates 60S ribosome subunit end joining and is able to replace the role of eIF2 in delivering initiator tRNA to the 40S ribosome subunit upon the phosphorylation of eIF2α we have tested whether eIF5B mediates the translation of target mRNAs during MG1 infection. Our results show that the inhibition of eIF5B significantly down-regulates the level of Bcl-xL steady-state mRNA, thus indirectly attenuates viral propagation.
Collapse
Affiliation(s)
- Golnoush Hassanzadeh
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
| | - Thet Naing
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Tyson Graber
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
| | - Seyed Mehdi Jafarnejad
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK.
| | - David F Stojdl
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
| | - Tommy Alain
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
| | - Martin Holcik
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
35
|
Ross JA, Dungen KV, Bressler KR, Fredriksen M, Khandige Sharma D, Balasingam N, Thakor N. Eukaryotic initiation factor 5B (eIF5B) provides a critical cell survival switch to glioblastoma cells via regulation of apoptosis. Cell Death Dis 2019; 10:57. [PMID: 30670698 PMCID: PMC6342974 DOI: 10.1038/s41419-018-1283-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022]
Abstract
Physiological stress conditions attenuate global mRNA translation via modifications of key eukaryotic initiation factors. However, non-canonical translation initiation mechanisms allow cap-independent translation of certain mRNAs. We have previously demonstrated that eIF5B promotes cap-independent translation of the mRNA encoding the antiapoptotic factor, XIAP, during cellular stress. Here, we show that depletion of eIF5B sensitizes glioblastoma multiforme cells to TRAIL-induced apoptosis by a pathway involving caspases-8, −9, and −7, with no significant effect on cell cycle progression. eIF5B promotes evasion of apoptosis by promoting the translation of several IRES-containing mRNAs, encoding the antiapoptotic proteins XIAP, Bcl-xL, cIAP1, and c-FLIPS. We also show that eIF5B promotes translation of nuclear factor erythroid 2-related factor 2 and suggest that reactive oxygen species contribute to increased apoptosis under conditions of eIF5B depletion. Finally, eIF5B depletion leads to decreased activation of the canonical NF-κB pathway. Taken together, our data suggest that eIF5B represents a regulatory node, allowing cancer cells to evade apoptosis by promoting the translation of pro-survival proteins from IRES-containing mRNAs.
Collapse
Affiliation(s)
- Joseph A Ross
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| | - Keiran Vanden Dungen
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| | - Kamiko R Bressler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| | - Mikayla Fredriksen
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| | - Divya Khandige Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| | - Nirujah Balasingam
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada. .,Canadian Centre for Behavioral Neuroscience (CCBN), Department of Neuroscience, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada. .,Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
36
|
Ross JA, Bressler KR, Thakor N. Eukaryotic Initiation Factor 5B (eIF5B) Cooperates with eIF1A and eIF5 to Facilitate uORF2-Mediated Repression of ATF4 Translation. Int J Mol Sci 2018; 19:E4032. [PMID: 30551605 PMCID: PMC6321046 DOI: 10.3390/ijms19124032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
A variety of cellular stresses lead to global translation attenuation due to phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2), which decreases the availability of the eIF2-GTP-Met-tRNAi ternary complex. However, a subset of mRNAs continues to be translated by non-canonical mechanisms under these conditions. In fact, although translation initiation of activating transcription factor 4 (ATF4) is normally repressed by an upstream open reading frame (uORF), a decreased availability of ternary complex leads to increased translation of the main ATF4-coding ORF. We show here that siRNA-mediated depletion of eIF5B-which can substitute for eIF2 in delivering Met-tRNAi-leads to increased levels of ATF4 protein in mammalian cells. This de-repression is not due to phosphorylation of eIF2α under conditions of eIF5B depletion. Although eIF5B depletion leads to a modest increase in the steady-state levels of ATF4 mRNA, we show by polysome profiling that the depletion of eIF5B enhances ATF4 expression primarily at the level of translation. Moreover, eIF5B silencing increases the expression of an ATF4-luciferase translational reporter by a mechanism requiring the repressive uORF2. Further experiments suggest that eIF5B cooperates with eIF1A and eIF5, but not eIF2A, to facilitate the uORF2-mediated repression of ATF4 translation.
Collapse
Affiliation(s)
- Joseph A Ross
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.
| | - Kamiko R Bressler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.
- Canadian Centre for Behavioral Neuroscience (CCBN), Department of Neuroscience, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada.
| |
Collapse
|
37
|
Kim E, Kim JH, Seo K, Hong KY, An SWA, Kwon J, Lee SJV, Jang SK. eIF2A, an initiator tRNA carrier refractory to eIF2α kinases, functions synergistically with eIF5B. Cell Mol Life Sci 2018; 75:4287-4300. [PMID: 30019215 PMCID: PMC6208778 DOI: 10.1007/s00018-018-2870-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
The initiator tRNA (Met-tRNA i Met ) at the P site of the small ribosomal subunit plays an important role in the recognition of an mRNA start codon. In bacteria, the initiator tRNA carrier, IF2, facilitates the positioning of Met-tRNA i Met on the small ribosomal subunit. Eukarya contain the Met-tRNA i Met carrier, eIF2 (unrelated to IF2), whose carrier activity is inhibited under stress conditions by the phosphorylation of its α-subunit by stress-activated eIF2α kinases. The stress-resistant initiator tRNA carrier, eIF2A, was recently uncovered and shown to load Met-tRNA i Met on the 40S ribosomal subunit associated with a stress-resistant mRNA under stress conditions. Here, we report that eIF2A interacts and functionally cooperates with eIF5B (a homolog of IF2), and we describe the functional domains of eIF2A that are required for its binding of Met-tRNA i Met , eIF5B, and a stress-resistant mRNA. The results indicate that the eukaryotic eIF5B-eIF2A complex functionally mimics the bacterial IF2 containing ribosome-, GTP-, and initiator tRNA-binding domains in a single polypeptide.
Collapse
Affiliation(s)
- Eunah Kim
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Joon Hyun Kim
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Keunhee Seo
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Ka Young Hong
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Seon Woo A An
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Junyoung Kwon
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Seung-Jae V Lee
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Sung Key Jang
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
| |
Collapse
|
38
|
Akulich KA, Sinitcyn PG, Makeeva DS, Andreev DE, Terenin IM, Anisimova AS, Shatsky IN, Dmitriev SE. A novel uORF-based regulatory mechanism controls translation of the human MDM2 and eIF2D mRNAs during stress. Biochimie 2018; 157:92-101. [PMID: 30419262 DOI: 10.1016/j.biochi.2018.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 01/02/2023]
Abstract
Short upstream open reading frames (uORFs) are the most prevalent cis-acting regulatory elements in the mammalian transcriptome which can orchestrate mRNA translation. Apart from being "passive roadblocks" that decrease expression of the main coding regions, particular uORFs can serve as specific sensors for changing conditions, thus regulating translation in response to cell stress. Here we report a novel uORF-based regulatory mechanism that is employed under conditions of hyperosmotic stress by at least two human mRNAs, coding for translation reinitiation/recycling factor eIF2D and E3 ubiquitin ligase MDM2. This novel mode of translational control selectively downregulates their expression and requires as few as one uORF. Using a set of reporter mRNAs and fleeting mRNA transfection (FLERT) technique, we provide evidence that the phenomenon does not rely on delayed reinitiation, altered AUG recognition, ribosome stalling, mRNA destabilization or other known mechanisms. Instead, it is based on events taking place at uORF stop codon or immediately downstream. Functional aspects and implications of the novel regulatory mechanism to cell physiology are discussed.
Collapse
Affiliation(s)
- Kseniya A Akulich
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Pavel G Sinitcyn
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Desislava S Makeeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russia
| | - Aleksandra S Anisimova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia; Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
39
|
Lin KY, Nag N, Pestova TV, Marintchev A. Human eIF5 and eIF1A Compete for Binding to eIF5B. Biochemistry 2018; 57:5910-5920. [PMID: 30211544 DOI: 10.1021/acs.biochem.8b00839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eukaryotic translation initiation is a multistep process requiring a number of eukaryotic translation initiation factors (eIFs). Two GTPases play key roles in the process. eIF2 brings the initiator Met-tRNAi to the preinitiation complex (PIC). Upon start codon selection and GTP hydrolysis promoted by the GTPase-activating protein (GAP) eIF5, eIF2-GDP is displaced from Met-tRNAi by eIF5B-GTP and is released in complex with eIF5. eIF5B promotes ribosomal subunit joining, with the help of eIF1A. Upon subunit joining, eIF5B hydrolyzes GTP and is released together with eIF1A. We found that human eIF5 interacts with eIF5B and may help recruit eIF5B to the PIC. An eIF5B-binding motif was identified at the C-terminus of eIF5, similar to that found in eIF1A. Indeed, eIF5 competes with eIF1A for binding and has an ∼100-fold higher affinity for eIF5B. Because eIF5 is the GAP of eIF2, the newly discovered interaction offers a possible mechanism for coordination between the two steps in translation initiation controlled by GTPases: start codon selection and ribosomal subunit joining. Our results indicate that in humans, eIF5B displacing eIF2 from Met-tRNAi upon subunit joining may be coupled to eIF1A displacing eIF5 from eIF5B, allowing the eIF5:eIF2-GDP complex to leave the ribosome.
Collapse
Affiliation(s)
- Kai Ying Lin
- Department of Physiology & Biophysics , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Nabanita Nag
- Department of Physiology & Biophysics , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Tatyana V Pestova
- Department of Cell Biology , State University of New York, Downstate Medical Center , Brooklyn , New York 11203 , United States
| | - Assen Marintchev
- Department of Physiology & Biophysics , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| |
Collapse
|
40
|
Chu J, Pelletier J. Therapeutic Opportunities in Eukaryotic Translation. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032995. [PMID: 29440069 DOI: 10.1101/cshperspect.a032995] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to block biological processes with selective small molecules provides advantages distinct from most other experimental approaches. These include rapid time to onset, swift reversibility, ability to probe activities in manners that cannot be accessed by genetic means, and the potential to be further developed as therapeutic agents. Small molecule inhibitors can also be used to alter expression and activity without affecting the stoichiometry of interacting partners. These tenets have been especially evident in the field of translation. Small molecule inhibitors were instrumental in enabling investigators to capture short-lived complexes and characterize specific steps of protein synthesis. In addition, several drugs that are the mainstay of modern antimicrobial drug therapy are potent inhibitors of prokaryotic translation. Currently, there is much interest in targeting eukaryotic translation as decades of research have revealed that deregulated protein synthesis in cancer cells represents a targetable vulnerability. In addition to being potential therapeutics, small molecules that manipulate translation have also been shown to influence cognitive processes such as memory. In this review, we focus on small molecule modulators that target the eukaryotic translation initiation apparatus and provide an update on their potential application to the treatment of disease.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
41
|
Roberts L, Wieden HJ. Viruses, IRESs, and a universal translation initiation mechanism. Biotechnol Genet Eng Rev 2018; 34:60-75. [PMID: 29804514 DOI: 10.1080/02648725.2018.1471567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Internal ribosome entry sites (IRESs) are cis-acting RNA elements capable of recruiting ribosomes and initiating translation on an internal portion of an mRNA. This is divergent from canonical eukaryotic translation initiation, where the 5' cap is recognized by initiation factors (IFs) that recruit the ribosome to initiate translation of the encoded peptide. All known IRESs are capable of initiating translation in a cap-independent manner, and are therefore not constrained by the absence or presence of a 5' m7G cap. In addition to being cap-independent, IRES-mediated translation often uses only a subset of IFs allowing them to function independently of canonical initiation. The ability to function independently of the canonical translation initiation pathway allows IRESs to mediate gene expression when cap-dependent translation has been inhibited. Recent reports of viral IRESs capable of initiating translation across taxonomic domains (Eukarya and Bacteria) have sparked interest in designing gene expression systems compatible with multiple organisms. The ability to drive translation independent of cellular context using a common mechanism would have a wide range of applications ranging from agriculture biotechnology to the development of antiviral drugs. Here we discuss IRES-mediated translation and critically compare the available mechanistic and structural information. A particular focus will be on IRES-meditated translation across domains of life (viral and cellular IRESs) , IRES bioengineering and the possibility of an evolutionary conserved translation initiation mechanism.
Collapse
Affiliation(s)
- Luc Roberts
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Hans-Joachim Wieden
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| |
Collapse
|
42
|
Shatsky IN, Terenin IM, Smirnova VV, Andreev DE. Cap-Independent Translation: What's in a Name? Trends Biochem Sci 2018; 43:882-895. [PMID: 29789219 DOI: 10.1016/j.tibs.2018.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 02/05/2023]
Abstract
Eukaryotic translation initiation relies on the m7G cap present at the 5' end of all mRNAs. Some viral mRNAs employ alternative mechanisms of initiation based on internal ribosome entry. The 'IRES ideology' was adopted by researchers to explain the differential translation of cellular mRNAs when the cap recognition is suppressed. However, some cellular IRESs have already been challenged and others are awaiting their validation. As an alternative cap-independent mechanism, we propose adopting the concept of cap-independent translation enhancers (CITEs) for mammalian mRNAs. Unlike IRESs, CITEs can be located both within 5' and 3' UTRs and bind mRNA-recruiting translational components. The respective 5' UTRs are then inspected by the scanning machinery essentially in the same way as under cap-dependent translation.
Collapse
Affiliation(s)
- Ivan N Shatsky
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia.
| | - Ilya M Terenin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8-2, 119991, Moscow, Russia
| | - Victoria V Smirnova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| | - Dmitri E Andreev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| |
Collapse
|
43
|
Battling for Ribosomes: Translational Control at the Forefront of the Antiviral Response. J Mol Biol 2018; 430:1965-1992. [PMID: 29746850 DOI: 10.1016/j.jmb.2018.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023]
Abstract
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus-host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.
Collapse
|
44
|
Fernández-Carrillo C, Pérez-Vilaró G, Díez J, Pérez-Del-Pulgar S. Hepatitis C virus plays with fire and yet avoids getting burned. A review for clinicians on processing bodies and stress granules. Liver Int 2018; 38:388-398. [PMID: 28782251 DOI: 10.1111/liv.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 08/02/2017] [Indexed: 02/13/2023]
Abstract
Over the last few years, many reports have defined several types of RNA cell granules composed of proteins and messenger RNA (mRNA) that regulate gene expression on a post-transcriptional level. Processing bodies (P-bodies) and stress granules (SGs) are among the best-known RNA granules, only detectable when they accumulate into very dynamic cytosolic foci. Recently, a tight association has been found between positive-stranded RNA viruses, including hepatitis C virus (HCV), and these granules. The present article offers a comprehensive review on the complex and paradoxical relationship between HCV, P-bodies and SGs from a translational perspective. Despite the fact that components of P-bodies and SGs have assiduously controlled mRNA expression, either by sequestration or degradation, for thousands of years, HCV has learned how to dangerously exploit certain of them for its own benefit in an endless biological war. Thus, HCV has gained the ability to hack ancient host machineries inherited from prokaryotic times. While P-bodies and SGs are crucial to the HCV cycle, in the interferon-free era we still lack detailed knowledge of the mechanisms involved, processes that may underlie the long-term complications of HCV infection.
Collapse
Affiliation(s)
| | - Gemma Pérez-Vilaró
- Department of Experimental and Health Sciences, Molecular Virology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Juana Díez
- Department of Experimental and Health Sciences, Molecular Virology, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
45
|
Arrangements of nucleotides flanking the start codon in the IRES of the hepatitis C virus in the IRES binary complex with the human 40S ribosomal subunit. Biochimie 2018; 148:72-79. [PMID: 29501734 DOI: 10.1016/j.biochi.2018.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/09/2023]
Abstract
Genomic RNA of hepatitis C virus (HCV) has an internal ribosome entry site (IRES), a specific highly structured fragment responsible for its non-canonical translation initiation. The HCV IRES contains a major part of the 5'-untranslated region of the viral RNA and a small portion of the open reading frame (ORF). At the first step of initiation, IRES directly binds to 40S ribosomal subunits so that the AUG start codon appears at the P site region without scanning and without involving initiation factors. However, it is still not entirely clear whether the IRES ORF is correctly loaded into the 40S ribosomal mRNA binding channel in the resulting binary complex. To address this issue, we applied site-directed cross-linking using HCV IRES derivatives bearing a perfluorophenyl azide cross-linker at nucleotides in definite positions relative to the adenine of the AUG start codon. We found that the modifier at the IRES position -3 cross-links to ribosomal proteins uS11 and eS26. These proteins have been identified together with uS7 as those interacting with the mRNA nucleotide in position -3 relative to the first nucleotide of the codon directed to the P site by a cognate tRNA. Thus, our results indicate a certain difference in the locations of the above parts of HCV IRES and canonical mRNAs on 40S subunits. The modifier at the IRES positions +4/5 was attached to uS19, which is specific for ribosomal complexes with the P site tRNA and similar derivatives of model canonical mRNAs when the modifier is in the same positions. However, the cross-linking efficiency of the IRES derivative was drastically lower than that previously observed with derivatives of model mRNAs. This implies that the IRES ORF portion is correctly loaded into the mRNA binding channel only in a tiny fraction of the binary complexes.
Collapse
|
46
|
Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9. [PMID: 29193740 DOI: 10.1002/wrna.1458] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
To ensure efficient propagation, viruses need to rapidly produce viral proteins after cell entrance. Since viral genomes do not encode any components of the protein biosynthesis machinery, viral proteins must be produced by the host cell. To hi-jack the host cellular translation, viruses use a great variety of distinct strategies. Many single-stranded positive-sensed RNA viruses contain so-called internal ribosome entry sites (IRESs). IRESs are structural RNA motifs that have evolved to specific folds that recruit the host ribosomes on the viral coding sequences in order to synthesize viral proteins. In host canonical translation, recruitment of the translation machinery components is essentially guided by the 5' cap (m7 G) of mRNA. In contrast, IRESs are able to promote efficient ribosome assembly internally and in cap-independent manner. IRESs have been categorized into four classes, based on their length, nucleotide sequence, secondary and tertiary structures, as well as their mode of action. Classes I and II require the assistance of cellular auxiliary factors, the eukaryotic intiation factors (eIF), for efficient ribosome assembly. Class III IRESs require only a subset of eIFs whereas Class IV, which are the more compact, can promote translation without any eIFs. Extensive functional and structural investigations of IRESs over the past decades have allowed a better understanding of their mode of action for viral translation. Because viral translation has a pivotal role in the infectious program, IRESs are therefore attractive targets for therapeutic purposes. WIREs RNA 2018, 9:e1458. doi: 10.1002/wrna.1458 This article is categorized under: Translation > Ribosome Structure/Function Translation > Translation Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Justine Mailliot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Illkirch-Graffenstaden, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, "Architecture et Réactivité de l'ARN" CNRS UPR9002, Université De Strasbourg, Strasbourg, France
| |
Collapse
|
47
|
González-Almela E, Williams H, Sanz MA, Carrasco L. The Initiation Factors eIF2, eIF2A, eIF2D, eIF4A, and eIF4G Are Not Involved in Translation Driven by Hepatitis C Virus IRES in Human Cells. Front Microbiol 2018; 9:207. [PMID: 29487587 PMCID: PMC5816946 DOI: 10.3389/fmicb.2018.00207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
Animal viruses have evolved a variety of strategies to ensure the efficient translation of their mRNAs. One such strategy is the use of internal ribosome entry site (IRES) elements, which circumvent the requirement for some eukaryotic initiation factors (eIFs). Much effort has been directed to unravel the precise mechanism of translation initiation by hepatitis C virus (HCV) mRNA. In the present study, we examined the involvement of several eIFs in HCV IRES-driven translation in human cells in a comparative analysis with mRNAs bearing the encephalomyocarditis virus or the Cricket paralysis virus IRES element. Consistent with previous findings, several inhibitors of eIF2 activity, including sodium arsenite, thapsigargin, tunicamycin, and salubrinal, had no inhibitory effect on the translation of an mRNA bearing the HCV IRES, and all induced the phosphorylation of eIF2α. In addition, hippuristanol and pateamine A, two known inhibitors of eIF4A, failed to block HCV IRES-directed translation. To test the release of nuclear proteins to the cytoplasm and to analyze the formation of stress granules, the location of the nuclear protein TIA1 was tested by immunocytochemistry. Both arsenite and pateamine A could efficiently induce the formation of stress granules containing TIA1 and eIF4G, whereas eIF3 and eIF2 failed to localize to these cytoplasmic bodies. The finding of eIF4A and eIF4G in stress granules suggests that they do not participate in mRNA translation. Human HAP1 cells depleted for eIF2A, eIF2D, or both factors, were able to synthesize luciferase from an mRNA bearing the HCV IRES even when eIF2α was phosphorylated. Overall, these results demonstrate that neither eIF2A nor eIF2D does not participate in the translation directed by HCV IRES. We conclude that eIF2, eIF4A, eIF2A, and eIF2D do not participate in the initiation of translation of HCV mRNA.
Collapse
Affiliation(s)
- Esther González-Almela
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Hugh Williams
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A Sanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
48
|
eIF5B increases ASAP1 expression to promote HCC proliferation and invasion. Oncotarget 2018; 7:62327-62339. [PMID: 27694689 PMCID: PMC5308730 DOI: 10.18632/oncotarget.11469] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide. Despite the therapeutic advances that have been achieved during the past decade, the molecular pathogenesis underlying HCC remains poorly understood. In this study, we discovered that increased expression eukaryotic translation initiation factor 5B (eIF5B) was significantly correlated with aggressive characteristics and associated with shorter recurrence-free survival (RFS) and overall survival (OS) in a large cohort. We also found that eIF5B promoted HCC cell proliferation and migration in vitro and in vivo partly through increasing ASAP1 expression. Our findings strongly suggested that eIF5B could promote HCC progression and be considered a prognostic biomarker for HCC.
Collapse
|
49
|
Willcocks MM, Zaini S, Chamond N, Ulryck N, Allouche D, Rajagopalan N, Davids NA, Fahnøe U, Hadsbjerg J, Rasmussen TB, Roberts LO, Sargueil B, Belsham GJ, Locker N. Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites. Nucleic Acids Res 2018; 45:13016-13028. [PMID: 29069411 PMCID: PMC5727462 DOI: 10.1093/nar/gkx991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/12/2017] [Indexed: 01/23/2023] Open
Abstract
Viral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit. However, some HCV-like IRES elements possess an additional sub-domain, termed IIId2, whose function remains unclear. Herein, we show that IIId2 sub-domains from divergent viruses have different functions. The IIId2 sub-domain present in Seneca valley virus (SVV), a picornavirus, is dispensable for IRES activity, while the IIId2 sub-domains of two pestiviruses, classical swine fever virus (CSFV) and border disease virus (BDV), are required for 80S ribosomes assembly and IRES activity. Unlike in SVV, the deletion of IIId2 from the CSFV and BDV IRES elements impairs initiation of translation by inhibiting the assembly of 80S ribosomes. Consequently, this negatively affects the replication of CSFV and BDV. Finally, we show that the SVV IIId2 sub-domain is required for efficient viral RNA synthesis and growth of SVV, but not for IRES function. This study sheds light on the molecular evolution of viruses by clearly demonstrating that conserved RNA structures, within distantly related RNA viruses, have acquired different roles in the virus life cycles.
Collapse
Affiliation(s)
- Margaret M Willcocks
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Salmah Zaini
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Nathalie Chamond
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nathalie Ulryck
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Delphine Allouche
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Noemie Rajagopalan
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nana A Davids
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Ulrik Fahnøe
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Johanne Hadsbjerg
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Thomas Bruun Rasmussen
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Lisa O Roberts
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Bruno Sargueil
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Graham J Belsham
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
50
|
A Unique ISR Program Determines Cellular Responses to Chronic Stress. Mol Cell 2017; 68:885-900.e6. [PMID: 29220654 DOI: 10.1016/j.molcel.2017.11.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/27/2017] [Accepted: 11/07/2017] [Indexed: 02/05/2023]
Abstract
The integrated stress response (ISR) is a homeostatic mechanism induced by endoplasmic reticulum (ER) stress. In acute/transient ER stress, decreased global protein synthesis and increased uORF mRNA translation are followed by normalization of protein synthesis. Here, we report a dramatically different response during chronic ER stress. This chronic ISR program is characterized by persistently elevated uORF mRNA translation and concurrent gene expression reprogramming, which permits simultaneous stress sensing and proteostasis. The program includes PERK-dependent switching to an eIF3-dependent translation initiation mechanism, resulting in partial, but not complete, translational recovery, which, together with transcriptional reprogramming, selectively bolsters expression of proteins with ER functions. Coordination of transcriptional and translational reprogramming prevents ER dysfunction and inhibits "foamy cell" development, thus establishing a molecular basis for understanding human diseases associated with ER dysfunction.
Collapse
|