1
|
Farimani MM, Abbas-Mohammadi M, Ghorbannia-Dellavar S, Nejad-Ebrahimi S, Hamburger M. Purification, Molecular Docking and Cytotoxicity Evaluation of Bioactive Pentacyclic Polyhydroxylated Triterpenoids from Salvia urmiensis. PLANTA MEDICA 2024; 90:482-490. [PMID: 38219732 DOI: 10.1055/a-2244-8706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Triterpenoids, as one of the largest classes of naturally occurring secondary metabolites in higher plants, are of interest due to their high structural diversity and wide range of biological activities. In addition to several promising pharmacological activities such as antimicrobial, antiviral, antioxidant, anti-inflammatory and hepatoprotective effects, a large number of triterpenoids have revealed high potential for cancer therapy through their strong cytotoxicity on cancer cell lines and, also, low toxicity in normal cells. So, this study was aimed at discovering novel and potentially bioactive triterpenoids from the Salvia urmiensis species. For this, an ethyl acetate fraction of the acetone extract of the aerial parts of the plant was chromatographed to yield five novel polyhydroxylated triterpenoids (1: -5: ). Their structure was elucidated by extensive spectroscopic methods including 1D (1H, 13C, DEPT-Q) and 2D NMR (COSY, HSQC, HMBC, NOESY) experiments, as well as HRESIMS analysis. Cytotoxic activity of the purified compounds was also investigated by MTT assay against the MCF-7 cancer cell line. Furthermore, a molecular docking analysis was applied to evaluate the inhibition potential of the ligands against the nuclear factor kappa B (NF-κB) protein, which promotes tumor metastasis or affects gene expression in cancer disease. The 1β,11β,22α-trihydroxy-olean-12-ene-3-one (compound 4: ) indicated the best activity in both in vitro and in silico assays, with an IC50 value of 32 µM and a docking score value of - 3.976 kcal/mol, respectively.
Collapse
Affiliation(s)
- Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Mahdi Abbas-Mohammadi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Samira Ghorbannia-Dellavar
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Samad Nejad-Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Matthias Hamburger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Biology, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Luque C, de la Cabeza Fernández M, Fuentes-Rios D, Cepero A, Contreras-Cáceres R, Doña M, Perazzoli G, Lozano-Chamizo L, Filice M, Marciello M, Gonzalez-Rumayor V, López-Romero JM, Cabeza L, Melguizo C, Prados J. Improved antitumor activity through a tyramidyl maslinic acid derivative. Design and validation as drug-loaded electrospun polymeric nanofibers. Eur J Pharm Biopharm 2023; 193:241-253. [PMID: 37972906 DOI: 10.1016/j.ejpb.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Among the most harmful tumors detected in the human body, such as breast, colon, brain or pancreas, breast (BC) and colorectal cancer (CRC) are the first and third most frequent cancer worldwide, respectively. The current existing chemotherapeutic treatments present serious side effects due to their intravenous administration can induce cytotoxicity in healthy cells. Thus, new treatment methods based on drug-loaded polymeric nanofibers (NFs) have gained significant potential for their use in localized cancer chemotherapy. Here, a deep in vitro comparative analysis between maslinic acid (MA) and a tyramine-maslinic acid (TMA) derivative is initially performed. This analysis includes a proliferation, and a cell cycle assay, and a genotoxicity, antiangiogenic and apoptosis study. Then, the TMA derivative has been incorporated into electrospun polymeric NFs obtaining an implantable dressing material with antitumor activity. Two types of patches containing TMA-loaded polymeric NFs of poly(caprolactone) (PCL), and a mixture of polylactic acid/poly(4-vinylpyridine) (PLA/PVP) were fabricated by the electrospinning technique. The characterization of the drug-loaded NFs showed an encapsulation capacity of 0.027 mg TMA/mg PCL and 0.024 mg TMA/mg PLA/PVP. Then, the cytotoxic activity of both polymeric systems was tested in CRC (T84), BC (MCF-7) and a no tumor (L929) cell lines exposed to TMA-loaded NFs and blank NFs for 48 h. Moreover, cell cycle assay, genotoxicity, angiogenesis and apoptosis tests were carried out to study the mechanism of action of TMA. Blank NFs showed no-toxicity in all cell lines tested and both drug-loaded NFs significantly reduced cell proliferation (relative proliferation of ≈44 % and ≈25 % respectively). Therefore, TMA was less genotoxic than maslinic acid (MA), and reduced VEGFA expression in MCF-7 cells (1.32 and 2.12-fold for MA and TMA respectively). These results showed that TMA-loaded NFs could constitute a promising biocompatible and biodegradable nanoplatform for the local treatment of solid tumors such as CRC or BC.
Collapse
Affiliation(s)
- Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| | - María de la Cabeza Fernández
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - David Fuentes-Rios
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Málaga, Spain
| | - Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| | | | - Manuel Doña
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Málaga, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| | - Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Atrys Health, E-28001 Madrid, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | | | | | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| |
Collapse
|
3
|
Xu R, Kuang M, Li N. Phytochemistry and pharmacology of plants in the genus Chaenomeles. Arch Pharm Res 2023; 46:825-854. [PMID: 38062238 DOI: 10.1007/s12272-023-01475-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
Chaenomeles plants belong to the Rosaceae family and include five species, Chaenomeles speciosa (Sweet) Nakai, Chaenomeles sinensis (Thouin) Koehne, Chaenomeles japonica (Thunb.) Lindl, Chaenomeles cathayensis (Hemsl.) Schneid and Chaenomeles thibetica Yu. Chaenomeles plants are found and cultivated in nearly every country worldwide. China serves as both the origin and distribution hub for the plants in the Chaenomeles genus, and all Chaenomeles species except for C. japonica are indigenous to China. Chaenomeles spp. is a type of edible medicinal plant that has been traditionally used in China to treat various ailments, such as rheumatism, cholera, dysentery, enteritis, beriberi, and scurvy. A variety of chemical constituents have been extracted from this genus, including terpenoids, phenolics, flavonoids, phenylpropanoids and their derivatives, benzoic acid derivatives, biphenyls, oxylipins, and alkaloids. The biological activity of some of these constituents has already been evaluated. Pharmacological investigations have demonstrated that the plants in the genus Chaenomeles exhibit anti-inflammatory, analgesic, antioxidant, antihyperglycemic, antihyperlipidemic, gastrointestinal protective, antitumor, immunomodulatory, antibacterial, antiviral, hepatoprotective, neuroprotective and other pharmacological activities. The objective of this review is to provide a comprehensive and up-to-date summary of the available information on the genus Chaenomeles to serve as a valuable reference for further investigations.
Collapse
Affiliation(s)
- Ruoling Xu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Mengting Kuang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ning Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Namdeo P, Gidwani B, Tiwari S, Jain V, Joshi V, Shukla SS, Pandey RK, Vyas A. Therapeutic potential and novel formulations of ursolic acid and its derivatives: an updated review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4275-4292. [PMID: 36597140 DOI: 10.1002/jsfa.12423] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/15/2022] [Accepted: 01/03/2023] [Indexed: 06/06/2023]
Abstract
Plants produce biologically active metabolites that have been utilised to cure a variety of severe and persistent illnesses. There is a possibility that understanding how these bioactive molecules work would allow researchers to come up with better treatments for diseases including malignancy, cardiac disease and neurological disorders. A triterpene called ursolic acid (UA) is a pentacyclic prevalent triterpenoid found in fruits, leaves, herbs and blooms. The biological and chemical aspects of UA, as well as their presence, plant sources and biosynthesis, and traditional and newer technologies of extraction, are discussed in this review. Because of its biological function in the creation of new therapeutic techniques, UA is a feasible option for the evolution and medical management of a wide range of medical conditions, including cancer and other life threatening diseases. Despite this, the substance's poor solubility in aquatic environments makes it unsuitable for medicinal purposes. This hurdle was resolved in many different ways. The inclusion of UA into various pharmaceutical delivery approaches was found to be quite effective in this respect. This review also describes the properties of UA and its pharmacokinetics, as well as therapeutic applications of UA for cancer, inflammatory and cardiovascular diseases, in addition to its anti-diabetic, immunomodulatory, hepatoprotective and anti-microbial properties. Some of the recent findings related to novel nano-sized carriers as a delivery system for UA and the patents related to the applications of UA and its various derivatives are covered in this review. The analytical study of UA, oleanolic acid and other phytoconstituents by UV, HPLC, high-performance thin-layer chromatography and gas chromatography is also discussed. In the future, UA could be explored in vivo using various animal models and, in addition, the regulatory status regarding UA needs to be explored. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Priya Namdeo
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| | | | - Sakshi Tiwari
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| | - Vishal Jain
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| | - Veenu Joshi
- Center for Basic Science and Research, Pt. Ravishankar Shukla University, Raipur, India
| | | | | | - Amber Vyas
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
5
|
Ooi KX, Poo CL, Subramaniam M, Cordell GA, Lim YM. Maslinic acid exerts anticancer effects by targeting cancer hallmarks. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154631. [PMID: 36621168 DOI: 10.1016/j.phymed.2022.154631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Natural products have long been regarded as a source of anticancer compounds with low toxicity. Evidence revealed that maslinic acid (MA), a widely distributed pentacyclic triterpene in common foodstuffs, exhibited pronounced inhibitory effects against various cancer cell lines. Most cancer cells thrive by acquiring cancer hallmarks, as coined by Hanahan and Weinberg in 2000 and 2011. PURPOSE This represents the first systematic review concerning the anticancer properties of MA as these cancer hallmarks are targeted. It aims to summarize the antineoplastic activities of MA, discuss the diverse mechanisms of action based on the effects of MA exerted on each hallmark. METHODS A comprehensive literature search was conducted using the search terms "maslinic," "cancer," "tumor," and "neoplasm," to retrieve articles from the databases MEDLINE, EMBASE, Web of Science, and Scopus published up to September 2022. Study selection was conducted by three reviewers independently from title and abstract screening until full-text evaluation. Data extraction was done by one reviewer and counterchecked by the second reviewer. RESULTS Of the 330 articles assessed, 40 papers met the inclusion criteria and revealed that MA inhibited 16 different cancer cell types. MA impacted every cancer hallmark by targeting multiple pathways. CONCLUSION This review provides insights regarding the inhibitory effects of MA against various cancers and its remarkable biological properties as a pleiotropic bioactive compound, which encourage further investigations.
Collapse
Affiliation(s)
- Kai Xin Ooi
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Chin Long Poo
- Herbal Medicine Research Centre, Institute for Medical Research, Setia Alam, 40170, Selangor, Malaysia
| | - Menaga Subramaniam
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, IL, USA; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yang Mooi Lim
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia; Department of Pre-Clinical Sciences, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia.
| |
Collapse
|
6
|
He Y, Wang Y, Yang K, Jiao J, Zhan H, Yang Y, Lv D, Li W, Ding W. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases. Molecules 2022; 27:8732. [PMID: 36557864 PMCID: PMC9786823 DOI: 10.3390/molecules27248732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Maslinic acid (MA) is a pentacyclic triterpene acid, which exists in many plants, including olive, and is highly safe for human beings. In recent years, it has been reported that MA has anti-inflammatory, antioxidant, anti-tumor, hypoglycemic, neuroprotective and other biological activities. More and more experimental data has shown that MA has a good therapeutic effect on multiple organ diseases, indicating that it has great clinical application potential. In this paper, the extraction, purification, identification and analysis, biological activity, pharmacokinetics in vivo and molecular mechanism of MA in treating various organ diseases are reviewed. It is hoped to provide a new idea for MA to treat various organ diseases.
Collapse
Affiliation(s)
- Yan He
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Yi Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Jia Jiao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Hong Zhan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Youjun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - De Lv
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihong Li
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
7
|
Antiangiogenic Phytochemicals Constituent of Diet as Promising Candidates for Chemoprevention of Cancer. Antioxidants (Basel) 2022; 11:antiox11020302. [PMID: 35204185 PMCID: PMC8868078 DOI: 10.3390/antiox11020302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the extensive knowledge on cancer nature acquired over the last years, the high incidence of this disease evidences a need for new approaches that complement the clinical intervention of tumors. Interestingly, many types of cancer are closely related to dietary habits associated with the Western lifestyle, such as low fruit and vegetable intake. Recent advances around the old-conceived term of chemoprevention highlight the important role of phytochemicals as good candidates for the prevention or treatment of cancer. The potential to inhibit angiogenesis exhibited by many natural compounds constituent of plant foods makes them especially interesting for their use as chemopreventive agents. Here, we review the antitumoral potential, with a focus on the antiangiogenic effects, of phenolic and polyphenolic compounds, such as quercetin or myricetin; terpenoids, such as ursolic acid or kahweol; and anthraquinones from Aloe vera, in different in vitro and in vivo assays, and the available clinical data. Although clinical trials have failed to assess the preventive role of many of these compounds, encouraging preclinical data support the efficacy of phytochemicals constituent of diet in the prevention and treatment of cancer, but a deeper understanding of their mechanisms of action and better designed clinical trials are urgently needed.
Collapse
|
8
|
Zhang Y, Ma X, Li H, Zhuang J, Feng F, Liu L, Liu C, Sun C. Identifying the Effect of Ursolic Acid Against Triple-Negative Breast Cancer: Coupling Network Pharmacology With Experiments Verification. Front Pharmacol 2021; 12:685773. [PMID: 34858165 PMCID: PMC8631906 DOI: 10.3389/fphar.2021.685773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer with complex heterogeneity, high invasiveness, and long-term poor prognosis. With the development of molecular pathology and molecular genetics, the gene map of TNBC with distinctive biological characteristics has been outlined more clearly. Natural plant extracts such as paclitaxel, vinblastine, colchicine etc., have occupied an important position in the treatment of hormone-independent breast cancer. Ursolic acid (UA), a triterpenoid acid compound derived from apple, pear, loquat leaves, etc., has been reported to be effective in a variety of cancer treatments, but there are few reports on the treatment of TNBC. This study performed comprehensive bioinformatics analysis and in vitro experiments to identify the effect of UA on TNBC treatment and its potential molecular mechanism. Our results showed that UA could not only reduce the proliferation, migration, and invasion in MDA-MB-231 and MDA-MB-468 cell lines with a dose-dependent manner but also induce cell cycle arrest and apoptosis. Meanwhile, we collected the gene expression data GSE45827 and GSE65194 from GEO for comparison between TNBC and normal cell type and obtained 724 DEGs. Subsequently, PLK1 and CCNB1 related to TNBC were screened as the key targets via topological analysis and molecular docking, and gene set enrichment analysis identified the key pathway as the p53 signaling pathway. In addition, quantitative real-time PCR and western blot verified the key genes were PLK1 and CCNB1. In vivo and in vitro experiments showed that UA could inhibit the growth of TNBC cells, and down-regulate the protein expression levels of PLK1 and CCNB1 by mediating p53 signaling pathway. These findings provide strong evidence for UA intervention in TNBC via multi-target therapy.
Collapse
Affiliation(s)
- Yubao Zhang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoran Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Basic Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Cun Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
9
|
Tang ZY, Li Y, Tang YT, Ma XD, Tang ZY. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed Pharmacother 2021; 145:112397. [PMID: 34798468 DOI: 10.1016/j.biopha.2021.112397] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA, 3 β - hydroxyoleanolic acid-12-en-28-oic acid) is a pentacyclic triterpenoid present in many plants. As a new framework for development of semi synthetic triterpenoids, OA is of great significance in the discovery of anticancer drugs. Some of these derivatives, such as CDDO (2-cyano-3,12-dioxooleana-1, 9 (11)-dien-28-oic acid) have been verified in clinical trials, while other derivatives studied previously, such as SZC014, SZC015 and SZC017 (OA derivatives respectively), are also candidate drugs for cancer treatment. This paper reviews the preclinical studies, literature evidence, target analysis and anticancer mechanism of OA and its derivatives. The mechanism of action of its derivatives mainly includes anti-cancer cell proliferation, inducing tumor cell apoptosis, inducing autophagy, regulating cell cycle regulatory proteins, inhibiting vascular endothelial growth, anti angiogenesis, inhibiting tumor cell migration and invasion. In recent years, the molecular mechanism of OA and its derivatives has been elucidated. These effects seem to be mediated by the alterations in a variety of signaling pathways induced by OA and its derivatives. In conclusion, OA and its derivatives are considered as important candidate drugs for the treatment of cancer, indicating that OA and its derivatives have the potential to be used as anticancer drugs in practice.
Collapse
Affiliation(s)
- Zhong-Yuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, Jilin, PR China
| | - Yang Li
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yu-Ting Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiao-Dong Ma
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ze-Yao Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
10
|
Are Ancestral Medical Practices the Future Solution to Today's Medical Problems? Molecules 2021; 26:molecules26154701. [PMID: 34361852 PMCID: PMC8348408 DOI: 10.3390/molecules26154701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
|
11
|
Ursolic Acid and Related Analogues: Triterpenoids with Broad Health Benefits. Antioxidants (Basel) 2021; 10:antiox10081161. [PMID: 34439409 PMCID: PMC8388988 DOI: 10.3390/antiox10081161] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ursolic acid (UA) is a well-studied natural pentacyclic triterpenoid found in herbs, fruit and a number of traditional Chinese medicinal plants. UA has a broad range of biological activities and numerous potential health benefits. In this review, we summarize the current data on the bioavailability and pharmacokinetics of UA and review the literature on the biological activities of UA and its closest analogues in the context of inflammation, metabolic diseases, including liver and kidney diseases, obesity and diabetes, cardiovascular diseases, cancer, and neurological disorders. We end with a brief overview of UA’s main analogues with a special focus on a newly discovered naturally occurring analogue with intriguing biological properties and potential health benefits, 23-hydroxy ursolic acid.
Collapse
|
12
|
Nocedo-Mena D, Ríos MY, Ramírez-Cisneros MÁ, González-Maya L, Sánchez-Carranza JN, Camacho-Corona MDR. Metabolomic Profile and Cytotoxic Activity of Cissus incisa Leaves Extracts. PLANTS (BASEL, SWITZERLAND) 2021; 10:1389. [PMID: 34371592 PMCID: PMC8309210 DOI: 10.3390/plants10071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 01/11/2023]
Abstract
Cissus incisa leaves have been traditionally used in Mexican traditional medicine to treat certain cancerous illness. This study explored the metabolomic profile of this species using untargeted technique. Likewise, it determined the cytotoxic activity and interpreted all data by computational tools. The metabolomic profile was developed through UHPLC-QTOF-MS/MS for dereplication purposes. MetaboAnalyst database was used in metabolic pathway analysis and the network topological analysis. Hexane, chloroform/methanol, and aqueous extracts were evaluated on HepG2, Hep3B, HeLa, PC3, A549, and MCF7 cancer cell lines and IHH immortalized hepatic cells, using Cell Titer proliferation assay kit. Hexane extract was the most active against Hep3B (IC50 = 27 ± 3 μg/mL), while CHCl3/MeOH extract was the most selective (SI = 2.77) on the same cell line. A Principal Component Analysis (PCA) showed similar profiles between the extracts, while a Venn diagram revealed 80 coincident metabolites between the bioactive extracts. The sesquiterpenoid and triterpenoid biosynthesis pathway was the most significant identified. The Network Pharmacology (NP) approach revealed several targets for presqualene diphosphate, phytol, stearic acid, δ-tocopherol, ursolic acid and γ-linolenic acid, involved in cellular processes such as apoptosis. This work highlights the integration of untargeted metabolomic profile and cytotoxic activity to explore plant extracts, and the NP approach to interpreting the experimental results.
Collapse
Affiliation(s)
- Deyani Nocedo-Mena
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza 66451, Nuevo León, Mexico
| | - María Yolanda Ríos
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico; (M.Y.R.); (M.Á.R.-C.)
| | - M. Ángeles Ramírez-Cisneros
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico; (M.Y.R.); (M.Á.R.-C.)
| | - Leticia González-Maya
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico; (L.G.-M.); (J.N.S.-C.)
| | - Jessica N. Sánchez-Carranza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico; (L.G.-M.); (J.N.S.-C.)
| | - María del Rayo Camacho-Corona
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza 66451, Nuevo León, Mexico
| |
Collapse
|
13
|
Wang L, Yin Q, Liu C, Tang Y, Sun C, Zhuang J. Nanoformulations of Ursolic Acid: A Modern Natural Anticancer Molecule. Front Pharmacol 2021; 12:706121. [PMID: 34295253 PMCID: PMC8289884 DOI: 10.3389/fphar.2021.706121] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Ursolic acid (UA) is a natural pentacyclic triterpene derived from fruit, herb, and other plants. UA can act on molecular targets of various signaling pathways, inhibit the growth of cancer cells, promote cycle stagnation, and induce apoptosis, thereby exerting anticancer activity. However, its poor water-solubility, low intestinal mucosal absorption, and low bioavailability restrict its clinical application. In order to overcome these deficiencies, nanotechnology, has been applied to the pharmacological study of UA. Objective: In this review, we focused on the absorption, distribution, and elimination pharmacokinetics of UA in vivo, as well as on the research progress in various UA nanoformulations, in the hope of providing reference information for the research on the anticancer activity of UA. Methods: Relevant research articles on Pubmed and Web of Science in recent years were searched selectively by using the keywords and subheadings, and were summarized systematically. Key finding: The improvement of the antitumor ability of the UA nanoformulations is mainly due to the improvement of the bioavailability and the enhancement of the targeting ability of the UA molecules. UA nanoformulations can even be combined with computational imaging technology for monitoring or diagnosis. Conclusion: Currently, a variety of UA nanoformulations, such as micelles, liposomes, and nanoparticles, which can increase the solubility and bioactivity of UA, while promoting the accumulation of UA in tumor tissues, have been prepared. Although the research of UA in the nanofield has made great progress, there is still a long way to go before the clinical application of UA nanoformulations.
Collapse
Affiliation(s)
- Longyun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qianqian Yin
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Tang
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
14
|
Adriana Jesus J, Laurenti MD, Lopes Silva M, Ghilardi Lago JH, Domingues Passero LF. Leishmanicidal Activity and Ultrastructural Changes of Maslinic Acid Isolated from Hyptidendron canum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9970983. [PMID: 34194532 PMCID: PMC8184317 DOI: 10.1155/2021/9970983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
The therapeutic arsenal for the treatment of leishmaniasis is limited and has serious obstacles, such as variable activity, high toxicity, and costs. To overcome such limitations, it becomes urgent to characterize new bioactive molecules. Plants produce and accumulate different classes of bioactive compounds, and these molecules can be studied as a strategy to combat leishmaniasis. The study presented herein evaluated the leishmanicidal effect of maslinic acid isolated from the leaves of Hyptidendron canum (Lamiaceae) and investigated the morphological that occurred on Leishmania (Leishmania) infantum upon treatment. Maslinic acid was active and selective against promastigote and amastigote forms in a dose-dependent manner. Additionally, it was not toxic to peritoneal macrophages isolated from golden hamsters, while miltefosine and amphotericin B showed mild toxicity for macrophages. Morphological changes in promastigotes of L. (L.) infantum treated with maslinic acid were related to cytoplasmic degeneration, intense exocytic activity, and blebbing in the kDNA; disruption of mitochondrial cristae was observed in some parasites. The nucleus of promastigote forms seems to be degraded and the chromatin fragmented, suggesting that maslinic acid triggers programmed cell death. These results indicate that maslinic acid may be an interesting molecule to develop new classes of drugs against leishmaniasis.
Collapse
Affiliation(s)
- Jéssica Adriana Jesus
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, SP 01246-903, Brazil
| | - Márcia Dalastra Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, SP 01246-903, Brazil
| | - Matheus Lopes Silva
- Centre of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, Brazil
| | | | - Luiz Felipe Domingues Passero
- São Paulo State University (UNESP), Institute of Biosciences, São Vicente. Praça Infante Dom Henrique, s/n, São Vicente, SP 11330-900, Brazil
- São Paulo State University (UNESP), Institute for Advanced Studies of Ocean, São Vicente. João Francisco Bensdorp, 1178, São Vicente, SP 11350-011, Brazil
| |
Collapse
|
15
|
Rawat L, Nayak V. Ursolic acid disturbs ROS homeostasis and regulates survival-associated gene expression to induce apoptosis in intestinal cancer cells. Toxicol Res (Camb) 2021; 10:369-375. [PMID: 34141150 DOI: 10.1093/toxres/tfab025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 01/11/2023] Open
Abstract
Ursolic acid is a natural compound possessing several therapeutic properties including anticancer potential. In present study, cytotoxic and antimetastatic properties of ursolic acid were investigated in intestinal cancer cell lines INT-407 and HCT-116. The cells growth and number were decreased in a dose- and time-dependent manner in both the cell lines. It also increases reactive oxygen species levels in the cells in order to induce apoptosis. Ursolic acid was found to be a significant inhibitor of cancer cells migration and gene expression of migration markers FN1, CDH2, CTNNB1 and TWIST was also downregulated. Ursolic acid treatment downregulated the gene expression of survival factors BCL-2, SURVIVIN, NFKB and SP1, while upregulated the growth-restricting genes BAX, P21 and P53. These results indicate that ursolic acid has anticancer and antimetastatic properties against intestinal cancer. These properties could be beneficial in cancer treatment and could be used as complementary medicine.
Collapse
Affiliation(s)
- Laxminarayan Rawat
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa, 403726, India
| | - Vijayashree Nayak
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa, 403726, India
| |
Collapse
|
16
|
Malík M, Velechovský J, Tlustoš P. Natural pentacyclic triterpenoid acids potentially useful as biocompatible nanocarriers. Fitoterapia 2021; 151:104845. [PMID: 33684460 DOI: 10.1016/j.fitote.2021.104845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
The importance of natural raw materials has grown recently because of their ready availability, renewable nature, biocompatibility and controllable degradability. One such group of plant-derived substances includes the triterpenoid acids, terpenic compounds consisting of six isoprene units, a carboxyl group and other functional groups producing various isomers. Most can be easily extracted from different parts of the plant and modified successfully. By themselves or as aglycones (genins) of triterpene saponins, they have potentially useful pharmaceutical activity. This review focuses on the supramolecular properties of triterpenoid acids with regard to their subsequent use as biocompatible nanocarriers. The review also considers the current list of pentacyclic triterpene acids for which molecular self-assembly has been confirmed without the need for structural modification.
Collapse
Affiliation(s)
- Matěj Malík
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic.
| | - Jiří Velechovský
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic.
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic.
| |
Collapse
|
17
|
Chen Z, Liu Q, Zhu Z, Xiang F, Zhang M, Wu R, Kang X. Ursolic Acid Protects Against Proliferation and Inflammatory Response in LPS-Treated Gastric Tumour Model and Cells by Inhibiting NLRP3 Inflammasome Activation. Cancer Manag Res 2020; 12:8413-8424. [PMID: 32982435 PMCID: PMC7494010 DOI: 10.2147/cmar.s264070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Inflammation is considered as one of the hallmarks of cancer development and progression. Ursolic acid (UA) showed strong effects as an anti-inflammatory and antioxidant. However, the anti-cancer effects of ursolic acid require further study. Methods This study aimed to investigate the role of ursolic acid in a lipopolysaccharide (LPS)-treated gastric tumour mouse model and in a human gastric carcinoma cell line (BGC-823 cells). This study also aimed to confirm whether ursolic acid can protect against proliferation and the inflammatory response induced by LPS, by inhibiting the activation of the NLRP3 inflammasome via the NF-κB pathway. Results The present study demonstrated that ursolic acid significantly attenuated LPS-treated proliferation in a gastric tumour mouse model and the human gastric carcinoma BGC-823 cell line, reduced the expression of the NLRP3 inflammasome and suppressed the release of pro-inflammatory cytokines. In addition, ursolic acid inhibited the LPS-induced activation of NF-κB. Furthermore, the NF-κB pathway regulated the activation of the NLRP3 inflammasome. Conclusion In conclusion, these results demonstrated that ursolic acid could suppress proliferation and the inflammatory response in an LPS-induced mouse gastric tumour model and human BGC-823 cells by inhibiting the activation of the NLRP3 inflammasome via the NF-κB pathway. This indicates that ursolic acid can be a potential therapeutic agent for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Qiaoli Liu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Zhaowei Zhu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| |
Collapse
|
18
|
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020; 154-155:245-273. [PMID: 32473991 PMCID: PMC7704676 DOI: 10.1016/j.addr.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer therapy, this article summarizes the effects of five categories of CHMs and their active ingredients on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. Current challenges of liposomal targeting of these phytoconstituents and future perspective of CHM applications are discussed to provide an informative reference for interested readers.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
19
|
Zhou W, Zeng X, Wu X. Effect of Oleanolic Acid on Apoptosis and Autophagy of SMMC-7721 Hepatoma Cells. Med Sci Monit 2020; 26:e921606. [PMID: 32424110 PMCID: PMC7251962 DOI: 10.12659/msm.921606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Liver cancer is a common cancer with high morbidity and mortality. Due to the large toxic side effects of chemotherapeutic drugs and the overexpression of multidrug resistance genes in liver cancer, no effective chemotherapeutic drug has yet been found. Therefore, the search for a highly effective, low-toxic, and safe natural anticancer therapy is a hot issue. MATERIAL AND METHODS SMMC-7721 cells (a hepatocellular carcinoma cell line) were treated with different concentrations of oleanolic acid (OA) plus autophagy inhibitor 3-methyladenine (3-MA) (3-MA+OA) or chloroquine (CQ) plus OA (CQ+OA). We used MTT and Hoechst 33258 staining methods to determine the proliferation and apoptotic effect of OA on cells. Flow cytometry was used to detect apoptosis. Mitochondrial function was assessed by measuring mitochondrial membrane potential and adenosine triphosphate (ATP) concentration. To evaluate the ability of OA on apoptosis and autophagy mechanisms on SMMC 7721 cells, the related protein expression for apoptosis, autophagy, and the autophagic pathway were detected and analyzed by western blot. RESULTS OA can inhibit and induce apoptosis of SMMC-7721 in a dose-dependent manner. Compared with the control group, OA significantly reduced the intracellular mitochondrial membrane potential, and the intracellular ATP concentration was also significantly reduced. Moreover, OA reduced the expression of p-Akt and p-mTOR. The expression of p62 was decreased, and LC3-II and Beclin-1 protein expression levels increased. After inhibiting autophagy with 3-MA or CQ, compared with OA alone, cell mitochondrial membrane potential and ATP concentration were significantly reduced, cell p62 expression was reduced, and LC3-II expression was increased, apoptosis-related protein Bax protein was increased, and Bcl-2 protein was decreased, which suggested that 3-MA or CQ treatment increased OA-induced apoptosis of SMMC-7721 cells. This suggested that OA activated autophagy of SMMC-7721 cells in a protective autophagic manner. CONCLUSIONS The study findings suggest that OA combined with autophagy inhibitor 3-MA can better exert its anticancer effect.
Collapse
Affiliation(s)
- Weipeng Zhou
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xianjun Zeng
- The First Afliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xiaoping Wu
- The First Afliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
20
|
Xu J, Liu X, Zhao F, Zhang Y, Wang Z. HIF1α overexpression enhances diabetic wound closure in high glucose and low oxygen conditions by promoting adipose-derived stem cell paracrine function and survival. Stem Cell Res Ther 2020; 11:148. [PMID: 32248837 PMCID: PMC7132964 DOI: 10.1186/s13287-020-01654-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
Background Adipose-derived stem cell (ADSC) transplantation is a promising strategy to promote wound healing because of the paracrine function of stem cells. However, glucose-associated effects on stem cell paracrine function and survival contribute to impaired wound closure in patients with diabetes, limiting the efficacy of ADSC transplantation. Hypoxia-inducible factor (HIF)1α plays important roles in wound healing, and in this study, we investigated the effects of HIF1α overexpression on ADSCs in high glucose and low oxygen conditions. Methods Adipose samples were obtained from BALB/C mice, and ADSCs were cultured in vitro by digestion. Control and HIF1α-overexpressing ADSCs were induced by transduction. The mRNA and protein levels of angiogenic growth factors in control and HIF1α-overexpressing ADSCs under high glucose and low oxygen conditions were analyzed by quantitative reverse transcription-polymerase chain reaction and western blotting. The effects of ADSC HIF1α overexpression on the proliferation and migration of mouse aortic endothelial cells (MAECs) under high glucose were evaluated using an in vitro coculture model. Intracellular reactive oxygen species (ROS) and 8-hydroxydeoxyguanosine (8-OHdG) levels in ADSCs were observed using 2,7-dichlorodihydrofluorescein diacetate staining and enzyme-linked immunosorbent assays, respectively. Apoptosis and cell cycle analysis assays were performed by flow cytometry. An in vivo full-thickness skin defect mouse model was used to evaluate the effects of transplanted ADSCs on diabetic wound closure. Results In vitro, HIF1α overexpression in ADSCs significantly increased the expression of vascular endothelial growth factor A, fibroblast growth factor 2, and C-X-C motif chemokine ligand 12, which were inhibited by high glucose. HIF1α overexpression in ADSCs alleviated high glucose-induced defects in MAEC proliferation and migration and significantly suppressed ADSC ROS and 8-OHdG levels, thereby decreasing apoptosis and enhancing survival. In vivo, HIF1α overexpression in ADSCs prior to transplantation significantly enhanced angiogenic growth factor expression, promoting wound closure in diabetic mice. Conclusions HIF1α overexpression in ADSCs efficiently alleviates high glucose-induced paracrine dysfunction, decreases oxidative stress and subsequent DNA damage, improves viability, and enhances the therapeutic effects of ADSCs on diabetic wound healing.
Collapse
Affiliation(s)
- Jin Xu
- Department of Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No. 77 Puhe Street, Shenbei New District, Shenyang, 110122, China
| | - Ying Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
21
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
22
|
Mantzorou M, Zarros A, Vasios G, Theocharis S, Pavlidou E, Giaginis C. Cranberry: A Promising Natural Source of Potential Nutraceuticals with Anticancer Activity. Anticancer Agents Med Chem 2019; 19:1672-1686. [PMID: 31272361 DOI: 10.2174/1871520619666190704163301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
Abstract
Studies have shown that cranberry and its components may exert anticancer properties. The present study aims to critically summarise the existing experimental studies evaluating the potential effects of cranberry on cancer prevention and treatment. PubMed database was searched to identify relevant studies. Current in vitro studies have indicated that cranberry and/or its components may act as chemopreventive agents, diminishing the risk for cancer by inhibiting cells oxidation and inflammatory-related processes, while they may also exert chemotherapeutic effects by inhibiting cell proliferation and angiogenesis, inducing cell apoptosis and attenuating the ability of tumour cells to invade and metastasis. Limited in vivo studies have further documented potential anticancer activity. Cranberry could be considered as a conglomeration of potential effective anticancer druglike compounds.
Collapse
Affiliation(s)
- Maria Mantzorou
- Department of Food Science and Nutrition, University of the Aegean, Lemnos, Greece
| | - Apostolos Zarros
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Georgios Vasios
- Department of Food Science and Nutrition, University of the Aegean, Lemnos, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, University of Athens, Athens, Greece
| | - Eleni Pavlidou
- Department of Food Science and Nutrition, University of the Aegean, Lemnos, Greece
| | | |
Collapse
|
23
|
Pavel IZ, Csuk R, Danciu C, Avram S, Baderca F, Cioca A, Moacă EA, Mihali CV, Pinzaru I, Muntean DM, Dehelean CA. Assessment of the Antiangiogenic and Anti-Inflammatory Properties of a Maslinic Acid Derivative and its Potentiation using Zinc Chloride. Int J Mol Sci 2019; 20:ijms20112828. [PMID: 31185643 PMCID: PMC6600266 DOI: 10.3390/ijms20112828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/30/2019] [Accepted: 06/07/2019] [Indexed: 01/19/2023] Open
Abstract
Maslinic acid is a pentacyclic triterpene with a plethora of biological activities, including anti-inflammatory, antioxidant, antimicrobial, cardioprotective, and antitumor effects. New derivatives with improved properties and broad-spectrum activity can be obtained following structural changes of the compound. The present study was aimed to characterize a benzylamide derivative of maslinic acid—benzyl (2α, 3β) 2,3-diacetoxy-olean−12-en-28-amide (EM2)—with respect to the anti-angiogenic and anti-inflammatory effects in two in vivo experimental models. Consequently, the compound showed good tolerability and lack of irritation in the chorioallantoic membrane assay with no impairment of the normal angiogenic process during the tested stages of development. In the acute ear inflammation murine model, application of EM2 induced a mild anti-inflammatory effect that was potentiated by the association with zinc chloride (ZnCl2). A decrease in dermal thickness of mice ears was observed when EM2 and ZnCl2 were applied separately or in combination. Moreover, hyalinization of the dermis appeared only when EM2 was associated with ZnCl2, strongly suggesting the role of their combination in wound healing.
Collapse
Affiliation(s)
- Ioana Zinuca Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Rene Csuk
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Stefana Avram
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Flavia Baderca
- Department of Microscopic Morphology, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Andreea Cioca
- Department of Pathology, CFR Clinical Hospital, 13-15, Tudor Vladimirescu, Timişoara 300173, Romania.
| | - Elena-Alina Moacă
- Department of Toxicology, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Ciprian-Valentin Mihali
- "George Emil Palade" Electron Microscopy Center, Institute of Life Sciences, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, 86, Liviu Rebreanu St., Arad 310414, Romania.
| | - Iulia Pinzaru
- Department of Toxicology, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Danina Mirela Muntean
- Department of Functional Sciences - Pathophysiology, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
- Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq.,Timişoara 300041, Romania.
| | - Cristina Adriana Dehelean
- Department of Toxicology, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| |
Collapse
|
24
|
Reduction of Preneoplastic Lesions Induced by 1,2-Dimethylhydrazine in Rat Colon by Maslinic Acid, a Pentacyclic Triterpene from Olea europaea L. Molecules 2019; 24:molecules24071266. [PMID: 30939812 PMCID: PMC6479602 DOI: 10.3390/molecules24071266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Maslinic acid triggers compelling antiproliferative and pro-apoptotic effects in different human cancer cell lines. Hence, the chemopreventive activity was investigated on early stages of carcinogenesis induced by 1,2-dimethylhydrazine (DMH) which is a model that mimics human sporadic colorectal cancer. Male Sprague-Dawley rats were orally administered either maslinic acid at 5, 10 or 25 mg/kg dissolved in (2-hydroxypropyl)-β-cyclodextrin 20% (w/v) or the solvent for 49 days. After one week of treatment, animals received three weekly intraperitoneal injections of DMH at the dose of 20 mg/kg. Maslinic acid reduced the preneoplastic biomarkers, aberrant crypt foci (ACF) and mucin-depleted foci (MDF), already at 5 mg/kg in a 15% and 27%, respectively. The decline was significant at 25 mg/kg with decreases of 33% and 51%, respectively. Correlation analysis showed a significant association between the concentrations of maslinic acid found in the colon and the reduction of ACF (r = 0.999, p = 0.019) and MDF (r = 0.997, p = 0.049). The present findings demonstrate that maslinic acid induced an inhibition of the initiation stages of carcinogenesis. The assessment of this pentacyclic triterpene at the colon sheds light for designing diets with foods rich in maslinic acid to exert a chemopreventive activity in colorectal cancer.
Collapse
|
25
|
Huang W, He J, Nisar MF, Li H, Wan C. Phytochemical and Pharmacological Properties of Chaenomeles speciosa: An Edible Medicinal Chinese Mugua. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:9591845. [PMID: 30622618 PMCID: PMC6304597 DOI: 10.1155/2018/9591845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Chaenomeles plants are adapted to diverse ecological zones particularly the temperate areas of Korea, Japan, and China. In China, Chaenomeles speciosa is mainly planted in Chongqing, Anhui, and Hubei provinces. Most of the studies till date have been focused on the anti-inflammatory activities of C. speciosa fractions. The present study aimed to review the maximum literature reported for the presence of various phytochemicals in C. speciosa. In addition, the pharmacological properties of these chemical compounds of this plant shall also be discussed. The extracts of the various parts of the plant are rich in diversity of antioxidants, organic acids, phenolics, terpenoids, and many different phytochemicals that bear strong anticancer, antioxidant, antiviral, antibacterial properties, anti-inflammation, antihyperlipidemic, antihyperglycemic, and anti-Parkinson properties. C. speciosa fruits have broad scope in industry as well as in medicines. Not only the leaves and fruits of C. speciosa plant, but various other parts including roots, seeds, bark twigs, and flowers all have long history of clinical trials in curing many human ailments. However, the maximum accessible data concerning the chemical compositions and their broad pharmacological properties of C. speciosa plant parts is pretty restricted that make it more appealing for in-depth investigations.
Collapse
Affiliation(s)
- Weifeng Huang
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, China
| | - Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Muhammad Farrukh Nisar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Hongshui Li
- The Second People Hospital of Dezhou, Dezhou 253022, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
26
|
Liu YC, Wang HM, Zeng XH. Research progress of active compounds and pharmacological effects in Akebia trifoliata (Thunb) koidz stems. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1755-1315/185/1/012034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Yen GC, Tsai CM, Lu CC, Weng CJ. Recent progress in natural dietary non-phenolic bioactives on cancers metastasis. J Food Drug Anal 2018; 26:940-964. [PMID: 29976413 PMCID: PMC9303016 DOI: 10.1016/j.jfda.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
From several decades ago to now, cancer continues to be the leading cause of death worldwide, and metastasis is the major cause of cancer-related deaths. For health benefits, there is a great desire to use non-chemical therapy such as nutraceutical supplementation to prevent pathology development. Over 10,000 different natural bioactives or phytochemicals have been known that possessing potential preventive or supplementary effects for various diseases including cancer. Previously, the in vitro and in vivo anti-invasive and anti-metastatic activities of phenolic acids, monophenol, polyphenol and their derivatives and flavonoids and their derivatives have been reviewed. However, a vast number of natural dietary compounds other than phenolics have been demonstrated to potentially possess the ability to inhibit the invasion and metastasis of various cancers. In this review, we summarize the studies in recent decade on in vitro and in vivo effects and molecular mechanisms of natural bioactives, excluding the phenolics in food, in cancer invasion and metastasis. By combining this review of non-phenolics with the previous phenolics reviews, the puzzle for the contribution of natural dietary bioactives on cancer invasive or/and metastatic progress will be almost complete and more clear.
Collapse
Affiliation(s)
- Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Chiung-Man Tsai
- Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chia-Jui Weng
- Department of Living Services Industry, Tainan University of Technology, Tainan City, Taiwan.
| |
Collapse
|
28
|
Yanaki M, Kobayashi M, Aruga A, Nomura M, Ozaki M. In Vivo Antitumor Effects of MK615 Led by PD-L1 Downregulation. Integr Cancer Ther 2018; 17:646-653. [PMID: 29665734 PMCID: PMC6142083 DOI: 10.1177/1534735418766403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background/Aim: MK615 extracted from Prunus mume
was reported to have anti-inflammatory effects. In this article, we examined the
in vivo antitumor effect of MK615 (an extract from Japanese apricot) using mouse
tumor xenografts and focusing on the downregulation of PD-L1 (programmed
death-ligand 1), a ligand of programmed cell death-1, a surface protein of
activated T cells. Materials and Methods: B16/BL6 melanoma cells
were injected into C57BL/6 or BALB/c-nu/nu mice to establish lung metastasis.
BALB/c-nu/nu mice (nude mice) were used as a T cell–deficient model. The mice
were given MK615 or saline orally every other day for approximately 8 weeks, and
their survival was observed. NF-κB (nuclear factor-κB) and PD-L1 expressions of
metastatic lung tissues were also examined. Results: The survival
rate was improved only in the MK615-treated C57BL/6 mice (P
< .05), not in the saline-given control mice or BALB/c-nu/nu mice. The
downregulations of NF-κB and PD-L1 were observed in both MK615-treated C57BL/6
and BALB/c-nu/nu mice. These results suggest that the antitumor effects of MK615
are associated with T cell–mediated immunity activated by MK-615-induced PD-L1
downregulation in tumor cells. Conclusion: MK615 is beneficial for
a prolonged host survival time in the B16/BL6 melanoma xenograft model
associated with T cell–mediated antitumor immunity.
Collapse
Affiliation(s)
| | | | | | | | - Makoto Ozaki
- 1 Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
29
|
Kudryavtseva A, Krasnov G, Lipatova A, Alekseev B, Maganova F, Shaposhnikov M, Fedorova M, Snezhkina A, Moskalev A. Effects of Abies sibirica terpenes on cancer- and aging-associated pathways in human cells. Oncotarget 2018; 7:83744-83754. [PMID: 27888805 PMCID: PMC5347801 DOI: 10.18632/oncotarget.13467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
A large number of terpenoids exhibit potential geroprotector and anti-cancer properties. Here, we studied whole transcriptomic effects of Abisil, the extract of fir (Abies sibirica) terpenes, on normal and cancer cell lines. We used early passaged and senescent none-immortalized fibroblasts as cellular aging models. It was revealed that in normal fibroblasts, terpenes induced genes of stress response, apoptosis regulation and tissue regeneration. The restoration of the expression level of some prolongevity genes after fir extract treatment was shown in old cells. In Caco-2 and AsPC-1 cancer cell lines, Abisil induced expression of both onco-suppressors (members of GADD45, DUSP, and DDIT gene families), and proto-oncogenes (c-Myc, c-Jun, EGR and others). Thus, the study demonstrates the potential anti-aging and anti-cancer effects of Abisil on senescent and cancer cell lines.
Collapse
Affiliation(s)
- Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasiya Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Boris Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | | | - Mikhail Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russia
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| |
Collapse
|
30
|
Caunii A, Oprean C, Cristea M, Ivan A, Danciu C, Tatu C, Paunescu V, Marti D, Tzanakakis G, Spandidos DA, Tsatsakis A, Susan R, Soica C, Avram S, Dehelean C. Effects of ursolic and oleanolic on SK‑MEL‑2 melanoma cells: In vitro and in vivo assays. Int J Oncol 2017; 51:1651-1660. [PMID: 29039461 PMCID: PMC5673023 DOI: 10.3892/ijo.2017.4160] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Among the triterpenoids, oleanolic acid (OA) and its isomer, ursolic acid (UA) are promising therapeutic candidates, with potential benefits in the management of melanoma. In this study, we aimed to examine the in vitro and in vivo anti‑invasive and anti‑metastatic activity of OA and UA to determine their possible usefulness as chemopreventive or chemotherapeutic agents in melanoma. For the in vitro experiments, the anti‑proliferative activity of the triterpenic compounds on SK‑MEL‑2 melanoma cells was examined. The anti‑invasive potential was assessed by testing the effects of the active compound on vascular cell adhesion molecule (VCAM) and intercellular adhesion molecule (ICAM) adhesion to melanoma cells. Normal and tumor angiogenesis were evaluated in vivo by chicken embryo chorioallantoic membrane (CAM) assay. The two test triterpenoid acids, UA and OA, exerted differential effects in vitro and in vivo on the SK‑MEL‑2 melanoma cells. UA exerted a significant and dose‑dependent anti‑proliferative effect in vitro, compared to OA. The cytotoxic effects in vitro on the melanoma cells were determined by the examining alterations in the cell cycle phases induced by UA that lead to cell arrest in the S phase. Moreover, UA was found to affect SK‑MEL‑2 melanoma cell invasiveness by limiting the cell adhesion capacity to ICAM molecules, but not influencing their adhesion to VCAM molecules. On the whole, in this study, by assessing the effects of the two triterpenoids in vivo, our results revealed that OA had a greater potential to impair the invasive capacity and tumor angiogenesis compared with UA.
Collapse
Affiliation(s)
- Angela Caunii
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Camelia Oprean
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
| | - Mirabela Cristea
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
| | - Alexandra Ivan
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Corina Danciu
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Calin Tatu
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Virgil Paunescu
- 'Pius Brinzeu' Timişoara County Emergency Clinical Hospital, Oncogen Institute, 300723 Timişoara
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Daniela Marti
- Faculty of Medicine, Western University Vasile Goldis, Arad 310025, Romania
| | - George Tzanakakis
- Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | | | - Aristides Tsatsakis
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
- Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Razvan Susan
- Faculty of Medicine, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Codruta Soica
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Stefana Avram
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| | - Cristina Dehelean
- Faculty of Pharmacy, 'Victor Babeş' University of Medicine and Pharmacy, 300041 Timişoara
| |
Collapse
|
31
|
Prophetic medicine as potential functional food elements in the intervention of cancer: A review. Biomed Pharmacother 2017; 95:614-648. [DOI: 10.1016/j.biopha.2017.08.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
|
32
|
Han Y, Jiang Q, Wang Y, Li W, Geng M, Han Z, Chen X. The anti-proliferative effects of oleanolic acid on A7r5 cells-Role of UCP2 and downstream FGF-2/p53/TSP-1. Cell Biol Int 2017; 41:1296-1306. [PMID: 28792088 DOI: 10.1002/cbin.10838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023]
Abstract
Vascular smooth muscle cell (VSMC) proliferation is a major contributor to atherosclerosis. This study investigated the inhibitory effects of oleanolic acid (OA) against oxidized low-density lipoprotein (ox-LDL)-induced VSMC proliferation in A7r5 cells and explored underlying molecular mechanism. The cell proliferation was quantified with cell counting kit-8 (CCK-8), in which ox-LDL significantly increased A7r5 cells proliferation, while OA pretreatment effectively alleviated such changes without inducing overt cytotoxicity, as indicated by lactate dehydrogenase (LDH) assay. Quantitative real-time RT-PCR (qRT-PCR) and Western blotting revealed increased UCP2 and FGF-2 expression levels as well as decreased p53 and TSP-1 expression levels in A7r5 cells following ox-LDL exposure, while OA pretreatment reversed such changes. Furthermore, inhibiting UCP2 with genipin remarkably reversed the changes in the expression levels of FGF-2, p53, and TSP-1 induced by ox-LDL exposure; silencing FGF-2 with siRNA did not significantly change the expression levels of UCP2 but effectively reversed the changes in the expression levels of p53 and TSP-1, and activation of p53 with PRIMA-1 only significantly affected the changes in the expression levels of TSP-1, but not in UCP2 or FGF-2, suggesting a UCP-2/FGF-2/p53/TSP-1 signaling in A7r5 cells response to ox-LDL exposure. Additionally, co-treatment of OA and genipin exhibited similar effects to the expression levels of UCP2, FGF-2, p53, and TSP-1 as OA or genipin solo treatment in ox-LDL-exposed A7r5 cells, suggesting the involvement of UCP-2/FGF-2/p53/TSP-1 in the mechanism of OA. In conclusion, OA inhibits ox-LDL-induced VSMC proliferation in A7r5 cells, the mechanism involves the changes in UCP-2/FGF-2/p53/TSP-1.
Collapse
Affiliation(s)
- Yantao Han
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Qixiao Jiang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Yu Wang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Wenqian Li
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Min Geng
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Zhiwu Han
- The Affiliated Hospital of Qingdao University, 16 Jiansu Road, Qingdao 266021, Shandong, China
| | - Xuehong Chen
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| |
Collapse
|
33
|
Wang S, Meng X, Dong Y. Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. Int J Oncol 2017; 50:1330-1340. [PMID: 28259944 DOI: 10.3892/ijo.2017.3890] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/12/2017] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is a cause of cancer death, making it one of the most common causes of death among women globally. Previously, a variety of studies have revealed the molecular mechanisms by which cervical cancer develops. However, there are still limitations in treatment for cervical cancer. Ursolic acid is a naturally derived pentacyclic triterpene acid, exhibiting broad anticancer effects. Nanoparticulate drug delivery systems have been known to better the bioavailability of drugs on intranasal administration compared with only drug solutions. Administration of ursolic acid nanoparticles is thought to be sufficient to lead to considerable suppression of cervical cancer progression. We loaded gold-ursolic acid into poly(DL-lactide-co-glycolide) nanoparticles to cervical cancer cell lines due to the properties of ursolic acid in altering cellular processes and the easier absorbance of nanoparticles. In addition, in this study, ursolic acid nanoparticles were administered to cervical cancer cells to find effective treatments for cervical cancer inhibition. In the present study, ELISA, western blotting, flow cytometry and immunohistochemistry assays were carried out to calculate the molecular mechanism by which ursolic acid nanoparticles modulated cervical cancer progression. Data indicated that ursolic acid nanoparticles, indeed, significantly suppress cervial cancer cell proliferation, invasion and migration compared to the control group, and apoptosis was induced by ursolic acid nanoparticles in cervical cancer cells through activating caspases, p53 and suppressing anti-apoptosis-related signals. Furthermore, tumor size was reduced by treatment of ursolic acid nanoparticles in in vivo experiments. In conclusion, this study suggests that ursolic acid nanoparticles inhibited cervical cancer cell proliferation via apoptosis induction, which could be a potential target for future therapeutic strategy clinically.
Collapse
Affiliation(s)
- Shaoguang Wang
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiaomei Meng
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yaozhong Dong
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
34
|
Maslinic Acid Inhibits Proliferation of Renal Cell Carcinoma Cell Lines and Suppresses Angiogenesis of Endothelial Cells. J Kidney Cancer VHL 2017; 4:16-24. [PMID: 28405545 PMCID: PMC5364332 DOI: 10.15586/jkcvhl.2017.64] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC) remains a treatment-resistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1), endothelial cells (human umbilical vein endothelial cell line [HUVEC]), and primary cultures of kidney proximal tubular epithelial cells (PTEC) were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.
Collapse
|
35
|
Cheng W, Dahmani FZ, Zhang J, Xiong H, Wu Y, Yin L, Zhou J, Yao J. Anti-angiogenic activity and antitumor efficacy of amphiphilic twin drug from ursolic acid and low molecular weight heparin. NANOTECHNOLOGY 2017; 28:075102. [PMID: 28091396 DOI: 10.1088/1361-6528/aa53c6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Heparin, a potential blood anti-coagulant, is also known for its binding ability to several angiogenic factors through electrostatic interactions due to its polyanionic character. However, the clinical application of heparin for cancer treatment is limited by several drawbacks, such as unsatisfactory therapeutic effects and severe anticoagulant activity that could induce hemorrhaging. Herein, low molecular weight heparin (LMWH) was conjugated to ursolic acid (UA), which is also an angiogenesis inhibitor, by binding the amine group of aminoethyl-UA (UA-NH2) with the carboxylic groups of LMWH. The resulting LMWH-UA conjugate as an amphiphilic twin drug showed reduced anticoagulant activity and could also self-assemble into nanomicelles with a mean particle size ranging from 200-250 nm. An in vitro endothelial tubular formation assay and an in vivo Matrigel plug assay were performed to verify the anti-angiogenic potential of LMWH-UA. Meanwhile, the in vivo antitumor effect of LMWH-UA was also evaluated using a B16F10 mouse melanoma model. LMWH-UA nanomicelles were shown to inhibit angiogenesis both in vitro and in vivo. In addition, the i.v. administration of LMWH-UA to the B16F10 tumor-bearing mice resulted in a significant inhibition of tumor growth as compared to the free drug solutions. These findings demonstrate the therapeutic potential of LMWH-UA as a new therapeutic remedy for cancer therapy.
Collapse
Affiliation(s)
- Wenming Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang H, Kim HW, Kim YC, Sung SH. Cytotoxic activities of naturally occurring oleanane-, ursane-, and lupane-type triterpenes on HepG2 and AGS cells. Pharmacogn Mag 2017; 13:118-122. [PMID: 28216894 PMCID: PMC5307894 DOI: 10.4103/0973-1296.196308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: It is well known that the naturally occurring modified triterpenes in plants have a wide diversity of chemical structures and biological functions. The lupane-, oleanane-, and ursane-type triterpenes are the three major members of natural triterpenes with a wide range of biological properties. A systematic approach is necessary to review their structures and biological activities according to the backbones and the different substituents. Objective: Thirty lupane-(L1-7), oleanane-(O1-14), and ursane-type (U1-9) triterpenes with structural diversity were examined to evaluate their cytotoxic activities against two cancer cell lines, human hepatocellular carcinoma (HepG2) and AGS cells. Materials and Methods: They were isolated from Hedera helix, Juglans sinensis, and Pulsatilla koreana using a series of column chromatography methods and were treated to evaluate their cytotoxic activities against HepG2 and AGS human gastric adenocarcinoma cell. Further, two triterpenes showing the most potent activities were subjected to the apoptotic screening assay using flow cytometry. Results: The polar groups, such as an oxo group at C-1, a free hydroxyl at C-2, C-3, or C-23, and a carboxylic moiety at C-28, as well as the type of backbone, explicitly increased the cytotoxic activity on two cancer cells. O5 and U5 showed significantly the potent cytotoxic activity in comparison to other glycosidic triterpenes. In annexin-V/propidium iodide (PI) staining assay, the percentage of late apoptosis (annexin-V+/PI+) 12 and 24 h after treatment with O5 and U5 at 25 μM increased from 14.5% to 93.1% and from 46.4% to 49.1%, respectively, in AGS cells. The cytotoxicity induced by O5 showed a significant difference compared to U5 for 12 and 24 h. Conclusion: In the study, we can suggest the potent moieties which influence their cytotoxic activities against two cancer cells. The polar groups at C-1, C-2, C-3, C-23, and C-28 and the linkage of sugar moieties influenced the different cytotoxic activities. SUMMARY
Thirty naturally occurring oleanane-, ursane-, and lupane-type triterpenes were isolated from Hedera helix, Juglans sinensis, and Pulsatilla koreana An oxo, a free hydroxyl, a carboxylic moiety, and the types of aglycone influenced the cell cytotoxicity Corosolic acid and α-hederin showed the most potent cytotoxicity via apoptosis.
Collapse
Affiliation(s)
- Heejung Yang
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun Woo Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, Republic of Korea
| | - Young Choong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, Republic of Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Song B, Zhang Q, Yu M, Qi X, Wang G, Xiao L, Yi Q, Jin W. Ursolic acid sensitizes radioresistant NSCLC cells expressing HIF-1α through reducing endogenous GSH and inhibiting HIF-1α. Oncol Lett 2016; 13:754-762. [PMID: 28356955 PMCID: PMC5351155 DOI: 10.3892/ol.2016.5468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/26/2016] [Indexed: 12/25/2022] Open
Abstract
In previous studies, the present authors demonstrated that effective sensitization of ionizing radiation-induced death of tumor cells, including non-small cell lung cancer (NSCLC) cells, could be produced by oleanolic acid (OA), a pentacyclic triterpenoid present in plants. In the present study, it was investigated whether ursolic acid (UA), an isomer of OA, had also the capacity of sensitizing radioresistant NSCLC cells. The radioresistant cell line H1299/M-hypoxia inducible factor-1α (HIF-1α) was established by transfection with a recombinant plasmid expressing mutant HIF-1α (M-HIF-1α). Compared with parental H1299 cells and H1299 cells transfected with empty plasmid, H1299/M-HIF-1α cells had lower radiosensitivity. Following the use of UA to treat NSCLC cells, elevation of the radiosensitivity of cells was observed by MTT assay. The irradiated H1299/M-HIF-1α cells were more sensitive to UA pretreatment than the irradiated cells with empty plasmid and control. The alteration of DNA damage in the irradiated cells was further measured using micronucleus (MN) assay. The combination of UA treatment with radiation could induce the increase of cellular MN frequencies, in agreement with the change in the tendency observed in the cell viability assay. It was further shown that the endogenous glutathione (GSH) contents were markedly attenuated in the differently irradiated NSCLC cells with UA (80 µmol/l) pretreatment through glutathione reductase/5,5'-dithiobis-(2-nitrob-enzoic acid) (DTNB) recycling assay. The results revealed that UA treatment alone could effectively decrease the GSH content in H1299/M-HIF-1α cells. In addition, the inhibition of HIF-1α expression in radioresistant cells was confirmed by western blotting. It was then concluded that UA could upregulate the radiosensitivity of NSCLC cells, and in particular reduce the refractory response of cells expressing HIF-1α to ionizing radiation. The primary mechanism is associated with reduction of endogenous GSH and inhibition of high expression of intracellular HIF-1α. UA should therefore be deeply studied as a potential radiosensitizing reagent for NSCLC radiotherapy.
Collapse
Affiliation(s)
- Bing Song
- Department of Cardiology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qian Zhang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Maohu Yu
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinrong Qi
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Gang Wang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Linlin Xiao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiyi Yi
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wensen Jin
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
38
|
Huang Q, Chen H, Ren Y, Wang Z, Zeng P, Li X, Wang J, Zheng X. Anti-hepatocellular carcinoma activity and mechanism of chemopreventive compounds: ursolic acid derivatives. PHARMACEUTICAL BIOLOGY 2016; 54:3189-3196. [PMID: 27564455 DOI: 10.1080/13880209.2016.1214742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Hepatocellular carcinoma (HCC) is a common cancer around the world, with high mortality rate. Currently, there is no effective drug for the therapy of HCC. Ursolic acid (UA) is a natural product which exists in various medicinal herbs and fruits, exhibiting multiple biological effects such as its outstanding anticancer and hepatoprotective activity, which has drawn many pharmacists' attention. OBJECTIVE This paper summarizes the current status of the hepatoprotective activity of UA analogues and explains the related mechanism, providing a clear direction for the development of novel anti-HCC drugs. METHODS All of the data resources were derived from PubMed. By comparing the IC50 values and analyzing the structure-activity relationships, we listed compounds with good pharmacological activity from the relevant literature, and summarized their anti-HCC mechanism. RESULTS From the database, 58 new UA derivatives possessing wonderful anticancer and hepatoprotective effects were listed, and the relevant anti-HCC mechanism were discussed. CONCLUSION UA's anti-HCC effect is the result of combined action of many mechanisms. These 58 new UA derivatives, particularly compounds 45 and 53, can be used as potential drugs for the treatment of liver cancer.
Collapse
Affiliation(s)
- Qiuxia Huang
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Hongfei Chen
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Yuyan Ren
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Zhe Wang
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Peiyu Zeng
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
- c Research Interest Group of Pharmacy , University of South China , Hengyang , China
| | - Xuan Li
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
- c Research Interest Group of Pharmacy , University of South China , Hengyang , China
| | - Juan Wang
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| | - Xing Zheng
- a Department of Pharmacy & Pharmacology , University of South China , Hengyang , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , China
| |
Collapse
|
39
|
Lozano-Mena G, Sánchez-González M, Parra A, Juan ME, Planas JM. Identification of gut-derived metabolites of maslinic acid, a bioactive compound from Olea europaea L. Mol Nutr Food Res 2016; 60:2053-64. [PMID: 27144997 DOI: 10.1002/mnfr.201501060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/27/2016] [Accepted: 03/25/2016] [Indexed: 11/11/2022]
Abstract
SCOPE Maslinic acid has been described to exert a chemopreventive activity in colon cancer. Hereby, we determined maslinic acid and its metabolites in the rat intestine previous oral administration as a first step in elucidating whether this triterpene might be used as a nutraceutical. METHODS AND RESULTS Maslinic acid was orally administered at 1, 2, and 5 mg/kg to male Sprague-Dawley for 2 days. At 24 h after the last administration, the content of the duodenum and jejunum, ileum, cecum, and colon was collected and extracted with methanol 80% prior to LC-APCI-MS analysis. The developed method was validated providing suitable sensitivity (LOQ of 5 nM), good recovery (97.8 ± 3.6%), linear correlation, and appropriate precision (< 9%). Maslinic acid was detected in all the segments with higher concentrations in the distal part of the intestine. LC-APCI-LTQ-ORBITRAP-MS allowed the identification of 11 gut-derived metabolites that were formed by mono-, dihydroxylation, and dehydrogenation reactions. CONCLUSION Maslinic acid undergoes phase I reactions resulting in a majority of monohydroxylated metabolites without the presence of phase II derivatives. The high concentration of maslinic acid achieved in the intestine suggests that it could exert a beneficial effect in the prevention of colon cancer.
Collapse
Affiliation(s)
- Glòria Lozano-Mena
- Departament de Bioquímica i Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Sánchez-González
- Departament de Bioquímica i Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Andrés Parra
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva s/n, Granada, Spain
| | - M Emília Juan
- Departament de Bioquímica i Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Joana M Planas
- Departament de Bioquímica i Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
40
|
Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci 2016; 146:201-13. [PMID: 26775565 DOI: 10.1016/j.lfs.2016.01.017] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
Plants are known to produce a variety of bioactive metabolites which are being used to cure various life threatening and chronic diseases. The molecular mechanism of action of such bioactive molecules, may open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle dreadful diseases such as cancer and cardiovascular and neurodegenerative disorders. Ursolic acid (UA) is one among the categories of such plant-based therapeutic metabolites having multiple intracellular and extracellular targets that play role in apoptosis, metastasis, angiogenesis and inflammatory processes. Moreover, the synthetic derivatives of UA have also been seen to be involved in a range of pharmacological applications, which are associated with prevention of diseases. Evidences suggest that UA could be used as a potential candidate to develop a comprehensive competent strategy towards the treatment and prevention of health disorders. The review article herein describes the possible therapeutic effects of UA along with putative mechanism of action.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India.
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India
| |
Collapse
|
41
|
Woźniak Ł, Skąpska S, Marszałek K. Ursolic Acid--A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules 2015; 20:20614-41. [PMID: 26610440 PMCID: PMC6332387 DOI: 10.3390/molecules201119721] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Ursolic acid (UA) is a natural terpene compound exhibiting many pharmaceutical properties. In this review the current state of knowledge about the health-promoting properties of this widespread, biologically active compound, as well as information about its occurrence and biosynthesis are presented. Particular attention has been paid to the application of ursolic acid as an anti-cancer agent; it is worth noticing that clinical tests suggesting the possibility of practical use of UA have already been conducted. Amongst other pharmacological properties of UA one can mention protective effect on lungs, kidneys, liver and brain, anti-inflammatory properties, anabolic effects on skeletal muscles and the ability to suppress bone density loss leading to osteoporosis. Ursolic acid also exhibits anti-microbial features against numerous strains of bacteria, HIV and HCV viruses and Plasmodium protozoa causing malaria.
Collapse
Affiliation(s)
- Łukasz Woźniak
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Sylwia Skąpska
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| |
Collapse
|
42
|
Effects of maslinic acid on the proliferation and apoptosis of A549 lung cancer cells. Mol Med Rep 2015; 13:117-22. [PMID: 26572558 PMCID: PMC4686082 DOI: 10.3892/mmr.2015.4552] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 10/27/2015] [Indexed: 01/16/2023] Open
Abstract
Maslinic acid (MA) is a pentacyclic triterpene acid that is present in numerous dietary plants. Although certain studies have demonstrated that MA has anti-cancer properties in different cell types, the effect of MA on lung cancer cell proliferation and apoptosis and the potential underlying mechanisms remain to be elucidated. In the present study, A549 lung cancer cells were treated with different doses of MA and it was found that MA significantly inhibited A549 cell growth in a dose-dependent manner. In addition, Annexin V/propidium iodide flow cytometric analysis demonstrated that MA induced apoptosis of A549 cells. The present study also confirmed that MA induced apoptosis by observing morphological alterations. In addition, the effect of MA treatment on the levels of apoptosis-associated proteins was examined. The results demonstrated that MA treatment suppressed the expression of caspase-3, -8 and -9, and increased the expression of cleaved caspase-3, -8 and -9 in a dose-dependent manner. The level of inhibitors of apoptosis (IAPs) and Smac, which are possible upstream factors of caspase proteins, were also examined. It was found that MA treatment increased the protein expression of Smac and decreased the protein levels of c-IAP1, c-IAP2, X-linked inhibitor of apoptosis protein (XIAP) and Survivin in a dose-dependent manner. These results suggested that MA inhibited proliferation and induced apoptosis of A549 cells through regulation of caspase cleavage as well as Smac, c-IAP1, c-IAP2, XIAP and Survivin.
Collapse
|
43
|
Ishii M, Nakahara T, Ikeuchi S, Nishimura M. β-Amyrin induces angiogenesis in vascular endothelial cells through the Akt/endothelial nitric oxide synthase signaling pathway. Biochem Biophys Res Commun 2015; 467:676-82. [DOI: 10.1016/j.bbrc.2015.10.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/17/2015] [Indexed: 11/16/2022]
|
44
|
Gao Y, Zheng DY, Cui Z, Ma Y, Liu YZ, Zhang W. Predictive value of quantitative contrast-enhanced ultrasound in hepatocellular carcinoma recurrence after ablation. World J Gastroenterol 2015; 21:10418-10426. [PMID: 26420968 PMCID: PMC4579888 DOI: 10.3748/wjg.v21.i36.10418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/28/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between contrast-enhanced ultrasound (CEUS), basic fibroblast growth factor (bFGF), endothelin-1 (ET-1), and hepatocellular carcinoma (HCC) recurrence after ablation.
METHODS: A total of 51 HCC patients (38 males and 13 females) who received radiofrequency ablation in our hospital from June 2012 to July 2014 were enrolled in this study. The patients were divided into two groups: recurrence group and non-recurrence group. Routine abdominal examination was first performed in the horizontal position. Then the patients underwent CEUS and immunohistochemical staining before receiving radiofrequency ablation. All patients were followed-up every three months for one year. The results of CEUS and serum tumor marker levels were evaluated and combined together to estimate HCC recurrence and metastasis. Patients were divided into two groups: recurrence group and non-recurrence group. Quantitative parameters of CEUS and tumor expression levels of bFGF and ET-1 were compared between the two groups, respectively. Binary logistic regression analysis was used to analyze the relationship between CEUS quantitative parameters, expression levels of ET-1 and bFGF, and HCC recurrence after ablation.
RESULTS: Based on the quantitative parameters of CEUS before patients received radiofrequency ablation, the levels of tumor rise time (tRT), tumor time to peak (tTTP), tumor peak intensity (tPI) and tumor-parenchymal peak intensity (t-pPI) in the recurrence group were significantly lower than those in the non-recurrence group (16.6 ± 6.1 vs 23.2 ± 7.0, P = 0.000; 41.2 ± 10.2 vs 59.6 ± 14.2, P = 0.000; 23.8 ± 6.7 vs 31.4 ± 6.4, P = 0.000; 7.1 ± 3.4 vs 14.6 ± 7.4, P = 0.000; respectively). The expression levels of bFGF in the recurrence group were significantly higher than those in the non-recurrence group (P < 0.05). Levels of tTTP showed a significant inverse correlation with the level of bFGF in tumors (r = -0.312, P = 0.037). The Binary logistic regression analysis results revealed that the levels of tRT, tTTP, tPI and the level of bFGF were associated with HCC recurrence after radiofrequency ablation (P < 0.05).
CONCLUSION: CEUS is a noninvasive and effective method for evaluating the angiogenesis of HCC, and predicting its recurrence and prognosis.
Collapse
|
45
|
Sánchez-González M, Lozano-Mena G, Parra A, Juan ME, Planas JM. Identification in Rat Plasma and Urine by Linear Trap Quadrupole-Orbitrap Mass Spectrometry of the Metabolites of Maslinic Acid, a Triterpene from Olives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1126-1132. [PMID: 25575098 DOI: 10.1021/jf505379g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Maslinic acid is a natural pentacyclic triterpenoid widely distributed in edible and medicinal plants with health-promoting activities. The identification and quantification of its metabolites is a requirement for a better understanding of the biological effects of this triterpene. Therefore, maslinic acid was orally administered to Sprague-Dawley rats at a dose of 50 mg/kg of body weight. Blood and urine were withdrawn at 45 min. Samples were extracted with ethyl acetate prior to liquid chromatography-atmospheric pressure chemical ionization-linear trap quadrupole-Orbitrap (LC-APCI-LTQ-Orbitrap) analysis. Screening of plasma yielded four monohydroxylated derivatives (M1-M4), one monohydroxylated and dehydrogenated metabolite (M5), and two dihydroxylated and dehydrogenated compounds (M6 and M7). In urine, M1, M4, M5, and M6 were detected. Quantification by LC-APCI-mass spectrometry (MS) revealed maslinic acid as the prevalent compound in both plasma (81.8%) and urine (73.9%), which indicates that metabolism is low and mainly attributable to phase I reactions.
Collapse
Affiliation(s)
- Marta Sánchez-González
- Departament de Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB) , Avinguda Joan XXIII s/n, 08028 Barcelona, Spain
| | - Glòria Lozano-Mena
- Departament de Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB) , Avinguda Joan XXIII s/n, 08028 Barcelona, Spain
| | - Andrés Parra
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada , 18071 Granada, Spain
| | - M Emília Juan
- Departament de Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB) , Avinguda Joan XXIII s/n, 08028 Barcelona, Spain
| | - Joana M Planas
- Departament de Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB) , Avinguda Joan XXIII s/n, 08028 Barcelona, Spain
| |
Collapse
|
46
|
Maßberg D, Simon A, Häussinger D, Keitel V, Gisselmann G, Conrad H, Hatt H. Monoterpene (-)-citronellal affects hepatocarcinoma cell signaling via an olfactory receptor. Arch Biochem Biophys 2014; 566:100-9. [PMID: 25513961 DOI: 10.1016/j.abb.2014.12.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022]
Abstract
Terpenes are the major constituents of essential oils in plants. In recent years, terpenes have become of clinical relevance due to their ability to suppress cancer development. Their effect on cellular proliferation has made them promising agents in the prevention or treatment of many types of cancer. In the present study, a subset of different monoterpenes was investigated for their molecular effects on the hepatocellular carcinoma cell line Huh7. Using fluorometric calcium imaging, acyclic monoterpene (-)-citronellal was found to induce transient Ca(2+) signals in Huh7 cells by activating a cAMP-dependent signaling pathway. Moreover, we detected the (-)-citronellal-activated human olfactory receptor OR1A2 at the mRNA and protein levels and demonstrated its potential involvement in (-)-citronellal-induced calcium signaling in Huh7 cells. Furthermore, activation of OR1A2 results in phosphorylation of p38 MAPK and reduced cell proliferation, indicating an effect on hepatocellular carcinoma progression. Here, we provide for the first time data on the molecular mechanism evoked by (-)-citronellal in human hepatocellular carcinoma cells. The identified olfactory receptor could serve as a potential therapeutic target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Désirée Maßberg
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Annika Simon
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Verena Keitel
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Heike Conrad
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
47
|
Maslinic acid induces mitochondrial apoptosis and suppresses HIF-1α expression in A549 lung cancer cells under normoxic and hypoxic conditions. Molecules 2014; 19:19892-906. [PMID: 25460312 PMCID: PMC6271386 DOI: 10.3390/molecules191219892] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/15/2022] Open
Abstract
The apoptotic effects of maslinic acid (MA) at 4, 8, 16, 32 and 64 μmol/L on human lung cancer A549 cells under normoxic and hypoxic conditions were examined. MA at 4–64 and 16–64 μmol/L lowered Bcl-2 expression under normoxic and hypoxic conditions, respectively (p < 0.05). This agent at 4–64 μmol/L decreased Na+-K+-ATPase activity and increased caspase-3 expression under normoxic conditions, but at 8–64 μmol/L it caused these changes under hypoxic conditions (p < 0.05). MA up-regulated caspase-8, cytochrome c and apoptosis-inducing factor expression under normoxic and hypoxic conditions at 8–64 μmol/L and 32–64 μmol/L, respectively (p < 0.05). MA down-regulated hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), survivin and inducible nitric oxide synthase (iNOS) expression under normoxic and hypoxic conditions at 8–64 and 16–64 μmol/L, respectively (p < 0.05). After cells were pre-treated with YC-1, an inhibitor of HIF-1α, MA failed to affect the protein expression of HIF-1α, VEGF, survivin and iNOS (p > 0.05). MA at 8-64 and 32-64 μmol/L reduced reactive oxygen species and nitric oxide levels under both conditions (p < 0.05). These findings suggest that maslinic acid, a pentacyclic triterpenic acid, exerted its cytotoxic activities toward A549 cells by mediating mitochondrial apoptosis and the HIF-1α pathway.
Collapse
|
48
|
Kim D, Park GB, Hur DY. Apoptotic signaling through reactive oxygen species in cancer cells. World J Immunol 2014; 4:158-173. [DOI: 10.5411/wji.v4.i3.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) take part in diverse biological processes like cell growth, programmed cell death, cell senescence, and maintenance of the transformed state through regulation of signal transduction. Cancer cells adapt to new higher ROS circumstance. Sometimes, ROS induce cancer cell proliferation. Meanwhile, elevated ROS render cancer cells vulnerable to oxidative stress-induced cell death. However, this prominent character of cancer cells allows acquiring a resistance to oxidative stress conditions relative to normal cells. Activated signaling pathways that increase the level of intracellular ROS in cancer cells not only render up-regulation of several genes involved in cellular proliferation and evasion of apoptosis but also cause cancer cells and cancer stem cells to develop a high metabolic rate. In over the past several decades, many studies have indicated that ROS play a critical role as the secondary messenger of tumorigenesis and metastasis in cancer from both in vitro and in vivo. Here we summarize the role of ROS and anti-oxidants in contributing to or preventing cancer. In addition, we review the activated signaling pathways that make cancer cells susceptible to death.
Collapse
|
49
|
Kim ES, Moon A. Ursolic acid inhibits the invasive phenotype of SNU-484 human gastric cancer cells. Oncol Lett 2014; 9:897-902. [PMID: 25621065 PMCID: PMC4301486 DOI: 10.3892/ol.2014.2735] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022] Open
Abstract
Metastasis is a major cause of cancer-related mortality in patients with gastric cancer. Ursolic acid, a pentacyclic triterpenoid compound derived from medicinal herbs, has been demonstrated to exert anticancer effects in various cancer cell systems. However, to the best of our knowledge, the inhibitory effect of ursolic acid on the invasive phenotype of gastric cancer cells has yet to be reported. Therefore, the aim of the present study was to investigate the effect of ursolic acid on the invasiveness of SNU-484 human gastric cancer cells. Ursolic acid efficiently induced apoptosis, possibly via the downregulation of B-cell lymphoma 2 (Bcl-2), the upregulation of Bcl-2-associated X protein and the proteolytic activation of caspase-3. Furthermore, the activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase was increased by the administration of ursolic acid. In addition, ursolic acid significantly suppressed the invasive phenotype of the SNU-484 cells and significantly decreased the expression of matrix metalloproteinase (MMP)-2, indicating that MMP-2 may be responsible for the anti-invasive activity of ursolic acid. Taken together, the results of the present study demonstrate that ursolic acid induces apoptosis and inhibits the invasive phenotype of gastric cancer cells; therefore, ursolic acid may have a potential application as a chemopreventive agent to prevent the metastasis of gastric cancer or to alleviate the process of metastasis.
Collapse
Affiliation(s)
- Eun-Sook Kim
- College of Pharmacy, Innovative Drug Center, Duksung Women's University, Seoul 132-714, Republic of Korea
| | - Aree Moon
- College of Pharmacy, Innovative Drug Center, Duksung Women's University, Seoul 132-714, Republic of Korea
| |
Collapse
|
50
|
Lin CC, Yan SL, Yin MC. Inhibitory effects of maslinic acid upon human esophagus, stomach and pancreatic cancer cells. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|