1
|
Trojan A, Lone YC, Briceno I, Trojan J. Anti-Gene IGF-I Vaccines in Cancer Gene Therapy: A Review of a Case of Glioblastoma. Curr Med Chem 2024; 31:1983-2002. [PMID: 38031775 DOI: 10.2174/0109298673237968231106095141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE Vaccines for the deadliest brain tumor - glioblastoma (GBM) - are generally based on targeting growth factors or their receptors, often using antibodies. The vaccines described in the review were prepared to suppress the principal cancer growth factor - IGF-I, using anti-gene approaches either of antisense (AS) or of triple helix (TH) type. Our objective was to increase the median survival of patients treated with AS and TH cell vaccines. METHODOLOGY The cells were transfected in vitro by both constructed IGF-I AS and IGF-I TH expression episomal vectors; part of these cells was co-cultured with plant phytochemicals, modulating IGF-I expression. Both AS and TH approaches completely suppressed IGF-I expression and induced MHC-1 / B7 immunogenicity related to the IGF-I receptor signal. RESULTS This immunogenicity proved to be stronger in IGF-I TH than in IGF-I AS-prepared cell vaccines, especially in TH / phytochemical cells. The AS and TH vaccines generated an important TCD8+ and TCD8+CD11b- immune response in treated GBM patients and increased the median survival of patients up to 17-18 months, particularly using TH vaccines; in some cases, 2- and 3-year survival was reported. These clinical results were compared with those obtained in therapies targeting other growth factors. CONCLUSION The anti-gene IGF-I vaccines continue to be applied in current GBM personalized medicine. Technical improvements in the preparation of AS and TH vaccines to increase MHC-1 and B7 immunogenicity have, in parallel, allowed to increase in the median survival of patients.
Collapse
Affiliation(s)
- Annabelle Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- Faculty of Medicine, University of Cartagena, PO Box: 130014 Cartagena de Indias, Colombia
| | - Yu-Chun Lone
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
| | - Ignacio Briceno
- Faculty of Medicine, University of La Sabana, PO Box: 250008 Chia, Colombia
| | - Jerzy Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
- National Academy of Medicine - ANM, PO Box: 75272 Paris, France
| |
Collapse
|
2
|
Klisovic RB, Blum W, Liu Z, Xie Z, Kefauver C, Huynh L, Zwiebel JA, Devine SM, Byrd JC, Grever MR, Chan KK, Marcucci G. Phase I study of GTI-2040, a ribonucleotide reductase antisense, with high dose cytarabine in patients with relapsed/refractory acute myeloid leukemia. Leuk Lymphoma 2013; 55:1332-6. [PMID: 24015841 DOI: 10.3109/10428194.2013.838764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We hypothesized that GTI-2040, a 20-mer oligonucleotide complementary to the R2 subunit mRNA of ribonucleotide reductase, combined with high dose cytarabine (HiDAC) would result in enhanced cytotoxicity by favoring Ara-CTP DNA incorporation. In a phase I dose escalation trial, adults (≥ 60 years) with refractory or relapsed acute myeloid leukemia (AML) received daily HiDAC plus infusional GTI-2040. Using a novel assay, evidence of intracellular drug accumulation and target R2 down-regulation was observed. GTI-2040/HiDAC can be administered safely. However, with no complete remissions observed, alternative doses and schedules may need to be investigated to achieve clinical activity in older patients with AML.
Collapse
|
3
|
Lampronti I, Khan MTH, Borgatti M, Bianchi N, Gambari R. Inhibitory Effects of Bangladeshi Medicinal Plant Extracts on Interactions between Transcription Factors and Target DNA Sequences. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 5:303-12. [PMID: 18830455 PMCID: PMC2529391 DOI: 10.1093/ecam/nem042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 03/14/2007] [Indexed: 01/04/2023]
Abstract
Several transcription factors (TFs) play crucial roles in governing the expression of different genes involved in the immune response, embryo or cell lineage development, cell apoptosis, cell cycle progression, oncogenesis, repair and fibrosis processes and inflammation. As far as inflammation, TFs playing pivotal roles are nuclear factor kappa B (NF-kB), activator protein (AP-1), signal transducer and activator of transcription (STATs), cAMP response element binding protein (CREB) and GATA-1 factors. All these TFs regulate the expression of pro-inflammatory cytokines and are involved in the pathogenesis of a number of human disorders, particularly those with an inflammatory component. Since several medicinal plants can be employed to produce extracts exhibiting biological effects and because alteration of gene transcription represents a very interesting approach to control the expression of selected genes, this study sought to verify the ability of several extracts derived from Bangladeshi medicinal plants in interfering with molecular interactions between different TFs and specific DNA sequences. We first analyzed the antiproliferative activity of 19 medicinal plants on different human cell lines, including erythroleukemia K562, B lymphoid Raji and T lymphoid Jurkat cell lines. Secondly, we employed the electrophoretic mobility shift assay as a suitable technique for a fast screening of plant extracts altering the binding between NF-kB, AP-1, GATA-1, STAT-3, CREB and the relative target DNA elements.
Collapse
Affiliation(s)
- Ilaria Lampronti
- ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Italy, University of Science and Technology of Chittagong, Bangladesh, Laboratory for the Development of Pharmacologic and Pharmacogenomic Therapy of Thalassemia, Biothecnology Center and Center of Excellence on Inflammation, University of Ferrara, Italy
| | | | | | | | | |
Collapse
|
4
|
Cheung KJJ, Horsman DE, Gascoyne RD. The significance ofTP53in lymphoid malignancies: mutation prevalence, regulation, prognostic impact and potential as a therapeutic target. Br J Haematol 2009; 146:257-69. [DOI: 10.1111/j.1365-2141.2009.07739.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Klisovic RB, Blum W, Wei X, Liu S, Liu Z, Xie Z, Vukosavljevic T, Kefauver C, Huynh L, Pang J, Zwiebel JA, Devine S, Byrd JC, Grever MR, Chan K, Marcucci G. Phase I study of GTI-2040, an antisense to ribonucleotide reductase, in combination with high-dose cytarabine in patients with acute myeloid leukemia. Clin Cancer Res 2008; 14:3889-95. [PMID: 18559610 PMCID: PMC2993318 DOI: 10.1158/1078-0432.ccr-08-0109] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Inhibition of ribonucleotide reductase reduces the availability of the endogenous pool of deoxycytidine and may increase cytarabine (AraC) cytotoxicity. We performed a phase I dose escalation trial of AraC combined with GTI-2040, a 20-mer antisense oligonucleotide shown in preclinical studies to decrease levels of the R2 subunit of ribonucleotide reductase, to determine the maximum tolerated dose in adults with relapsed/refractory acute myeloid leukemia. EXPERIMENTAL DESIGN Twenty-three adults (ages 18-59 years) were enrolled in this dose escalation phase I trial, receiving high-dose AraC twice daily combined with infusional GTI-2040. An ELISA-based assay measured plasma and intracellular concentrations of GTI-2040. R2 protein changes were evaluated by immunoblotting in pretreatment and post-treatment bone marrow samples. RESULTS The maximum tolerated dose was 5 mg/kg/d GTI-2040 (days 1-6) and 3 g/m2/dose AraC every 12 hours for 8 doses. Neurotoxicity was dose limiting. Eight patients (35%) achieved complete remission. Mean bone marrow intracellular concentration of GTI-2040 were higher at 120 hours than at 24 hours from the start of GTI-2040 (P = 0.002), suggesting intracellular drug accumulation over time. Reductions in bone marrow levels of R2 protein (>50%) were observed at 24 and 120 hours. Higher baseline R2 protein expression (P = 0.03) and reductions after 24 hours of GTI-2040 (P = 0.04) were associated with complete remission. CONCLUSIONS GTI-2040 and high-dose AraC were coadministered safely with successful reduction of the intended R2 target and encouraging clinical results. The clinical efficacy of this combination will be tested in an upcoming phase II study.
Collapse
Affiliation(s)
- Rebecca B. Klisovic
- Division of Hematology and Oncology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - William Blum
- Division of Hematology and Oncology, Department of Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Xiaohui Wei
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shujun Liu
- Division of Hematology and Oncology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Zhongfa Liu
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Zhiliang Xie
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Tamara Vukosavljevic
- Division of Hematology and Oncology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Cheryl Kefauver
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - LeNguyen Huynh
- Division of Hematology and Oncology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Jiuxia Pang
- Division of Hematology and Oncology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - James A. Zwiebel
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland
| | - Steven Devine
- Division of Hematology and Oncology, Department of Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - John C. Byrd
- Division of Hematology and Oncology, Department of Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Michael R. Grever
- Division of Hematology and Oncology, Department of Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kenneth Chan
- Division of Hematology and Oncology, Department of Medicine, The Ohio State University, Columbus, Ohio
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Guido Marcucci
- Division of Hematology and Oncology, Department of Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Antisense oligonucleotide Elk-1 suppresses the tumorigenicity of human hepatocellular carcinoma cells. Cell Biol Int 2007; 32:210-6. [PMID: 17950002 DOI: 10.1016/j.cellbi.2007.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 08/03/2007] [Accepted: 08/29/2007] [Indexed: 11/20/2022]
Abstract
In previous studies, we showed that reducing Ets-like protein-1 (Elk-1) expression inhibited protein kinase C alpha (PKC alpha) expression and decreased cell migration and invasion in human hepatocellular carcinoma (HCC). In this study, we have investigated the role of Elk-1 in tumorigenesis. SK-Hep-1 HCC cells were transfected with the ElK-1 antisense oligonucleotide (ODN). In the pretreated cells we detected a reduction of mRNA level using RT-PCR. The inhibitory rate of cell growth was measured by MTT assay. Pretreated-SK-Hep-1 HCC cells were implanted subcutaneously into nude mice to observe the tumor growth and calculate tumor inhibitory rate. The results showed that 5 microM of the antisense ODN Elk-1 suppressed both Elk-1 and PKC alpha production by SK-Hep-1 HCC cells after cationic liposome-mediated transfection, to 8% and 1% of control values, respectively, and the growth of SK-Hep-1 HCC cells was inhibited at 2-5 microM doses of the antisense ODN Elk-1. The control reagent, sense ODN Elk-1, showed no effects. In BALB/nude mice, SK-Hep-1 HCC cells transfected with the 5 microM antisense ODN Elk-1 formed tumors much smaller than those of sense ODN Elk-1 pretreated cells. The maximum inhibitory rate of tumor growth was 80.8+/-12.6% and the tumor formation time was prolonged from 13 to 25 days. These findings suggested the usefulness of antisense ODN Elk-1 as a new reagent for liver cancer therapy.
Collapse
|
7
|
Link BK, Ballas ZK, Weisdorf D, Wooldridge JE, Bossler AD, Shannon M, Rasmussen WL, Krieg AM, Weiner GJ. Oligodeoxynucleotide CpG 7909 Delivered as Intravenous Infusion Demonstrates Immunologic Modulation in Patients With Previously Treated Non-Hodgkin Lymphoma. J Immunother 2006; 29:558-68. [PMID: 16971811 DOI: 10.1097/01.cji.0000211304.60126.8f] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oligodeoxynucleotides containing CpG motifs (CpG ODN) can alter various immune cell subsets important in antibody therapy of malignancy. We undertook a phase I trial of CPG 7909 (also known as PF-3512676) in patients with previously treated lymphoma with the primary objective of evaluating safety across a range of doses, and secondary objectives of evaluating immunomodulatory effects and clinical effects. Twenty-three patients with previously treated non-Hodgkin lymphoma received up to 3 weekly 2-hour intravenous (IV) infusions of CPG ODN 7909 at dose levels 0.01 to 0.64 mg/kg. Evaluation of immunologic parameters and clinical endpoints occurred for 6 weeks. Infusion-related toxicity included grade 1 nausea, hypotension, and IV catheter discomfort. Serious adverse hematologic events observed more than once included anemia (2=Gr3, 2=Gr4), thrombocytopenia (4=Gr3), and neutropenia (2=Gr3), and were largely judged owing to progressive disease. Immunologic observations included: (1) The mean ratio of NK-cell concentrations compared with pretreatment at day 2 was 1.44 (95% CI=0.94-1.94) and at day 42 was 1.53 (95% CI=1.14-1.91); (2) NK activity generally increased in subjects; and (3) Antibody-dependent cellular cytotoxicity activity increased in select cohorts. No clinical responses were documented radiographically at day 42. Two subjects demonstrated late response. We conclude CpG 7909 can be safely given as a 2-hour IV infusion to patients with previously treated non-Hodgkin lymphoma at doses that have immunomodulatory effects.
Collapse
Affiliation(s)
- Brian K Link
- Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lampronti I, Hassan Khan MT, Bianchi N, Feriotto G, Mischiati C, Borgatti M, Gambari R. Effects of medicinal plant extracts on molecular interactions between DNA and transcription factors. LEAD MOLECULES FROM NATURAL PRODUCTS - DISCOVERY AND NEW TRENDS 2006. [DOI: 10.1016/s1572-557x(05)02003-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Poenitz N, Simon-Ackermann J, Gratchev A, Qadoumi M, Klemke CD, Stadler R, Kremer A, Radenhausen M, Henke U, Assaf C, Utikal J, Goerdt S, Dippel E. Overexpression of c- myb in Leukaemic and Non-Leukaemic Variants of Cutaneous T-Cell Lymphoma. Dermatology 2005; 211:84-92. [PMID: 16088151 DOI: 10.1159/000086434] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 10/25/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The c-myb oncogene is a transcription factor that regulates proliferation, differentiation and apoptosis of haematopoietic cells and activated T cells by binding to promoter sequences of such genes as c-myc or bcl-2 that are expressed in cutaneous T-cell lymphoma (CTCL). OBJECTIVE Our study was performed in order to evaluate c-myb expression as a quantitative parameter for differential diagnosis in leukaemic and non-leukaemic variants of CTCL. METHODS c-myb expression was analysed in lesional skin and in the peripheral blood of 21 patients with mycosis fungoides (MF), 15 patients with Sézary syndrome (SS) and 15 patients with inflammatory skin diseases using immunohistochemistry and semiquantitative as well as quantitative RT-PCR. RESULTS Immunohistochemistry confirmed expression of c-myb in the lesional skin of the majority of CTCL patients with a tendency towards higher expression in SS (1.86 +/- 0.5) versus MF (1.2 +/- 0.7) while c-myb was absent from the lesional skin of patients with inflammatory skin diseases. c-myb was overexpressed in the peripheral blood in all SS patients (100% SS vs. 35.7% MF) at a high expression level (51,335.31 +/- 31,960.32 AU in SS vs. 1,226.35 +/- 1,258.29 AU in MF using semiquantitative RT-PCR, and 5.72 x 10(-2) +/- 2.27 x 10(-2) in SS vs. 0.91 x 10(-2) +/- 1.18 x 10(-2) in MF vs. 0.24 x 10(-2) +/- 0.11 x 10(-2) in inflammatory skin disease using quantitative RT-PCR). CD4+ cells from the peripheral blood of SS patients and cell lines in vitro showed the highest c-myb expression levels upon quantitative RT-PCR (23.27 x 10(-2) and 10.78 x 10(-2) +/- 7.24 x 10(-2)). CONCLUSION Overexpression of c-myb in skin lesions of both non-leukaemic and leukaemic CTCL independent of the stage of the disease indicates that it acts early in disease development. Nevertheless, if positive, c-myb expression in lesional skin is a clear-cut diagnostic marker for CTCL as compared to inflammatory skin diseases. High-level expression of c-myb in the peripheral blood as assessed by quantitative RT-PCR constitutes an additional diagnostic parameter for SS and may be especially useful in cases in which morphological determination of Sézary cells or FACS analysis of CD7 and CD26 remain inconclusive.
Collapse
MESH Headings
- Adult
- Age Factors
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Blotting, Southern
- Case-Control Studies
- Cohort Studies
- Female
- Gene Expression Regulation, Neoplastic
- Genes, myb/genetics
- Humans
- Immunohistochemistry
- Lymphoma, T-Cell, Cutaneous/blood
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/pathology
- Male
- Middle Aged
- Mycosis Fungoides/blood
- Mycosis Fungoides/genetics
- Mycosis Fungoides/pathology
- Neoplasm Staging
- Prognosis
- Reference Values
- Reverse Transcriptase Polymerase Chain Reaction
- Risk Assessment
- Sensitivity and Specificity
- Sex Factors
- Sezary Syndrome/genetics
- Sezary Syndrome/mortality
- Sezary Syndrome/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/mortality
- Skin Neoplasms/pathology
Collapse
Affiliation(s)
- N Poenitz
- Department of Dermatology, Venereology and Allergology, University Medical Centre Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tavitian B. Oligonucleotides as radiopharmaceuticals. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:1-34. [PMID: 15524208 DOI: 10.1007/3-540-26809-x_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- B Tavitian
- INSERM ERM 103 Service Hospitalier, Frédéric Joliot CEA Direction des Sciences du Vivant Direction de la Recherche Medicale, Orsay, France.
| |
Collapse
|
11
|
Abstract
Ets family (ETS) transcription factors, characterized by an evolutionally conserved Ets domain, play important roles in cell development, cell differentiation, cell proliferation, apoptosis and tissue remodeling. Most of them are downstream nuclear targets of Ras-MAP kinase signaling, and the deregulation of ETS genes results in the malignant transformation of cells. Several ETS genes are rearranged in human leukemia and Ewing tumors to produce chimeric oncoproteins. Furthermore, the aberrant expression of several ETS genes is often observed in various types of human malignant tumors. Considering that some ETS transcription factors are involved in malignant transformation and tumor progression, including invasion, metastasis and neo-angiogenesis through the activation of cancer-related genes, they could be potential molecular targets for selective cancer therapy.
Collapse
Affiliation(s)
- Tsuneyuki Oikawa
- Department of Cell Genetics, Sasaki Institute, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
12
|
Murata M, Kaku W, Anada T, Sato Y, Kano T, Maeda M, Katayama Y. Novel DNA/polymer conjugate for intelligent antisense reagent with improved nuclease resistance. Bioorg Med Chem Lett 2004; 13:3967-70. [PMID: 14592486 DOI: 10.1016/j.bmcl.2003.08.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antisense technology provides an effective strategy to inhibit synthesis of the gene product. We prepared a novel antisense reagent comprised of oligodeoxynucleotides (ODN) and a thermo responsive polymer, poly(N-isopropylacrylamide) (PNIPAAm). The conjugate inhibited gene expression in a dose-dependent manner. The ODN-PNIPAAm conjugate demonstrated excellent resistance to S1 nuclease. In particular, PNIPAAm-modified antisense ODN at the 3',5'-ends of the ODN provided complete resistance against nuclease at 37 degrees C, which is above the phase transition temperature of the PNIPAAm side chain. These characteristics of the conjugate suggest it may have potential for use in a new gene delivery system as part of an antisense strategy.
Collapse
Affiliation(s)
- Masaharu Murata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Anastasiadou E, Schwaller J. Role of constitutively activated protein tyrosine kinases in malignant myeloproliferative disorders: an update. Curr Opin Hematol 2003; 10:40-8. [PMID: 12483110 DOI: 10.1097/00062752-200301000-00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Modern molecular technology helped identify more than 10 protein tyrosine kinases related to myeloid malignancies, which allowed the development of small molecule inhibitors targeting deregulated protein tyrosine kinase activity. Protein tyrosine kinase deregulation can occur as a consequence of fusion gene formation because of chromosomal translocations, or as distinct gain-of-function point mutations. Although the tyrosine kinase inhibitor imatinib mesylate (Gleevec) targeting the ABL protein tyrosine kinase has revolutionized current chronic myeloid leukemia therapy, it became rapidly evident that overcoming the multiple cellular resistance mechanisms will be very challenging. To develop efficient therapeutic alternatives, one must understand the complex signal transduction mechanisms involved in transformation by deregulated protein tyrosine kinases. This article reviews the most recently identified molecular mechanisms involved in cell transformation by the BCR/ABL protein tyrosine kinase fusion and presents new members of the increasing family of deregulated protein tyrosine kinases involved in myeloproliferative disorders. In addition, the article discusses new, promising small molecule protein tyrosine kinase inhibitors and the molecular mechanism that may lead to resistance to these drugs. Finally, the article highlights putative alternative strategies that could be used to block signal transduction pathways of deregulated protein tyrosine kinase activity.
Collapse
Affiliation(s)
- Ema Anastasiadou
- Harvard Institutes of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
14
|
Torrence PF, Powell LD. The quest for an efficacious antiviral for respiratory syncytial virus. Antivir Chem Chemother 2002; 13:325-44. [PMID: 12718405 DOI: 10.1177/095632020201300601] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Respiratory syncytial virus (RSV) continues as an emerging infectious disease not only among infants and children, but also for the immune-suppressed, hospitalized and the elderly. To date, ribavirin (Virazole) remains the only therapeutic agent approved for the treatment of RSV. The prophylactic administration of palivizumab is problematic and costly. The quest for an efficacious RSV antiviral has produced a greater understanding of the viral fusion process, a new hypothesis for the mechanism of action of ribavirin, and a promising antisense strategy combining the 2'-5' oligoadenylate antisense (2-5A-antisense) approach and RSV genomics.
Collapse
Affiliation(s)
- Paul F Torrence
- Department of Chemistry, Northern Arizona University, Flagstaff, Ariz., USA.
| | | |
Collapse
|
15
|
Gambari R. Biospecific interaction analysis: a tool for drug discovery and development. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 1:119-35. [PMID: 12174673 DOI: 10.2165/00129785-200101020-00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent development of surface plasmon resonance (SPR)-based biosensor technologies for biospecific interaction analysis (BIA) enables the monitoring of a variety of molecular reactions in real-time. The biomolecular interactions occur at the surface of a flow cell of a sensor chip between a ligand immobilized on the surface and an injected analyte. SPR-based BIA offers many advantages over most of the other methodologies available for the study of biomolecular interactions, including full automation, no requirement for labeling, and the availability of a large variety of activated sensor chips that allow immobilization of DNA, RNA, proteins, peptides and cells. The assay is rapid and requires only small quantitities of both ligand and analyte in order to obtain informative results. In addition, the sensor chip can be re-used many times, leading to low running costs. Aside from the analysis of all possible combinations of peptide, protein, DNA and RNA interactions, this technology can also be used for screening of monoclonal antibodies and epitope mapping, analysis of interactions between low molecular weight compounds and proteins or nucleic acids, interactions between cells and ligands, and real-time monitoring of gene expression. Applications of SPR-based BIA in medicine include the molecular diagnosis of viral infections and genetic diseases caused by point mutations. Future perspectives include the combinations of SPR-based BIA with mass spectrometry, the use of biosensors in proteomics, and the application of this technology to design and develop efficient drug delivery systems.
Collapse
Affiliation(s)
- R Gambari
- Department of Biochemistry and Molecular Biology, and Biotechnology Center, Ferrara University, Ferrara, Italy.
| |
Collapse
|
16
|
Yang JY, Luo HY, Lin QY, Liu ZM, Yan LN, Lin P, Zhang J, Lei S. Subcellular daunorubicin distribution and its relation to multidrug resistance phenotype in drug-resistant cell line SMMC-7721/R. World J Gastroenterol 2002; 8:644-9. [PMID: 12174371 PMCID: PMC4656313 DOI: 10.3748/wjg.v8.i4.644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the correlation between subcellular daunorubicin distribution and the multidrug resistance phenotype in drug-resistant cell line SMMC-7721/R.
METHODS: The multidrug resistant cell line SMMC-7721/R, a human hepatocellular carcinoma cell line, was established. Antisense oligonucleotides (AS-ODN) were used to obtain different multidrug resistance phenotypes by inhibiting the expression of mdr1 gene and/or multidrug resistance-related protein gene (mrp) using Lipofectamine as delivery agent. Expression of mdr1 and mrp genes was evaluated by RT-PCR and Western blotting. Intracellular daunorubicin (DNR) concentration was measured by flow cytometry. Subcellular DNR distribution was analyzed by confocal laser scanning microscopy. Adriamycin (ADM) and DNR sensitivity was examined by MTT method.
RESULTS: Low level expression of mdr1 and mrp mRNAs and no expression of P-Glycoprotein (P-gp) and multidrug resistance-related protein (P190) were detected in parental sensitive cells SMMC-7721/S, but over-expression of these two genes was observed in drug-resistant cell SMMC-7721/R. The expression of mdr1 and mrp genes in SMMC-7721/R cells was down-regulated to the level in the SMMC-7721/S cells by AS-ODN. Intracellular DNR concentration in SMMC-7721/S cells was 10 times higher than that in SMMC-7721/R cells. In SMMC7721/S cells intracellular DNR distributed evenly in the nucleus and cytoplasm, while in SMMC-7721/R cells DNR distributed in a punctate pattern in the cytoplasm and was reduced in the nucleus. DNR concentration in SMMC-7721/R cells co-transfected with AS-ODNs targeting to mdr1 and mrp mRNAs recovered to 25 percent of that in SMMC7721/S cells. Intracellular DNR distribution pattern in drug-resistant cells treated by AS-ODN was similar to drug-sensitive cell, and the cells resistance index (RI) to DNR and ADM decreased at most from 88.0 and 116.0 to 4.0 and 2.3, respectively. Co-Transfection of two AS-ODNs showed a stronger synergistic effect than separate transfection.
CONCLUSIONS: P-gp and P190 are two members mediating MDR in cell line SMMC7721/R. Intracellular drug concentration increase and subcellular distribution change are two important factors in multidrug resistance (MDR) formation. The second factor, drugs transport by P-gp and P190 from cell nucleus to organell in cytoplasm, may play a more important role.
Collapse
Affiliation(s)
- Jia-Yin Yang
- Department of General surgery, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Smythe WR, Mohuiddin I, Ozveran M, Cao XX. Antisense therapy for malignant mesothelioma with oligonucleotides targeting the bcl-xl gene product. J Thorac Cardiovasc Surg 2002; 123:1191-8. [PMID: 12063468 DOI: 10.1067/mtc.2002.121684] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Malignant pleural mesothelioma is resistant to conventional therapies and to apoptosis. The bcl-2 family genes are major determinants of apoptotic homeostasis. Malignant pleural mesothelioma lines and tumors rarely express the antiapoptotic Bcl-2 protein but routinely express the antiapoptotic protein Bcl-xl and the proapoptotic proteins Bax and Bak. We have previously shown pharmacologic inhibition of bcl-xl expression in malignant pleural mesothelioma can lead to apoptosis, so we sought to determine whether antisense oligonucleotides directed at bcl-xl messenger RNA would engender apoptosis, possibly through a "forced imbalance" of bcl-2 family proteins. METHODS Malignant pleural mesothelioma lines REN (epithelial) and I-45 (sarcomatous) were exposed to modified bcl-xl antissense oligonecleotides directed near the messenger RNA initiation sequence with and without a liposomal delivery system. Untreated cells and bcl-xl sense oligonucleotides were controls. Cell viability was measured by colorimetric assay, and apoptosis was evaluated with Hoechst staining and sub-G(1) fluorescence-activated cell sorter analysis. RESULTS Bcl-xl protein expression after antisense oligonucleotides was downwardly regulated in both cell lines relative to sense oligonucleotides (>65%). Significant cellular killing in both the I-45 and REN cell lines was achieved with antisense oligonucleotides (compared with sense oligonucleotides) without (P =.003 and.006, respectively) and with (P =.006 and.0005, respectively) liposomal delivery. Hoechst staining and sub-G(1) fluorescence-activated cell sorter analysis demonstrated apoptosis to be the mechanism of cellular death. Use of a liposomal delivery system increased therapeutic effect and allowed lower doses of antisense oligonucleotides. CONCLUSION Antisense oligonucleotides directed at the bcl-xl gene product engender apoptosis in mesothelioma cell lines. The therapeutic potential of inhibiting expression of this protein in mesothelioma should be evaluated.
Collapse
Affiliation(s)
- W Roy Smythe
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, 77030, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
There is a potential role for antisense oligonucleotides in the treatment of disease. The principle of antisense technology is the sequence-specific binding of an antisense oligonucleotide to target mRNA, resulting in the prevention of gene translation. The specificity of hybridisation makes antisense treatment an attractive strategy to selectively modulate the expression of genes involved in the pathogenesis of diseases. One antisense drug has been approved for local treatment of cytomegalovirus-induced retinitis, and several antisense oligonucleotides are in clinical trials, including oligonucleotides that target the mRNA of BCL2, protein-kinase-C alpha, and RAF kinase. Antisense oligonucleotides are well tolerated and might have therapeutic activity. Here, we summarise treatment ideas in this field, summarise clinical trials that are being done, discuss the potential contribution of CpG motif-mediated effects, and look at promising molecular targets to treat human cancer with antisense oligonucleotides.
Collapse
Affiliation(s)
- I Tamm
- Department for Haematology and Oncology, Charité, Virchow-Clinic, Humboldt University, Forschungshaus, Room 2.0315, 13353, Berlin, Germany.
| | | | | |
Collapse
|