1
|
Liu J, Di D, Sun S, Sun Y, Zhou S, Liu J, Qin Z, Yang X, Wang X, Xu Z, Zhu B, Wu H. Neuroprotective effects and mechanisms of the YiQiWenYangSanHan formula on Parkinson's disease mice. IBRO Neurosci Rep 2025; 18:528-538. [PMID: 40236762 PMCID: PMC11999681 DOI: 10.1016/j.ibneur.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Background Parkinson's disease (PD) is a complex neurodegenerative disease, which is often treated with obvious side effects such as dopamine replacement therapy. Our team has validated the unique advantages of the traditional Chinese medicine formula, YiQiWenYangSanHan formula (YQWYSHF), through in vitro experiments, confirming its therapeutic potential for PD. Nevertheless, further research and validation are required to fully understand its protective effects and underlying mechanisms against PD. Aim of this review This study employed an in vivo model to investigate the effects of YQWYSHF on motor impairments, neuroinflammation, and mitochondrial dysfunction in C57BL/6 J mice caused by MPTP. Materials and methods Sixty C57BL/6 J mice were randomly divided into 5 groups, all groups except the control group were intraperitoneally administered MPTP for 7 days (30 mg/kg). After 4 weeks of drug intragastric treatment, we assessed the dyskinesia of mice treated with different doses of YQWYSHF by behavioral examination. Additionally, immunofluorescence was used to examine the expression of ionized calcium binding adaptor protein 1 (IBA1) and glial fibrillary acidic protein-positive (GFAP) cells. Western blotting was used to assess the expression level of tyrosine hydroxylase (TH), pyrin domain-containing 3 protein (NLRP3), apoptosis-associated speck-like proteins (ASC), cysteine-containing aspartate protease-1 (Caspase-1), interleukin-1β (IL-1β), α-synuclein (α-syn), poly (ADP-ribose) polymerase 1 (PARP1), and poly ADP ribose (PAR). Furthermore, transmission electron microscopy revealed mitochondrial impairment in the neuronal cells of the substantia nigra (SN). Results YQWYSHF treatment alleviated dyskinesia in a mouse model of PD. Moreover, it increased the TH expression, and could reverse the increase of IBA1, GFAP, NLRP3, ASC, caspase-1,IL-1β, α-syn, PARP1 and PAR proteins induced by MPTP. Conclusions YQWYSHF protects dopaminergic neurons in PD by attenuating neuroinflammation and mitochondrial dysfunction. This study provides new evidence for the clinical application of traditional Chinese medicine in the treatment of PD.
Collapse
Affiliation(s)
- Jinling Liu
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Dong Di
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Suping Sun
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Yan Sun
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Shihan Zhou
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Jing Liu
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Zizhen Qin
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Xinyu Yang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Xiao Wang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Zheng Xu
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Boran Zhu
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Haoxin Wu
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| |
Collapse
|
2
|
Li J, Li J, Liu Y, Hu C, Xu H, Cao D, Zhang R, Zhang K. Nrf2 Ameliorates Sevoflurane-Induced Cognitive Deficits in Aged Mice by Inhibiting Neuroinflammation in the Hippocampus. Mol Neurobiol 2025; 62:8048-8064. [PMID: 39969679 DOI: 10.1007/s12035-025-04777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Perioperative neurocognitive disorders (PND), common complications that occur after anesthetized surgery in elderly patients, are major challenges to our rapidly growing aging population. The transcription factor known as nuclear factor erythroid-2-related factor 2 (Nrf2) is an essential component of the cellular antioxidant response, purportedly contributing to the preservation of cognitive functions such as learning and memory. Nevertheless, the function and intracellular processes involving Nrf2 in PND remain largely unknown. Therefore, we evaluate the influence and fundamental mechanism of Nrf2 on PND in aged mice. To establish the postoperative neurocognitive dysfunction (PND) model, aged mice were subjected to anesthesia via inhalation of 3% sevoflurane for a duration of 2 h. The role of Nrf2 in PND was investigated by administering microinjections of either the adeno-associated virus (AAV)-Nrf2 vector or a null virus vector into the hippocampal CA1 region of aged mice 28 days before exposure to sevoflurane. Various assays including enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and western blotting were employed to assess levels of pro-inflammatory cytokines, microglial activation, and the oxidative stress response. Furthermore, synaptic plasticity was evaluated through long-term potentiation (LTP) recording and Golgi staining techniques. Elevated expression of Nrf2 within the hippocampal CA1 region ameliorated sevoflurane-induced cognitive deficits, synaptic plasticity anomalies, and the oxidative stress reaction in aged mice. Furthermore, the activation of microglia and the release of pro-inflammatory cytokines (including IL-6, TNF-α, and IL-1β) within the hippocampus post-sevoflurane exposure were modulated in an Nrf2-dependent fashion. Based on the findings from present research, we conclude that Nrf2 ameliorates sevoflurane-induced cognitive dysfunction by inhibiting hippocampal neuroinflammation, thereby proposing a potential therapeutic target for PND.
Collapse
Affiliation(s)
- Junhua Li
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jinfeng Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (the Second Clinical Medical College of Guangzhou University of Chinese Medicine), Guangzhou, China
| | - Yafang Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chuwen Hu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hui Xu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dong Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rong Zhang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Kun Zhang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Gao Y, Tang X, Yao J, Sun T, Chen Y, Cheng C, Yang J, Wang B, Liu A, Yang L, Zhao M. Targeting the bile acid receptor TGR5 with Gentiopicroside to activate Nrf2 antioxidant signaling and mitigate Parkinson's disease in an MPTP mouse model. J Adv Res 2025:S2090-1232(25)00356-X. [PMID: 40414345 DOI: 10.1016/j.jare.2025.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/28/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is a common neurodegenerative disorder characterized by classical symptoms including bradykinesia, rest tremor and rigidity. Oxidative stress and mitochondrial dysfunction are recognized as pivotal factors in PD progression. Gentiopicroside (GPS), a secoiridoid derived from Gentiana manshurica Kitagawa, exhibits antioxidant and mitophagy induction properties. Nonetheless, the effects and mechanisms by which GPS mitigates neurodegeneration in PD remain to be thoroughly elucidated. OBJECTIVES The goal of this study was to investigate the neuroprotective effects and mechanisms of GPS in PD models. METHODS We established the MPTP/MPP+-induced PD models to measure the neuroprotection of GPS. Transcriptomic analysis, oxidative biochemical kits, western blot and cell immunofluorescence were conducted to elucidate the fundamental mechanisms at play. Subsequently, the targeting and activation of the transmembrane G protein-coupled receptor-5 (TGR5) by GPS were measured by molecular docking, cellular thermal shift assay, microscale thermophoresis (MST) and cyclic adenosine monophosphate (cAMP) quantitation. Finally, we verified whether the neuroprotective and antioxidant effects of GPS were dependent on TGR5 by using specific small interfering RNA (siRNA), pharmacological antagonist and knockout mice. RESULTS GPS significantly attenuated dopaminergic (DAergic) neuron loss and restored motor function in the MPTP-induced PD mouse model. Whole-genome RNA sequencing and subsequent mechanistic investigations revealed that GPS enhanced the expression and facilitated nuclear entry of factor erythroid-related 2-factor 2 (Nrf2), and reduced oxidative stress and mitochondrial dysfunction stimulated by neurotoxin. Additionally, GPS could target TGR5 and prevent its downregulation in PD model. TGR5's silencing or inhibition weakened the neuroprotective effect of GPS and blocked GPS-mediated activation of Nrf2 antioxidant signaling in PD model. Moreover, the therapeutic effect of GPS in mitigating motor deficits and neurodegeneration was also abolished in Tgr5 knockout mice. CONCLUSION These findings collectively indicated that GPS targeted TGR5 to activate Nrf2 antioxidant signaling and ultimately ameliorated the pathological progression of PD.
Collapse
Affiliation(s)
- Ying Gao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Xiuling Tang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Jingyue Yao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Ting Sun
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Yue Chen
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Caiyan Cheng
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Jingcheng Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - An Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China.
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China.
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Choudhary D, Nasiruddin Khan MD, Khan Z, Mehan S, Gupta GD, Narula AS, Samant R. Navigating the complexities of neuronal signaling and targets in neurological disorders: From pathology to therapeutics. Eur J Pharmacol 2025; 995:177417. [PMID: 40010482 DOI: 10.1016/j.ejphar.2025.177417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Neurological disorders arising from structural and functional disruptions in the nervous system present major global health challenges. This review examines the intricacies of various cellular signaling pathways, including Nrf2/Keap1/HO-1, SIRT-1, JAK/STAT3/mTOR, and BACE-1/gamma-secretase/MAPT, which play pivotal roles in neuronal health and pathology. The Nrf2-Keap1 pathway, a key antioxidant response mechanism, mitigates oxidative stress, while SIRT-1 contributes to mitochondrial integrity and inflammation control. Dysregulation of these pathways has been identified in neurodegenerative and neuropsychiatric disorders, including Alzheimer's and Parkinson's diseases, characterized by inflammation, protein aggregation, and mitochondrial dysfunction. Additionally, the JAK/STAT3 signaling pathway emphasizes the connection between cytokine responses and neuroinflammation, further compounding disease progression. This review explores the crosstalk among these signaling networks, elucidating how their disruption leads to neuronal decline. It also addresses the dual roles of these pathways, presenting challenges in targeting them for therapeutic purposes. Despite the potential benefits of activating neuroprotective pathways, excessive stimulation may cause deleterious effects, including tumorigenesis. Future research should focus on designing multi-targeted therapies that enhance the effectiveness and safety of treatments, considering individual variabilities and the obstacles posed by the blood-brain barrier to drug delivery. Understanding these complex signaling interactions is crucial for developing innovative and effective neuroprotective strategies that could significantly improve the management of neurological disorders.
Collapse
Affiliation(s)
- Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - M D Nasiruddin Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | | |
Collapse
|
5
|
Wang XY, Liu F, Wang QT, Li SZ, Ye YZ, Chen T, Cai BC. Rhapontin activates nuclear factor erythroid 2-related factor 2 to ameliorate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced gastrointestinal dysfunction in Parkinson's disease mice. World J Gastroenterol 2025; 31:104875. [PMID: 40309229 PMCID: PMC12038550 DOI: 10.3748/wjg.v31.i15.104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD)-a progressive neurodegenerative disorder-is characterized by motor and gastrointestinal dysfunction. The exploration of novel therapeutic strategies for PD is vital. AIM To investigate the potential mechanism of action of rhapontin-a natural compound with known antioxidant and anti-inflammatory properties-in the context of PD. METHODS Network pharmacology was used to predict the targets and mechanisms of action of rhapontin in PD. Behavioral tests and tyrosine hydroxylase immunofluorescence analysis were used to assess the effect of rhapontin on symptoms and pathology in MPTP-induced mice. Interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and IL-10 levels in tissues were measured using an enzyme-linked immunosorbent assay (ELISA). Additionally, nuclear factor erythroid 2-related factor 2 (NRF2) activation was confirmed using western blotting. RESULTS NRF2 was predicted to be the key transcription factor underlying the therapeutic effects of rhapontin in PD, and its anti-PD action may be associated with its anti-inflammatory and antioxidant properties. Rhapontin ameliorated the loss of dopaminergic neurons and gastrointestinal dysfunction in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice by activating NRF2. Additionally, rhapontin treatment significantly decreased pro-inflammatory cytokines (IL-6, TNF-α, IL-1β) in the substantia nigra, striatum, and colon, whereas it increased anti-inflammatory cytokine (IL-10) levels only in the colon, indicating the involvement of gut-brain axis in its neuroprotective potential. Finally, NRF2 was identified as a key transcription factor activated by rhapontin, particularly in the colon. CONCLUSION We elucidated the effects of rhapontin in MPTP-induced PD mouse models using a combination of network pharmacology analysis, behavioral assessments, immunofluorescence, ELISA, and Western blotting. Our findings revealed the multifaceted role of rhapontin in ameliorating PD through its anti-inflammatory and antioxidant properties, particularly by activating NRF2, paving the way for future research into targeted therapies for PD.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Fang Liu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Qi-Tong Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Shu-Zhu Li
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Yu-Zhao Ye
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Tao Chen
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Ben-Chi Cai
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| |
Collapse
|
6
|
Sadier NS, Hazimeh IA, Khazaal W, Al Sabouri AAK, Almutary AG, Alnuqaydan AM, Abou-Abbas L. Exploring the therapeutic potential of NLRP3 inhibitors in Parkinson's Disease: a systematic review of in-vivo studies. Inflammopharmacology 2025:10.1007/s10787-025-01733-x. [PMID: 40259110 DOI: 10.1007/s10787-025-01733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/29/2024] [Indexed: 04/23/2025]
Abstract
BACKGROUND Parkinson's disease is a progressive neurodegenerative disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Although the exact etiology is unknown, the nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome-induced inflammation, plays a crucial role in the pathogenesis of Parkinson's disease. Many NLRP3 inhibitors are recognized for their role as potential therapeutic interventions for Parkinson's disease. METHODS A systematic literature search was performed in PubMed, Embase, and Science Direct databases for papers published during the 10 years prior to May 2023. All animal interventional studies assessing the effects of NLRP3 inhibitors on Parkinson's disease animal models were included. Primary outcomes included NLRP3 inflammasome inhibition, microglial activation reduction, oxidative stress, and anti-inflammatory marker reduction. The secondary outcomes included dopaminergic neuron loss alleviation and behavioral motor function attenuation. Quality assessment and narrative synthesis of the studies were performed. RESULTS Twenty-four studies out of 796 papers initially identified met the inclusion criteria. All the included studies, except one, found a reduction in NLRP3 inflammasome activation and anti-inflammatory markers in Parkinson's disease animal models after treatment with various NLRP3 inhibitors compared to control groups without inhibitors. Additionally, eighteen out of twenty-four inhibitors decreased microglial activation and behavioral deficits. Moreover, ten inhibitors attenuated oxidative stress, and twenty-two out of twenty-four alleviated dopaminergic neuron loss. The inhibitors utilized different mechanisms and pathways to exert their effects, including the NLRP3/Caspase-1 pathway, the NF-κB/NLRP3 pathway, inhibition of ROS and/or pyroptosis, as well as autophagy and mitophagy. CONCLUSION NLRP3 inhibitors represent a prospective therapy for Parkinson's disease, demonstrating efficacy in lowering neuroinflammation and protecting against dopaminergic loss. However, constraints, such as a male animal focus, apparent regional bias from China-centric studies, and diversity in induction models, entail the results presented herein require cautious interpretation. Further research, including preclinical and clinical studies, is required to thoroughly examine the safety, effectiveness, and generalizability of NLRP3 inhibitors in Parkinson's disease.
Collapse
Affiliation(s)
- Najwane Said Sadier
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Al Ain Road, PO Box 3838-111188, Abu Dhabi, UAE
- Department of Neurosciences, Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, PO Box 6573/14, Beirut, Lebanon
| | - Inaam Ali Hazimeh
- Department of Neurosciences, Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, PO Box 6573/14, Beirut, Lebanon
| | - Walaa Khazaal
- Department of Neurosciences, Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, PO Box 6573/14, Beirut, Lebanon
| | - Amani Al Khayat Al Sabouri
- Department of Neurosciences, Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, PO Box 6573/14, Beirut, Lebanon
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Al Ain Road, PO Box 3838-111188, Abu Dhabi, UAE
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Linda Abou-Abbas
- Department of Neurosciences, Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, PO Box 6573/14, Beirut, Lebanon.
- INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique Et de Toxicologie-Liban), Beirut, Lebanon.
| |
Collapse
|
7
|
Yan C, Tian Z, Ruan W, Wu M, Wang W, Liu Z. Erianin isolated from Dendrobium huoshanense alleviated neuroinflammation in MPTP-induced Parkinson's disease model via NF-κB/NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119620. [PMID: 40074095 DOI: 10.1016/j.jep.2025.119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is one of the most common neurodegenerative disorders, yet effective therapeutic options remain limited. Dendrobium huoshanense (DH), a medicinal and edible herb mainly distributed in Ta-pieh Mountains of Central China, has been used to treat disorders of consciousness and chronic nervous diseases in the local hospital for thousands of years. Erianin, a bioactive bibenzyl compound isolated from DH, has emerged as a potential neuroprotective agent due to its anti-inflammatory and antioxidant properties. AIM OF THE STUDY This study aimed to investigate the neuroprotective effects of Erianin in the treatment of PD and the underlying mechanisms, particularly focusing on inflammation and oxidative stress, through both in vivo and in vitro models. MATERIALS AND METHODS A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model was employed. The protective effects of Erianin were evaluated through neurobehavioral tests, immunohistochemistry, immunofluorescence, Nissl staining, serum biochemical tests, and Western blotting. The role of Erianin in modulating the NF-κB/NLRP3 pathway was investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia cells. RESULTS Erianin significantly alleviated MPTP-induced motor deficits, reduced neuroinflammation, and reversed abnormal secretion of inflammatory and oxidative stress factors in the serum. Additionally, Erianin suppressed the gene expression of NOD-like receptor protein 3 (NLRP3) and tyrosine hydroxylase (TH) in the striatum of PD mice. And, Erianin inhibited the activation of the NF-κB/NLRP3 pathway, decreased the production of oxidative stress factors, and reversed the secretion of inflammatory mediators in LPS-stimulated BV-2 microglia cells. CONCLUSION Erianin exerts neuroprotective effects in Parkinson's disease primarily by inhibiting the NF-κB/NLRP3 signaling pathway. These findings suggest that Erianin holds promise as a potential therapeutic candidate for the treatment of PD.
Collapse
Affiliation(s)
- Congjie Yan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zexi Tian
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Weiquan Ruan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Mengfen Wu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Weidong Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Zenggen Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
8
|
Zhang F, Gan Y, Xie W, Lu S, Zha Y, Liang Y, Qian J, Duan Y, Liao C, Wu Z, Zhang S. A novel zinc ferrite nanoparticle protects against MSU-induced gout arthritis via Nrf2/NF-κB/NLRP3 pathway. Life Sci 2025; 366-367:123475. [PMID: 39983819 DOI: 10.1016/j.lfs.2025.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
AIMS Gouty arthritis (GA), a prevalent and intricate form of inflammatory arthritis, affects individuals across all age groups. Existing therapeutic agents for GA are associated with substantial adverse effects. The overarching objective of this study is to identify an efficacious and biocompatible intervention strategy for GA. MATERIALS AND METHODS In this investigation, we developed a zinc ferrite nanoparticle (ZFN) characterized by outstanding catalytic activities in anti-inflammatory and antioxidative processes, along with negligible biotoxicity. ZFN features low-content Zn2+ doping, which effectively overcomes the issue of low biocompatibility commonly encountered in Zn-based nanoparticles. Both in vitro and in vivo experimental models were utilized to comprehensively evaluate the effects of ZFN. KEY FINDINGS The experimental results demonstrate that ZFN exhibits remarkable efficacy in alleviating inflammation and oxidative stress both in vitro and in vivo. It exerts its therapeutic effect on GA by modulating the NF-κB signaling pathway, suppressing the activation of the NLRP3 inflammasome, and activating the Nrf2 pathway. SIGNIFICANCE The protective effect of ZFN against GA holds great promise for the clinical translation of biocompatible inorganic nanoplatforms in the treatment of GA. This finding offers a potential alternative to the currently available medications, thereby providing new insights and possibilities for the management of GA.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuehao Gan
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wenteng Xie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shengyuan Lu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yang Zha
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yingquan Liang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Junchao Qian
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Yajun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
9
|
Wang X, Abu Bakar MH, Liqun S, Kassim MA, Shariff KA, Karunakaran T. Targeting metabolic diseases with celastrol: A comprehensive review of anti-inflammatory mechanisms and therapeutic potential. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119560. [PMID: 40015541 DOI: 10.1016/j.jep.2025.119560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii is a traditional Chinese medicine used to treat rheumatic diseases, with properties such as clearing heat, detoxifying, dispelling wind, and relieving pain. In recent years, its active compound, celastrol, garnered significant attention for its potential therapeutic effects on metabolic diseases. Celastrol exhibits bioactivities such as regulating metabolic functions and anti-inflammatory effects, positioning it as a promising candidate for the treatment of obesity, diabetes, atherosclerosis (AS), and non-alcoholic fatty liver disease (NAFLD). AIM OF THE REVIEW This review aims to explore the pharmacological mechanisms of celastrol in metabolic diseases, focusing on its anti-inflammatory mechanisms and metabolic regulation effects, providing theoretical support for further investigation of its therapeutic potential in metabolic diseases. METHODS Literature was retrieved from PubMed, Web of Science, Scopus, Cochrane, and Google Scholar. This review primarily focuses on anti-inflammatory mechanisms of celastrol, its metabolic regulation, and toxicity studies, by systematically analyzing its effects in obesity, diabetes, AS, and NAFLD, providing scientific evidence for its potential clinical applications. RESULTS Celastrol regulates multiple signaling pathways, particularly inhibiting NF-κB and activating AMPK, reducing the production of pro-inflammatory cytokines and improving insulin sensitivity, enhancing its therapeutic potential in metabolic diseases. Additionally, celastrol regulates adipogenesis and energy metabolism by influencing key transcription factors such as PPARγ and SREBP-1c. Numerous studies highlight its role in alleviating oxidative stress and improving mitochondrial function, further enhancing its metabolic benefits. CONCLUSION In summary, celastrol holds great promise as a multi-target therapeutic agent for metabolic diseases, offering anti-inflammatory, metabolic regulatory, and antioxidative benefits. Despite these, challenges remain for the clinical application of celastrol due to its poor bioavailability and potential toxicity. Advanced formulation strategies and targeted delivery systems are urgently needed to overcome challenges related to bioavailability and clinical translation.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia; Department of Pharmacy, Taishan Vocational College of Nursing, 271099, Tai'an, Shandong, China
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Song Liqun
- Department of Pharmacy, Taishan Vocational College of Nursing, 271099, Tai'an, Shandong, China
| | - Mohd Asyraf Kassim
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Khairul Anuar Shariff
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang, Malaysia
| | | |
Collapse
|
10
|
Yao SQ, Xu ZP, Guo WX, Zhang H, Zhang M, Jia JX, Yang ZJ, Wang H, Zhao ZY, Huo DS. Neuroprotective effect of Cistanche deserticola glycosides in MPTP-Induced Parkinson's disease mouse model involves Nrf2 activation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:576-588. [PMID: 40056093 DOI: 10.1080/15287394.2025.2470847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Parkinson's Disease (PD) a progressive neurodegenerative disorder is attributed to dopaminergic neuronal cell loss in the mid-brain substantia nigra pars compacta. A major risk factors associated with PD development is presence of excess oxidative stress. Previously, glycosides derived from Cistanche deserticola were reported to play a key role in counteracting PD; however, the underlying mechanisms remain to be determined. This study aimed to examine the neuroprotective effect attributed to glycosides derived from C. deserticola in PD model in mice. The model of PD was established by injecting intraperitoneally 1-methyl-4-penyl-1,2,3,6-tetrahydropyridine (MPTP). Rotarod and pole tests determined neurological behavior. The following immunohistochemistry, and metabolic biomarkers were measured mid-brain substantia nigra: (1) number of dopaminergic neuronal cell using immunohistochemistry (2) oxidative stress as evidenced by activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) as well levels of malondialdehyde (MDA), (3) inflammatory infiltration as measured by levels of IL-1β and TNF-α (4) by Western blot involvement of protein expression levels of Nrf2 signaling pathway. Data demonstrated that C. deserticola glycosides treatment improved behavioral performance, increased number of dopaminergic neurons, reduced cytokine levels of IL-1β and TNF-α accompanied by enhanced antioxidant activity in PD mice. These observations were associated with activation of Nrf2 signaling pathway. Data suggest that C. deserticola glycosides may thus be considered as an alternative compound for PD treatment.
Collapse
Affiliation(s)
- Shu-Qing Yao
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Zhi-Peng Xu
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Wu-Xia Guo
- Department of Pain, The Fourth Hospital of Baotou, Inner Mongolia, China
| | - He Zhang
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Ming Zhang
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Jian-Xin Jia
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Zhan-Jun Yang
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
- Department of Human Anatomy, Chifeng University, Inner Mongolia, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| | - Zhi-Ying Zhao
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Dong-Sheng Huo
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| |
Collapse
|
11
|
Faheem H, Alawadhi R, Basha EH, Ismail R, Ibrahim HA, Elshamy AM, Motawea SM, Seleem MA, Elkordy A, Homouda AA, Khaled HE, Aboeida RA, Abdel Ghafar MT, Rizk FH, El-Harty YM. Ameliorating immune-dependent inflammation and apoptosis by targeting TLR4/MYD88/NF-κB pathway by celastrol mitigates the diabetic reproductive dysfunction. Physiol Genomics 2025; 57:103-114. [PMID: 39510137 DOI: 10.1152/physiolgenomics.00072.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
This study aimed to examine the protective effect of celastrol on testicular dysfunction in diabetic rats and the potential underlying mechanisms. All rats included in the study were divided into four groups: a control group treated with sodium citrate buffer and vehicle), a celastrol-treated control group, a streptozotocin (STZ)-induced diabetic group following insulin resistance, and a celastrol-treated diabetic group. Serum glucose, triglyceride, total cholesterol, high-density lipoprotein cholesterol, interleukin (IL)-1β, tumor necrosis factor-α, and testosterone levels were measured. In addition, the levels of testicular homogenate superoxide dismutase and malondialdehyde were assessed. Furthermore, testicular tissue relative toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), and myeloid differentiation factor 88 (MYD88) expressions were quantitatively measured using polymerase chain reaction. Histopathological and immunohistochemical studies were also conducted. The results revealed that treatment with celastrol significantly reduced TLR4, MyD88, and NF-κB expressions, and the levels of inflammatory mediators such as tumor necrosis factor-α and IL-1β in the testicular tissue of treated rats. These findings suggest that celastrol has the potential to be effective in the treatment of diabetes-induced testicular injury by inhibiting testicular inflammation, apoptosis, and oxidative stress.NEW & NOTEWORTHY Celastrol inhibits the production of proinflammatory cytokines in the testicular tissue by specifically targeting the TLR4/MyD88/NF-κB signaling cascade pathways. This indicates that celastrol may serve as a promising new therapeutic target for treating diabetic reproductive dysfunction.
Collapse
Affiliation(s)
- Heba Faheem
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rana Alawadhi
- Science Department, College of Basic Education, PAAET, Ardhiya, Kuwait
| | - Eman H Basha
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Basic Medical Sciences-Physiology, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman, Jordan
| | - Radwa Ismail
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira M Elshamy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shaimaa M Motawea
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Monira A Seleem
- Department of Medical Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Alaa Elkordy
- Department of Neuropsychiatry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abdallah A Homouda
- Department of Urology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Howayda E Khaled
- Department of Zoology, Faculty of Science, Suez University, Suez, Egypt
| | - Reham A Aboeida
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Fatma H Rizk
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Yasmeen M El-Harty
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Han L, Zhao C, Jin F, Jiang R, Wu H. LINC02282 promotes DNA methylation of TRIM6 by recruiting DNMTs to inhibit the progression of Parkinson's disease. Brain Res Bull 2025; 222:111224. [PMID: 39892584 DOI: 10.1016/j.brainresbull.2025.111224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Long non-coding RNAs (lncRNAs) are closely linked to the occurrence and development of neurodegenerative diseases, while the underlying mechanisms remain elusive. The goal of the present study was to elucidate the mechanism by which LINC02282, a significantly downregulated lncRNA in the GEO database, elicits neuroprotective effects on PD. LINC02282 was poorly expressed in SH-SY5Y and SK-N-AS cells exposed to MPP+ and mice injected with MPTP. LINC02282 overexpression plasmids inhibited apoptosis and promoted the proliferation of SH-SY5Y and SK-N-AS cells. In addition, LINC02282 overexpression using an adeno-associated virus reduced neuronal damage in PD mice. LINC02282 was mainly localized in the nucleus, and LINC02282 promoted the methylation of the tripartite motif-containing protein 6 (TRIM6) promoter to inhibit TRIM6 expression. LINC02282 bound to DNA methyltransferases (DNMTs) and LINC02282 overexpression increased the binding of DNMTs to the TRIM6 promoter. Overexpression of TRIM6 alone induced PD-like symptoms in mice and combined TRIM6 upregulation inhibited the neuroprotective effect of LINC02282 both in vitro and in vivo. In summary, LINC02282 alleviated neuronal injury in PD by recruiting DNMTs to the promoter region of TRIM6 and inhibiting TRIM6 expression.
Collapse
Affiliation(s)
- Lu Han
- Department of Neurology, Anshan Hospital, The First Hospital of China Medical University, Anshan, Liaoning 114000, PR China.
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Feng Jin
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Rongfeng Jiang
- Department of orthopedics department, Anshan Hospital, The First Hospital of China Medical University, Anshan, Liaoning 114000, PR China
| | - Hao Wu
- Department of orthopedics department, Anshan Hospital, The First Hospital of China Medical University, Anshan, Liaoning 114000, PR China
| |
Collapse
|
13
|
Xue R, Qin C, Li L, Huang L, Tang K, Chen J, Liang H, Xu H, Qin X, Yang C, Tan Q. SRF/SLC31A1 signaling promotes cuproptosis induced by celastrol in NSCLC. Int Immunopharmacol 2025; 148:114165. [PMID: 39930648 DOI: 10.1016/j.intimp.2025.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 05/08/2025]
Abstract
Faced with the highly malignant challenge of lung cancer, traditional chemotherapeutic agents, although predominantly inducing apoptosis, are severely limited in their therapeutic effect by the overexpression of anti-apoptotic proteins in lung cancer. Recently discovered copper-induced non-apoptotic cell death, known as cuproptosis, represents a novel mechanism for regulating cell death. Whether Celastrol (Cel), a potential anti-tumor drug, can counter non-small cell lung cancer (NSCLC) through inducing cuproptosis remains to be thoroughly investigated. This study demonstrates that the copper chelator tetrathiomolybdate (TTM) is more effective in rescuing Cel-induced NSCLC cell death compared to other inhibitors. RNA sequencing revealed that Cel significantly upregulates the copper transporter protein SLC31A1. In addition, Cel also promotes intracellular copper accumulation, reduces GSH levels, and exhibits features of cuproptosis, including loss of iron-sulfur cluster proteins (FDX1, SDHB, POLD1), increased HSP70, and DLAT oligomerization. Experiments also found that Cel significantly increases reactive oxygen species (ROS) levels, reduces mitochondrial membrane potential, and lowers ATP levels. It was predicted through online databases that SRF may be the transcription factor for SLC31A1, and this was validated through overexpression experiments. In vivo data demonstrated that Cel significantly inhibits tumor growth without damaging the heart, liver, or kidneys of mice. This study first reveals that celastrol disrupts intracellular copper homeostasis through the SRF/SLC31A1 pathway, promoting cuproptosis in NSCLC cells, providing support for Cel as a potential safe and effective chemotherapeutic agent.
Collapse
Affiliation(s)
- Rui Xue
- School of Pharmacy of Guilin Medical University, Guilin 541001 China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001 China
| | - Chuling Qin
- School of Pharmacy of Guilin Medical University, Guilin 541001 China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001 China
| | - Lanyu Li
- Guilin Medical University Laboratory Animal Center, Guilin 541001 China
| | - Lingyue Huang
- School of Pharmacy of Guilin Medical University, Guilin 541001 China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001 China
| | - Ke Tang
- School of Pharmacy of Guilin Medical University, Guilin 541001 China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001 China
| | - Jianning Chen
- School of Pharmacy of Guilin Medical University, Guilin 541001 China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001 China
| | - Huihui Liang
- School of Pharmacy of Guilin Medical University, Guilin 541001 China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001 China
| | - Huimin Xu
- School of Pharmacy of Guilin Medical University, Guilin 541001 China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001 China
| | - Xuanjie Qin
- School of Pharmacy of Guilin Medical University, Guilin 541001 China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001 China
| | - Chang Yang
- School of Pharmacy of Guilin Medical University, Guilin 541001 China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001 China
| | - Qinyou Tan
- School of Pharmacy of Guilin Medical University, Guilin 541001 China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin 541001 China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, Guilin 541001 China; China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001 China.
| |
Collapse
|
14
|
Zhang J, Li L, Zhang M, Fang J, Xu Z, Zheng Y, Lin Z, Pan M. Distinct vaginal microbiome and metabolome profiles in women with preterm delivery following cervical cerclage. Front Cell Infect Microbiol 2025; 15:1444028. [PMID: 40007613 PMCID: PMC11850995 DOI: 10.3389/fcimb.2025.1444028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025] Open
Abstract
Preterm birth (PTB) is a major cause of infant morbidity and mortality. The aim of this study was to investigate the effect of vaginal microbiota and metabolites on the outcome of pregnant women. In this study, a total of 127 pregnant women provided written informed consent prior to enrollment in accordance with the approved institutional guidelines, but only 45 pregnancies met the experimental requirements, and then blood and cervical vaginal fluid (CVF) samples were collected before delivery (at the second week after cervical cerclage). Pregnant women with PTB exhibited high white blood cell and neutrophil contents, high neutrophil-to-lymphocyte ratio (NLR), and high systemic inflammation response index (SIRI) in the blood. Vaginal microbiome revealed that the proportion of beneficial bacteria (including Lactobacillus, [Ruminococcus] gnavus group, and Megamonas) significantly decreased in the PTB group, and the proportion of harmful bacteria (including Desulfovibrionaceae, Helicobacter, and Gardnerella) significantly increased, which is strongly related to the biochemical parameters of blood (white blood cells, neutrophils, NLR, and SIRI). In addition, vaginal metabolomics-based liquid chromatography-Orbitrap-tandem mass spectrometry (LC-Orbitrap-MS/MS) found that the alteration in vaginal metabolites in pregnant women with PTB is involved in starch and sucrose metabolism; arginine and praline metabolism; galactose metabolism; purine metabolism; arginine metabolism; tryptophan metabolism and N-glycan biosynthesis; cysteine and methionine metabolism; taurine and hypotaurine metabolism; amino acid metabolism; propanoate metabolism; valine, leucine, and isoleucine biosynthesis; glycine, serine, and threonine metabolism; and steroid hormone biosynthesis. These results elaborated that distinct vaginal microbiome and metabolome profiles in women with preterm delivery following cervical cerclage provide valuable information for establishing the prediction models for PTB.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhi Lin
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Mian Pan
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Deng X, He J, Deng W, Deng W, Zhu X, Luo H, Wang D. Celastrol ameliorates lipopolysaccharide (LPS)-induced acute lung injury by improving mitochondrial function through AMPK/PGC-1α/Nrf1-dependent mechanism. Free Radic Biol Med 2025; 227:210-220. [PMID: 39643138 DOI: 10.1016/j.freeradbiomed.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Acute lung injury (ALI) is a devastating clinical syndrome without effective therapy. Celastrol, as a natural anti-inflammatory compound, has showed therapeutic potential against inflammatory diseases. In this study, we have investigated the potential effect of Celastrol on lipopolysaccharide (LPS)-induced ALI. C57BL/6J mice, Nrf1-knockout mice and A549 (human alveolar epithelial cell line) cells were used to investigate the protective role of Celastrol in LPS-induced ALI. Our data showed that administration of Celastrol significantly alleviated lung pathologic injury and increased the survival rate, which was associated with the improvement of mitochondrial function in the injured lung. Moreover, Celastrol enhanced phosphorylation of AMP-activated protein kinase (AMPK) and expression of peroxisome proliferator-activated receptor coactivator protein-1α (PGC-1α), thereby increasing the nuclear translocation of nuclear respiratory factor 1 (Nrf1) and subsequent up-regulation of its downstream mitochondria electron transport chain complex I (NDUF) gene expression, which induced an increase in mitochondrial complex Ⅰ activity. The beneficial effects of Celastrol on regulation of Nrf1 were abolished by inhibition of AMPK and PGC-1α. Finally, in Nrf1 deficient mice, the protective effects of Celastrol on LPS-induced ALI were largely vanished. Our data indicated that Celastrol can prevent LPS-induced ALI by improving mitochondrial function through AMPK/PGC-1α/Nrf1-dependent mechanism, suggesting that Celastrol may represent a novel therapeutic potential for LPS-induced ALI.
Collapse
Affiliation(s)
- Xinyu Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenpeng Deng
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), Chongqing, China
| | - Wang Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Zhu
- Faculty of Foresty, University of British Columbia, Vancouver, BC, Canada
| | - Hao Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Li D, Chen J, Ye C, Lin B, Zhang T, Chen Q, Yu C, Wan X. Celastrol ameliorates fibrosis in Western diet/tetrachloromethane-induced nonalcoholic steatohepatitis by suppressing Notch/osteopontin signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156369. [PMID: 39798343 DOI: 10.1016/j.phymed.2025.156369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Celastrol was recently identified as a potential treatment for obesity and hepatic steatosis. However, whether Celastrol effectively suppresses the nonalcoholic fatty liver disease (NAFLD) stage remains unknown. This study aimed to evaluate the role of Celastrol in the progression from simple steatosis to nonalcoholic steatohepatitis (NASH) and fibrosis. METHODS C57BL/6 mice were fed a Western diet combined with a weekly low-dose injection of CCl4 (WD/CCl4) for 16 weeks to establish NASH models. The effects of Celastrol on NASH were further explored through histopathological assessments, immunoblotting, and in vitro analyses. RESULTS Celastrol treatment effectively attenuated hepatic steatosis and fibrosis in WD/CCl4-induced NASH models, in which Notch2 was downregulated by Celastrol in a posttranscriptional manner. In vitro experiments revealed that Notch2 suppression in Celastrol-treated hepatocytes further decreased osteopontin (OPN) levels, inhibiting hepatic stellate cells (HSCs) activation. Moreover, the protective effects of Celastrol on NASH progression were abolished in Notch2-overexpressing mice. CONCLUSION This study demonstrated the protective effects of Celastrol on NASH-related liver fibrosis by modulating Notch/OPN signaling, providing fresh insights into the potential application of Celastrol in NASH treatment.
Collapse
Affiliation(s)
- Dingwu Li
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chenhui Ye
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Bingru Lin
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Tiantian Zhang
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qingxia Chen
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
17
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2025; 62:1840-1881. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
18
|
Li Y, Wang X, Li S, Wang L, Ding N, She Y, Li C. Therapeutic Effects of Natural Products in the Treatment of Chronic Diseases: The Role in Regulating KEAP1-NRF2 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:67-96. [PMID: 39880664 DOI: 10.1142/s0192415x25500041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Oxidative stress represents a pivotal mechanism in the pathogenesis of numerous chronic diseases. The Kelch-like ECH-associated protein 1-transcription factor NF-E2 p45-related factor 2 (KEAP1-NRF2) pathway plays a crucial role in maintaining redox homeostasis and regulating a multitude of biological processes such as inflammation, protein homeostasis, and metabolic homeostasis. In this paper, we present the findings of recent studies on the KEAP1-NRF2 pathway, which have revealed that it is aberrantly regulated and induces oxidative stress injury in a variety of diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, respiratory diseases, digestive diseases, and cancer. Given this evidence, targeting KEAP1-NRF2 represents a highly promising avenue for developing therapeutic strategies for chronic diseases, and thus the development of appropriate therapeutic strategies based on the targeting of the NRF2 pathway has emerged as a significant area of research interest. This paper highlights an overview of current strategies to modulate KEAP1-NRF2, as well as recent advances in the use of natural compounds and traditional Chinese medicine, with a view to providing meaningful guidelines for drug discovery and development targeting KEAP1-NRF2. Additionally, it discusses the challenges associated with harnessing NRF2 as a therapeutic target.
Collapse
Affiliation(s)
- Yaling Li
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Basic Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Xijia Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou 730050, P. R. China
| | - Shuyue Li
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou 730050, P. R. China
| | - Lei Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou 730050, P. R. China
| | - Ningning Ding
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou 730050, P. R. China
| | - Yali She
- Basic Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Changtian Li
- Basic Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| |
Collapse
|
19
|
Wang J, Liu M, Zhao J, Hu P, Gao L, Tian S, Zhang J, Liu H, Xu X, He Z. Oxidative stress and dysregulated long noncoding RNAs in the pathogenesis of Parkinson's disease. Biol Res 2025; 58:7. [PMID: 39871377 PMCID: PMC11770960 DOI: 10.1186/s40659-025-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
Parkinson's disease (PD) is a progressive age-related neurodegenerative disease whose annual incidence is increasing as populations continue to age. Although its pathogenesis has not been fully elucidated, oxidative stress has been shown to play an important role in promoting the occurrence and development of the disease. Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length, are also involved in the pathogenesis of PD at the transcriptional level via epigenetic regulation, or at the post-transcriptional level by participating in physiological processes, including aggregation of the α-synuclein, mitochondrial dysfunction, oxidative stress, calcium stabilization, and neuroinflammation. LncRNAs and oxidative stress are correlated during neurodegenerative processes: oxidative stress affects the expression of multiple lncRNAs, while lncRNAs regulate many genes involved in oxidative stress responses. Oxidative stress and lncRNAs also affect other processes associated with neurodegeneration, including mitochondrial dysfunction and increased neuroinflammation that lead to neuronal death. Therefore, modulating the levels of specific lncRNAs may alleviate pathological oxidative damage and have neuroprotective effects. This review discusses the general mechanisms of oxidative stress, pathological mechanism underlying the role of oxidative stress in the pathogenesis of PD, and teases out the mechanisms through which lncRNAs regulate oxidative stress during PD pathogenesis, as well as identifies the possible neuroprotective mechanisms of lncRNAs. Reviewing published studies will help us further understand the mechanisms underlying the role of lncRNAs in the oxidative stress process in PD and to identify potential therapeutic strategies for PD.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Meitong Liu
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jiuhan Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Pan Hu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Lianbo Gao
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Shen Tian
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jin Zhang
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Huayan Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiaoxue Xu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Zhenwei He
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
20
|
Lei H, Ruan Y, Ding R, Li H, Zhang X, Ji X, Wang Q, Lv S. The role of celastrol in inflammation and diseases. Inflamm Res 2025; 74:23. [PMID: 39862265 DOI: 10.1007/s00011-024-01983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 01/27/2025] Open
Abstract
Celastrol is one of the main active ingredients extracted from the plant Tripterygium wilfordii Hook F. A growing number of studies have shown that celastrol has various pharmacological effects, including anti-inflammation, anti-rheumatism, treatment of neurodegenerative diseases, and anti-tumor. This article systematically summarized the mechanism and role of celastrol in lipid metabolism and obesity, rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis, inflammatory bowel disease, neurodegenerative diseases, and cancer and other diseases (such as diabetes, respiratory-related diseases, atherosclerosis, psoriasis, hearing loss, etc.). The celastrol played roles in inflammation response, cell apoptosis, autophagy, ferroptosis, and lipid metabolism mainly by acting on chondrocytes, macrophages, mitochondria, and endoplasmic reticulum (ER) through NF-κB, STAT, MAPK, TLR, PI3K-AKT-mTOR, and other signal pathways. This review could provide a reference for the clinical application and further development and utilization of celastrol.
Collapse
Affiliation(s)
- Han Lei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yantian Ruan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Ruidong Ding
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Haotian Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xiaoguang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475001, Henan, China
| | - Xinying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Mazhai, Erqi District, Zhengzhou, 450064, Henan, China
| | - Qi Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
- Department of Neurosurgery, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475001, Henan, China.
| |
Collapse
|
21
|
Wang Q, Yang S, Zhang X, Zhang S, Chen L, Wang W, Chen N, Yan J. Inflammasomes in neurodegenerative diseases. Transl Neurodegener 2024; 13:65. [PMID: 39710713 PMCID: PMC11665095 DOI: 10.1186/s40035-024-00459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Inflammasomes represent a crucial component of the innate immune system, which respond to threats by recognizing different molecules. These are known as pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs). In neurodegenerative diseases and neuroinflammation, the accumulation of misfolded proteins, such as beta-amyloid and alpha-synuclein, can lead to inflammasome activation, resulting in the release of interleukin (IL)-1β and IL-18. This activation also induces pyroptosis, the release of inflammatory mediators, and exacerbates neuroinflammation. Increasing evidence suggests that inflammasomes play a pivotal role in neurodegenerative diseases. Therefore, elucidating and investigating the activation and regulation of inflammasomes in these diseases is of paramount importance. This review is primarily focused on evidence indicating that inflammasomes are activated through the canonical pathway in these diseases. Inflammasomes as potential targets for treating neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Qianchen Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shanshan Zhang
- China Three Gorges University College of Medicine and Health Sciences, Yichang, 443002, China
| | - Liping Chen
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wanxue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
22
|
Su J, Deng X, Hu S, Lin X, Xie L, Ye H, Lin C, Zhou F, Wu S, Zheng L. Aloe-emodin plus TIENAM ameliorate cecal ligation and puncture-induced sepsis in mice by attenuating inflammation and modulating microbiota. Front Microbiol 2024; 15:1491169. [PMID: 39726955 PMCID: PMC11669710 DOI: 10.3389/fmicb.2024.1491169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Despite the high sepsis-associated mortality, effective and specific treatments remain limited. Using conventional antibiotics as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging due to increasing bacterial resistance, diminishing their efficacy and leading to adverse effects. We previously found that aloe-emodin (AE) exerts therapeutic effects on sepsis by reducing systemic inflammation and regulating the gut microbiota. Here, we investigated whether administering AE and TIE post-sepsis onset, using a cecal ligation and puncture (CLP)-induced sepsis model, extends survival and improves physiological functions. Survival rates, inflammatory cytokines, tissue damage, immune cell populations, ascitic fluid microbiota, and key signaling pathways were assessed. Combining AE and TIE significantly enhanced survival rates, and reduced inflammation and bacterial load in septic mice, indicating potent antimicrobial properties. Moreover, substantial improvements in survival rates of AE + TIE-treated mice (10% to 60%) within 168 h were observed relative to the CLP group. This combination therapy also effectively modulated inflammatory marker (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α) levels and immune cell counts by decreasing those of B, NK, and TNFR2+ Treg cells, while increasing that of CD8+ T cells; alleviated tissue damage; reduced bacterial load in the peritoneal cavity; and suppressed the NF-κB signaling pathway. We also observed a significantly altered peritoneal cavity microbiota composition post-treatment, characterized by reduced pathogenic bacteria (Bacteroides) abundance. Our findings underscore the potential of AE + TIE in treating sepsis, and encourage further research and possible clinical implementations to surmount the limitations of TIE and amplify the therapeutic potential of AE.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
23
|
Feng L, Wu YJ, Yang YR, Yue BJ, Peng C, Chen C, Peng F, Du JR, Long FY. QBT improved cognitive dysfunction in rats with vascular dementia by regulating the Nrf2/xCT/GPX4 and NLRP3/Caspase-1/GSDMD pathways to inhibit ferroptosis and pyroptosis of neurons. Int Immunopharmacol 2024; 142:113070. [PMID: 39265351 DOI: 10.1016/j.intimp.2024.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The novel phthalein component QBT, extracted from Ligusticum chuanxiong, shows promising biological activity against cerebrovascular diseases. This study focused on ferroptosis and pyroptosis to explore the effects of QBT on nerve injury, cognitive dysfunction, and related mechanisms in a rat model of vascular dementia (VaD). METHODS We established a rat model of VaD and administered QBT as a treatment. Cognitive dysfunction in VaD rats was evaluated using novel object recognition and Morris water maze tests. Neuronal damage and loss in the brain tissues of VaD rats were assessed with Nissl staining and immunofluorescence. Furthermore, we investigated the neuroprotective mechanisms of QBT by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/cystine-glutamate antiporter (xCT)/glutathione peroxidase 4 (GPX4) and Nod-like receptor family pyrin domain-containing 3 (NLRP3)/cysteine-requiring aspartate protease-1 (Caspase-1)/Gasdermin D (GSDMD) pathways to inhibit ferroptosis and pyroptosis both in vivo and in vitro. RESULTS Our findings indicated that QBT significantly ameliorated neuronal damage and cognitive dysfunction in VaD rats. Additionally, QBT reversed abnormal changes associated with ferroptosis and pyroptosis in the brains of VaD rats, concurrently up-regulating the Nrf2/xCT/GPX4 pathway and down-regulating the NLRP3/Caspase-1/GSDMD pathway to inhibit ferroptosis and pyroptosis in neuronal cells, thereby exerting a neuroprotective role. CONCLUSION In summary, QBT effectively mitigated neuronal damage and cognitive dysfunction in VaD rats, demonstrating a neuroprotective effect by inhibiting ferroptosis and pyroptosis in neuronal cells. This study offers a novel perspective and theoretical foundation for the future development of drugs targeting VaD.
Collapse
Affiliation(s)
- Lu Feng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yi-Jin Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yan-Rong Yang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Bing-Jie Yue
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| | - Chu Chen
- Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine, Chengdu, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Fang-Yi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Hu Y, Nan Y, Lin H, Zhao Q, Chen T, Tao X, Ding B, Lu L, Chen S, Zhu J, Guo X, Lin Z. Celastrol ameliorates hypoxic-ischemic brain injury in neonatal rats by reducing oxidative stress and inflammation. Pediatr Res 2024; 96:1681-1692. [PMID: 38763946 PMCID: PMC11772252 DOI: 10.1038/s41390-024-03246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is caused by perinatal hypoxia and subsequent reductions in cerebral blood flow and is one of the leading causes of severe disability or death in newborns. Despite its prevalence, we currently lack an effective drug therapy to combat HIE. Celastrol (Cel) is a pentacyclic triterpene extracted from Tripterygium Wilfordi that can protect against oxidative stress, inflammation, and cancer. However, whether Cel can alleviate neonatal hypoxic-ischemic (HI) brain damage remains unclear. METHODS Here, we established both in vitro and in vivo models of HI brain damage using CoCl2-treated PC12 cells and neonatal rats, respectively, and explored the neuroprotective effects of Cel in these models. RESULTS Analyses revealed that Cel administration reduced brain infarction size, microglia activation, levels of inflammation factors, and levels of oxidative stress markers by upregulating levels of p-AMPKα, Nrf2, HO-1, and by downregulating levels of TXNIP and NLRP3. Conversely, these beneficial effects of Cel on HI brain damage were largely inhibited by AMPKα inhibitor Compound C and its siRNA. CONCLUSIONS We present compelling evidence that Cel decreases inflammation and oxidative stress through the AMPKα/Nrf2/TXNIP signaling pathway, thereby alleviating neonatal HI brain injury. Cel therefore represents a promising therapeutic agent for treating HIE. IMPACT We firstly report that celastrol can ameliorate neonatal hypoxic-ischemic brain injury both in in vivo and in vitro, which represents a promising therapeutic agent for treating related brain injuries. Celastrol activates the AMPKα/Nrf2/TXNIP signaling pathway to relieve oxidative stress and inflammation and thereby alleviates neonatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Nan
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongzhou Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianlei Zhao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tingting Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingqing Ding
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoling Guo
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
25
|
Wei M, Liu Y, Li D, Wang X, Wang X, Li Y, Yan Z, Zhang H. Celastrol alleviates secondary brain injury following intracerebral haemorrhage by inhibiting neuronal ferroptosis and blocking blood-brain barrier disruption. IBRO Neurosci Rep 2024; 17:161-176. [PMID: 39220228 PMCID: PMC11362646 DOI: 10.1016/j.ibneur.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Background Following recent research advancements, an increasing level of evidence had been published to indicate that celastrol exerted a therapeutic effect on a range of nervous system diseases. This study therefore aimed to investigate the potential involvement of celastrol on ferroptosis and the blood-brain barrier disruption in intracerebral haemorrhage. Methods We established a rat intracerebral haemorrhage and adrenal pheochromocytoma cell (PC12) OxyHb models using an ACSL4 overexpression vector. Ferroptosis-related indices were assessed using corresponding assay kits, and immunofluorescence and flow cytometry were used to measure reactive oxygen species (ROS) levels. Additionally, quantitative PCR (qPCR) and western blot analyses were conducted to evaluate the expression of key proteins and elucidate the role of celastrol in intracerebral haemorrhage (ICH). Results Celastrol significantly improved neurological function scores, blood-brain barrier integrity, and brain water content in rats with ICH. Moreover, subsequent analysis of ferroptosis-related markers, such as Fe2+, ROS, MDA, and SOD, suggested that celastrol exerted a protective effect against the oxidative damage induced by ferroptosis in ICH rats and cells. Furthermore, Western blotting indicated that celastrol attenuated ferroptosis by modulating the expression levels of key proteins, including acyl-CoA synthetase long-chain family member 4 (ACSL4), glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and anti-transferrin receptor 1 (TFR1) both in vitro and in vivo. ACSL4 overexpression attenuated the neuroprotective effects of celastrol on ICH in vitro. Molecular docking analysis revealed that celastrol interacted with ACSL4 via the GLU107, GLN109, ASN111, and LYS357 binding sites. Conclusions Celastrol exerted antioxidant properties and aids in neurological recovery after stroke by suppressing ACSL4 expression during ferroptosis. As such, this drug represented a promising pharmaceutical candidate for the treatment of ICH.
Collapse
Affiliation(s)
- Min Wei
- Department of Neurosurgery, Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yi Liu
- Department of Ultrasound, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Dongsheng Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xingdong Wang
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaodong Wang
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yuping Li
- Department of Neurosurgery, Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Zhengcun Yan
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
26
|
Bu X, Guo H, Gao W, Zhang L, Hou J, Li B, Xia Z, Wang W. Neuroprotection of celastrol against postoperative cognitive dysfunction through dampening cGAS-STING signaling. Exp Neurol 2024; 382:114987. [PMID: 39369806 DOI: 10.1016/j.expneurol.2024.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Neuroinflammation is a central player in postoperative cognitive dysfunction (POCD), an intractable and highly confounding neurological complication with finite therapeutic options. Celastrol, a quinone methide triterpenoid, is a bioactive ingredient extracted from Tripterygium wilfordii with talented anti-inflammatory capacity. However, it is unclear whether celastrol can prevent anesthesia/surgery-evoked cognitive deficits in an inflammation-specific manner. The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) was used to determine whether celastrol possesses neuroprotection dependent on the STING pathway in vivo and in vitro. Isoflurane and laparotomy triggered cGAS-STING activation, caspase-3/GSDME-dependent pyroptosis, and enhanced Iba-1 immunoreactivity. Celastrol improved cognitive performance and decreased the levels of cGAS, 2'3'-cGAMP, STING, NF-κB phosphorylation, Iba-1, TNF-α, IL-6, and IFN-β. Downregulation of cleaved caspase-3 and N-GSDME was observed in the hippocampus of POCD mice and HT22 cells after celastrol administration, accompanied by limited secretion of pyroptosis-pertinent pro-inflammatory cytokines IL-1β and IL-18. DMXAA neutralized the favorable influences of celastrol on cognitive function, as confirmed by the activation of the STING/caspase-3/GSDME axis. These findings implicate celastrol as a therapeutic agent for POCD through anti-inflammation and anti-pyroptosis.
Collapse
Affiliation(s)
- Xueshan Bu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Hui Guo
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, Hubei Province 430070, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Bixi Li
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, Hubei Province 430070, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| | - Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
27
|
Gao Y, Li S, Zhang S, Zhang Y, Zhang J, Zhao Y, Chang C, Gao X, Chen L, Yang G. Atractylenolide-I Attenuates MPTP/MPP +‑Mediated Oxidative Stress in Parkinson's Disease Through SIRT1/PGC‑1α/Nrf2 Axis. Neurochem Res 2024; 50:18. [PMID: 39556135 DOI: 10.1007/s11064-024-04258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is typically marked by motor dysfunction accompanied by loss of dopaminergic (DA) neurons and aggravated oxidative stress in the substantia nigra pars compacta (SNpc). Atractylenolide-I (ATR-I) is a potent antioxidant sesquiterpene with neuroprotective properties. However, whether ATR-I plays a neuroprotective role against oxidative stress in PD remains unclear. The objective of this study was to explore the mechanism of antioxidant action of ATR-I in PD models both in vivo and in vitro. Here, we show that ATR-I alleviated motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice. Moreover, ATR-I treatment effectively reduced DA neuron loss and increased tyrosine hydroxylase expression in the SNpc of MPTP-induced mice. Additionally, ATR-I inhibited oxidative stress (as manifested by elevated superoxide dismutase and glutathione peroxidase activities, and reduced malondialdehyde content) in MPTP-induced mice and attenuated reactive oxygen species levels in 1-methyl-4-phenylpyridinum (MPP+)-treated SH-SY5Y cells. Finally, ATR-I upregulated expressions of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), NF-E2-related factor-2 (Nrf2), and heme oxygenase-1 in MPTP-induced mice and MPP+-treated SH-SY5Y cells, but had little effect on these factors in the presence of the SIRT1 inhibitor EX527. Taken together, these findings indicated that the important antioxidant role of ATR-I in MPTP/MPP+-mediated oxidative stress and the pathogenesis of PD through the SIRT1/PGC-1α/Nrf2 axis, highlighting its potential as a therapeutic option for PD.
Collapse
Affiliation(s)
- Ya Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shuyue Li
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shuming Zhang
- Department of Internal Medicine, Fuping County Hospital, Baoding, Hebei, 073200, China
| | - Yidan Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Jian Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Cui Chang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xuan Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Ling Chen
- Department of Neurological Rehabilitation, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
28
|
Xi H, Weng Y, Zheng Y, Wu L, Han D. Diacetoxy-6-gingerdiol protects the extracellular matrix of nucleus pulposus cells and ameliorates intervertebral disc degeneration by inhibiting the IL-1β-mediated NLRP3 pathway. Heliyon 2024; 10:e37877. [PMID: 39568855 PMCID: PMC11577133 DOI: 10.1016/j.heliyon.2024.e37877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 11/22/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a common cause of low back pain, causing a huge emotional and economic burden on patients and society. Reduction of nucleus pulposus cells (NPC) and extracellular matrix (ECM) is the main feature of IDD, and NPC is the main source of ECM. Thermal apoptosis is a newly discovered form of cell death in recent years that differs significantly from apoptosis in terms of molecular mechanisms and cellular morphological changes. Diacetoxy-6-gingerdiol(D-6-G), a type of gingerol, has anti-inflammatory and antioxidant effects, but whether it has an inhibitory effect on cellular pyroptosis is not clear. Therefore, in the present study, we investigated the effect of D-6-G on the ECM of the nucleus pulposus oblongata under IL-1β treatment, as well as the mechanism of its effect on NLRP3 inflammasome and cellular focal death. In vitro cellular experiments demonstrated that D-6-G could bind to and inhibit the activity of NLRP3 inflammasome, and interestingly, D-6-G could also inhibit cellular pyroptosis and protect the nucleus pulposusry cellular microenvironment by activating the Nrf2/HO-1 axis. In conclusion, we found that D-6-G could inhibit NLRP3 inflammatory vesicle activity as well as cellular pyroptosis in NPCs and protect the ECM, suggesting the potential of D-6-G to delay IDD.
Collapse
Affiliation(s)
- Huifeng Xi
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yuesong Weng
- Linhai Hospital of Traditional Chinese Medicine Healthcare Service Community, Linhai, Zhejiang, China
| | - Youmao Zheng
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Lizhi Wu
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Dawei Han
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
29
|
Chen Y, Pang J, Chen Y, Liang Y, Zhang Z, Wang Z. Diallyl trisulfide regulates PGK1/Nrf2 expression and reduces inflammation to alleviate neurological damage in mice after traumatic brain injury. Brain Res 2024; 1843:149116. [PMID: 38977238 DOI: 10.1016/j.brainres.2024.149116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Diallyl trisulfide (DATS) has a direct antioxidant capacity and emerges as a promising neuroprotective agent. This study was designed to investigate the role of DATS in traumatic brain injury (TBI). METHODS TBI mouse models were established using the controlled cortical impact, followed by DATS administration. The effects of DATS on neurological deficit, brain damage, inflammation and phosphoglycerate kinase 1 (PGK1) expression were detected using mNSS test, histological analysis, TUNEL assay, enzyme-linked immunosorbent assay and immunofluorescence. PC12 cells were subjected to H2O2-induced oxidative injury after pre-treatment with DATS, followed by cell counting kit-8 assay, flow cytometry and ROS production detection. Apoptosis-related proteins and the PGK1/nuclear factor erythroid-2 related factor 2 (Nrf2) pathway were examined using Western blot. RESULTS DATS ameliorated the cerebral cortex damage, neurological dysfunction and apoptosis, as well as decreased PGK1 expression and expressions of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) in mice after TBI. DATS also enhanced viability, blocked apoptosis and inhibited ROS production in H2O2-induced PC12 cells. DATS downregulated Cleaved-Caspase3, Bax and PGK1 levels, and upregulated Bcl-2 and Nrf2 levels in TBI mouse models and the injured cells. CONCLUSION DATS regulates PGK1/Nrf2 expression and inflammation to alleviate neurological damage in mice after TBI.
Collapse
Affiliation(s)
- Yafei Chen
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Jianliang Pang
- Department of Vascular Surgery, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital) , PR China
| | - Yulong Chen
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Ying Liang
- Injection Room, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Zhengbo Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Zhangquan Wang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China.
| |
Collapse
|
30
|
Li P, Song W, Xu N, Wang Z, Pang H, Wang D. Soybean isoflavones protect dopaminergic neurons from atrazine damage by inhibiting VPS13A to increase autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117225. [PMID: 39427538 DOI: 10.1016/j.ecoenv.2024.117225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Atrazine (ATR) is a broad-spectrum herbicide with dopaminergic (DAergic) neurotoxicity that can cause Parkinson's disease (PD)-like syndrome. However, research on preventing ATR neurotoxicity is unclear. Soybean isoflavones (SI) are natural plant compounds with neuroprotective effects. In this study, we found that pre-administration of SI prevented ATR-induced motor dysfunction and substantia nigra pathological damage. RNA-seq datasets revealed that the neuroprotective effect of SI was related to autophagy. Further experiments showed that ATR inhibited autophagy, and SI pre-administration before ATR exposure increased autophagy. In addition, single-cell data analysis combined with experimental verification showed that the gene VPS13A was a key target by which SI protected DAergic neurons from ATR damage, and inhibiting VPS13A-induced autophagy was a key mechanism enabling SI prevention of neuron damage. Together, these findings provide new insights for the development of preventive measures and intervention targets protecting against functional neuronal damage caused by ATR and other herbicides.
Collapse
Affiliation(s)
- Peng Li
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistic and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Weiyi Song
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistic and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nuo Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zijie Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistic and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Haoying Pang
- First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dandan Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistic and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
31
|
Zhang B, Yu J, Bao L, Feng D, Qin Y, Fan D, Hong X, Chen Y. Cynarin inhibits microglia-induced pyroptosis and neuroinflammation via Nrf2/ROS/NLRP3 axis after spinal cord injury. Inflamm Res 2024; 73:1981-1994. [PMID: 39340662 DOI: 10.1007/s00011-024-01945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) elicits excess neuroinflammation and resident microglial pyroptosis, leading further terrible neurological collapse and locomotor dysfunction. However, the current clinical therapy is useless and a feasible treatment is urgent to be explored. Cynarin is a natural component in artichoke playing anti-inflammatory and anti-aging roles in hepatoprotection and cardioprotection, but it is unclear that the pharmacologic action and underlying mechanism of Cynarin in neuropathy. METHODS Using the SCI mouse model and the BV2 cell line, we here investigated whether Cynarin reduces neuroinflammation and pyroptosis to promote neurological recovery after SCI. RESULTS Our results showed that treatment with Cynarin reduces the level of neuroinflammation and microglial pyroptosis. Moreover, the mice treated with Cynarin exhibited lower level of reactive oxygen species (ROS) and cell death, less damage of neurohistology and better locomotor improvement of hindlimbs than the untreated mice and the nuclear factor erythroid 2-related factor 2 (Nrf2)-inhibited mice. Mechanically, Cynarin inhibited the assembly of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome by Nrf2-dependent expression to attenuate microglial pyroptosis and neuroinflammation. CONCLUSIONS To sum up, the current study suggested that administration of Cynarin is a promising compound for anti-neuroinflammation and anti-pyroptosis after SCI. It may be an efficient Nrf2 activator and a NLRP3 inhibitor for microglia in neuropathies.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine, Clinical College of Yangzhou University Medical College, No. 28 Shanghai Middle Road, Shuyang, Suqian, Jiangsu, China.
| | - Jiasheng Yu
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine, Clinical College of Yangzhou University Medical College, No. 28 Shanghai Middle Road, Shuyang, Suqian, Jiangsu, China
| | - Lei Bao
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine, Clinical College of Yangzhou University Medical College, No. 28 Shanghai Middle Road, Shuyang, Suqian, Jiangsu, China
| | - Dongqian Feng
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine, Clinical College of Yangzhou University Medical College, No. 28 Shanghai Middle Road, Shuyang, Suqian, Jiangsu, China
| | - Yong Qin
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine, Clinical College of Yangzhou University Medical College, No. 28 Shanghai Middle Road, Shuyang, Suqian, Jiangsu, China
| | - Daobo Fan
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine, Clinical College of Yangzhou University Medical College, No. 28 Shanghai Middle Road, Shuyang, Suqian, Jiangsu, China
| | - Xin Hong
- Spine Center, Zhongda Hospital of Southeast University, Nanjing, China
| | - Yongyi Chen
- Department of Anesthesiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Ying J, Deng X, Du R, Ding Q, Tian H, Lin Y, Zhou B, Gao W. Mitochondrial modulation treating postoperative cognitive dysfunction neuroprotection via DRP1 inhibition by Mdivi1. Sci Rep 2024; 14:26155. [PMID: 39478015 PMCID: PMC11525678 DOI: 10.1038/s41598-024-75548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
This study investigated the role of mitochondrial dynamics in postoperative cognitive dysfunction (POCD) and assessed the therapeutic potential of mitochondrial modulation, particularly through the inhibition of dynamin-related protein 1 (DRP1) with Mdivi-1. Our findings indicated that DRP1 inhibition substantially mitigated neuroinflammation mediated by microglial cells, contributing to improved cognitive function in POCD models. The administration of Mdivi-1 led to a notable decrease in mitochondrial fission, reduced reactive oxygen species (ROS) production, and stabilization of mitochondrial membrane potential, all of which correlate with diminished neuroinflammation, as evidenced by lower NOD-like receptor family pyrin domain containing 3 (NLRP3)/ interleukin-1β (IL-1β) expression in microglial cells. Importantly, Mdivi-1 treatment was also found to enhance synaptic plasticity, increasing synaptic spine density in the hippocampal region of POCD mice. This improvement in mitochondrial health and synaptic integrity was paralleled by enhanced cognitive performance, as demonstrated in Y-maze tests. These results underscored the critical role of mitochondrial dynamics in the pathophysiology of POCD and suggested that targeting mitochondrial dysfunction, specifically through DRP1 inhibition, could be an effective approach for POCD treatment.
Collapse
Affiliation(s)
- Jun Ying
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaobing Deng
- Department of Anesthesiology, Lushan Rehabilitation and Recuperation Center, PLA Joint Logistics Support Force, Jiujiang, China
| | - Ruini Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiyang Ding
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Tian
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
33
|
Pedrão LFAT, Medeiros POS, Leandro EC, Falquetto B. Parkinson's disease models and death signaling: what do we know until now? Front Neuroanat 2024; 18:1419108. [PMID: 39533977 PMCID: PMC11555652 DOI: 10.3389/fnana.2024.1419108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is the second neurodegenerative disorder most prevalent in the world, characterized by the loss of dopaminergic neurons in the Substantia Nigra (SN). It is well known for its motor and non-motor symptoms including bradykinesia, resting tremor, psychiatric, cardiorespiratory, and other dysfunctions. Pathological apoptosis contributes to a wide variety of diseases including PD. Various insults and/or cellular phenotypes have been shown to trigger distinct signaling events leading to cell death in neurons affected by PD. The intrinsic or mitochondrial pathway, inflammatory or oxidative stress-induced extrinsic pathways are the main events associated with apoptosis in PD-related neuronal loss. Although SN is the main brain area studied so far, other brain nuclei are also affected by the disease leading to non-classical motor symptoms as well as non-motor symptoms. Among these, the respiratory symptoms are often overlooked, yet they can cause discomfort and may contribute to patients shortened lifespan after disease diagnosis. While animal and in vitro models are frequently used to investigate the mechanisms involved in the pathogenesis of PD in both the SN and other brain regions, these models provide only a limited understanding of the disease's actual progression. This review offers a comprehensive overview of some of the most studied forms of cell death, including recent research on potential treatment targets for these pathways. It highlights key findings and milestones in the field, shedding light on the potential role of understanding cell death in the prevention and treatment of the PD. Therefore, unraveling the connection between these pathways and the notable pathological mechanisms observed during PD progression could enhance our comprehension of the disease's origin and provide valuable insights into potential molecular targets for the developing therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciências Biomédica, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
34
|
Zhou Q, Guo X, Chen T, Liu Y, Ji H, Sun Y, Yang X, Ouyang C, Liu X, Lei M. The neuroprotective role of celastrol on hippocampus in diabetic rats by inflammation restraint, insulin signaling adjustment, Aβ reduction and synaptic plasticity alternation. Biomed Pharmacother 2024; 179:117397. [PMID: 39232386 DOI: 10.1016/j.biopha.2024.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Celastrol, the primary constituent of Tripterygium wilfordii, has demonstrated neuroprotective properties in rats with dementia by reducing inflammation. A high-fat diet and streptozotocin injection were utilized to establish a diabetic rat model, which was then employed to investigate the possible protective effect of celastrol against the development of diabetes-induced learning and memory deficits. Afterwards, the experimental animals received a dose of celastrol by gavage (4 mg/kg/d). An animal study showed that celastrol enhanced insulin sensitivity and glucose tolerance in diabetic rats. In the Morris water maze test, rats with diabetes performed poorly in terms of spatial learning and memory; treatment with celastrol improved these outcomes. Additionally, administration of celastrol downregulated the expression of inflammatory-related proteins (NF-κB, IKKα, TNF-α, IL-1β, and IL-6) and greatly reduced the generation of Aβ in the diabetic hippocampus tissue. Moreover, the insulin signaling pathway-related proteins PI3K, AKT, and GSK-3β were significantly upregulated in diabetic rats after celastrol was administered. Also, celastrol prevented damage to the brain structures and increased the synthesis of synaptic proteins like PSD-95 and SYT1. In conclusion, celastrol exerts a neuroprotective effect by modulating the insulin signaling system and reducing inflammatory responses, which helps to ameliorate the cognitive impairment associated with diabetes.
Collapse
Affiliation(s)
- Qiaofeng Zhou
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tu Chen
- Xianning Public Inspection and Testing Center, Xianning 437100, China
| | - Yumin Liu
- Wuhan Huake Reproductive Specialist Hospital, Wuhan 430000, China
| | - Huimin Ji
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yixuan Sun
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Changhan Ouyang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| | - Min Lei
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
35
|
Feng J, Ji K, Pan Y, Huang P, He T, Xing Y. Resveratrol Ameliorates Retinal Ischemia-Reperfusion Injury by Modulating the NLRP3 Inflammasome and Keap1/Nrf2/HO-1 Signaling Pathway. Mol Neurobiol 2024; 61:8454-8466. [PMID: 38517616 DOI: 10.1007/s12035-024-04105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Glaucoma, as an ischemia-reperfusion (I/R) injury disease, leading irreversible blindness through the loss of retinal ganglion cells (RGCs), mediated by various pathways. Resveratrol (Res) is a polyphenolic compound that exerts protective effects against I/R injury in many tissues. This article aimed to expound the underlying mechanisms through which Res protects RGCs and reduces visual dysfunction in vivo. An experimental glaucoma model was created using 6-8-week wild-type male C57BL/6J mice. Res was injected intraperitoneally for 5 days. The mice were then grouped according to the number of days after surgery and whether Res treatment was administered. We applied the Brn3a-labeled immunofluorescence staining and flash electroretinography (ERG) to assess the survival of RGCs and visual function. The expression of components of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, the interleukin-1-beta (IL-1β), and vital indicators of kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway at the protein and RNA levels were detected respectively. The survival of RGCs was reduced after surgery compared to controls, whereas Res application rescued RGCs and improved visual dysfunction. In conclusion, our results discovered that Res administration showed neuroprotective effects through inhibition of the NLRP3 inflammasome pathway and activation of Keap1/Nrf2/HO-1 pathway. Thus, we further elucidated the potential of Res in glaucoma therapy.
Collapse
Affiliation(s)
- Jiazhen Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Kaibao Ji
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Yiji Pan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Pingping Huang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
- Eye Institute of Wuhan University, Hubei, China.
| |
Collapse
|
36
|
Tian Y, He X, Li R, Wu Y, Ren Q, Hou Y. Recent advances in the treatment of gout with NLRP3 inflammasome inhibitors. Bioorg Med Chem 2024; 112:117874. [PMID: 39167977 DOI: 10.1016/j.bmc.2024.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Gout is an autoinflammatory disorder characterized by the accumulation of monosodium urate crystals in joints and other tissues, representing the predominant type of inflammatory arthritis with a notable prevalence and propensity for severe outcomes. The NLRP3 inflammasome, a member of the pyrin domain-containing NOD-like receptor family, exerts a substantial impact on both innate and adaptive immune responses and serves as a pivotal factor in the pathogenesis of gout. In recent years, there has been significant academic and industrial interest in the development of NLRP3-targeted small molecule inhibitors as a promising therapeutic approach for gout. To assess the advancements in NLRP3 inflammasome inhibitors for gout treatment, this review offers a comprehensive analysis and evaluation of current clinical candidates and other inhibitors targeting NLRP3 inflammasome from a chemical structure standpoint, with the goal of identifying more efficacious options for clinical management of gout.
Collapse
Affiliation(s)
- Ye Tian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaofang He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Ruping Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yanxin Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Qiang Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Yusen Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
37
|
Yang S, Sun X, Liu D, Zhang Y, Gao X, He J, Cui M, Fu S, He D. Allantoin ameliorates dopaminergic neuronal damage in MPTP-induced Parkinson's disease mice via regulating oxidative damage, inflammation, and gut microbiota disorder. Food Funct 2024; 15:9390-9408. [PMID: 39189380 DOI: 10.1039/d4fo02167c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease that often occurs in older people. Neuroinflammation and oxidative stress are important factors in the development of PD. Gastrointestinal dysfunction is the most common non-motor symptom, and inflammation of the gut, which activates the gut-brain axis, maybe a pathogenic factor. Previous studies have attributed anti-inflammatory and antioxidant effects to Allantoin, but its function and mechanism of action in PD are unclear. This study aimed to investigate the effect and mechanism of Allantoin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice. Our results showed that Allantoin administration ameliorated motor dysfunction and neuronal damage in mice injected with MPTP by inhibiting neuroinflammation and oxidative damage. Mechanistic studies showed that Allantoin suppresses inflammatory responses by inhibiting the overactivation of the NF-κB and MAPK signaling pathways, as well as oxidative stress by regulating the AKT/Nrf2/HO-1 signaling pathway. Notably, Allantoin also restored intestinal barrier function by modulating the gut microbiota and improving antioxidant and anti-inflammatory capacities to alleviate MPTP-induced motor deficits. In conclusion, the present study shows that the administration of Allantoin attenuated neurodegeneration in mice injected with MPTP by inhibiting neuroinflammation and oxidative stress and modulating the composition of the gut microbiome.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaojia Sun
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Dianfeng Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute, Jilin University, Chongqing, China
| | - Yiming Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiyu Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Jiangmei He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Mingchi Cui
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Shoupeng Fu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Dewei He
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
38
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
39
|
Zou H, Zhang M, Yang X, Shou H, Chen Z, Zhu Q, Luo T, Mou X, Chen X. Cynaroside regulates the AMPK/SIRT3/Nrf2 pathway to inhibit doxorubicin-induced cardiomyocyte pyroptosis. J Zhejiang Univ Sci B 2024; 25:756-772. [PMID: 39308066 PMCID: PMC11422794 DOI: 10.1631/jzus.b2300691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/17/2023] [Indexed: 09/25/2024]
Abstract
Doxorubicin (DOX) is a commonly administered chemotherapy drug for treating hematological malignancies and solid tumors; however, its clinical application is limited by significant cardiotoxicity. Cynaroside (Cyn) is a flavonoid glycoside distributed in honeysuckle, with confirmed potential biological functions in regulating inflammation, pyroptosis, and oxidative stress. Herein, the effects of Cyn were evaluated in a DOX-induced cardiotoxicity (DIC) mouse model, which was established by intraperitoneal injections of DOX (5 mg/kg) once a week for three weeks. The mice in the treatment group received dexrazoxane, MCC950, and Cyn every two days. Blood biochemistry, histopathology, immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blotting were conducted to investigate the cardioprotective effects and potential mechanisms of Cyn treatment. The results demonstrated the significant benefits of Cyn treatment in mitigating DIC; it could effectively alleviate oxidative stress to a certain extent, maintain the equilibrium of cell apoptosis, and enhance the cardiac function of mice. These effects were realized via regulating the transcription levels of pyroptosis-related genes, such as nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD). Mechanistically, for DOX-induced myocardial injury, Cyn could significantly modulate the expression of pivotal genes, including adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), sirtuin 3 (SIRT3), and nuclear factor erythroid 2-related factor 2 (Nrf2). We attribute it to the mediation of AMPK/SIRT3/Nrf2 pathway, which plays a central role in preventing DOX-induced cardiomyocyte injury. In conclusion, the present study confirms the therapeutic potential of Cyn in DIC by regulating the AMPK/SIRT3/Nrf2 pathway.
Collapse
Affiliation(s)
- Hai Zou
- Department of Critical Care Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | - Xue Yang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Huafeng Shou
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Zhenglin Chen
- Graduate School of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Quanfeng Zhu
- Graduate School of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaozhou Mou
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiaoyi Chen
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China. ,
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China. ,
| |
Collapse
|
40
|
Su J, Tan Q, Wu S, Zhou F, Xu C, Zhao H, Lin C, Deng X, Xie L, Lin X, Ye H, Yang M. Administration of turmeric kombucha ameliorates lipopolysaccharide-induced sepsis by attenuating inflammation and modulating gut microbiota. Front Microbiol 2024; 15:1452190. [PMID: 39282561 PMCID: PMC11392888 DOI: 10.3389/fmicb.2024.1452190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Our research team previously reported the immunomodulatory effects of kombucha fermentation liquid. This study investigated the protective effects of turmeric kombucha (TK) against lipopolysaccharide (LPS)-induced sepsis and its impact on the intestinal microbiota of mice. A turmeric culture medium without kombucha served as the control (TW). Non-targeted metabolomics analysis was employed to analyze the compositional differences between TK and TW. Qualitative analysis identified 590 unique metabolites that distinguished TK from TW. TK improved survival from 40 to 90%, enhanced thermoregulation, and reduced pro-inflammatory factor expression and inflammatory cell infiltration in the lung tissue, suppressing the NF-κB signaling pathway. TK also altered the microbiome, promoting Allobaculum growth. Our findings shed light on the protective effects and underlying mechanisms of TK in mitigating LPS-induced sepsis, highlighting TK as a promising anti-inflammatory agent and revealing new functions of kombucha prepared through traditional fermentation methods.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Qingqing Tan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Chen Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Minhe Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
41
|
Meng J, Fang J, Bao Y, Chen H, Hu X, Wang Z, Li M, Cheng Q, Dong Y, Yang X, Zou Y, Zhao D, Tang J, Zhang W, Chen C. The biphasic role of Hspb1 on ferroptotic cell death in Parkinson's disease. Theranostics 2024; 14:4643-4666. [PMID: 39239519 PMCID: PMC11373631 DOI: 10.7150/thno.98457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/21/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Ferroptosis-driven loss of dopaminergic neurons plays a pivotal role in the pathogenesis of Parkinson's disease (PD). In PD patients, Hspb1 is commonly observed at abnormally high levels in the substantia nigra. The precise consequences of Hspb1 overexpression in PD, however, have yet to be fully elucidated. Methods: We used human iPSC-derived dopaminergic neurons and Coniferaldehyde (CFA)-an Nrf2 agonist known for its ability to cross the blood-brain barrier-to investigate the role of Hspb1 in PD. We examined the correlation between Hspb1 overexpression and Nrf2 activation and explored the transcriptional regulation of Hspb1 by Nrf2. Gene deletion techniques were employed to determine the necessity of Nrf2 and Hspb1 for CFA's neuroprotective effects. Results: Our research demonstrated that Nrf2 can upregulate the transcription of Hspb1 by directly binding to its promoter. Deletion of either Nrf2 or Hspb1 gene abolished the neuroprotective effects of CFA. The Nrf2-Hspb1 pathway, newly identified as a defense mechanism against ferroptosis, was shown to be essential for preventing neurodegeneration progression. Additionally, we discovered that prolonged overexpression of Hspb1 leads to neuronal death and that Hspb1 released from ruptured cells can trigger secondary cell death in neighboring cells, exacerbating neuroinflammatory responses. Conclusions: These findings highlight a biphasic role of Hspb1 in PD, where it initially provides neuroprotection through the Nrf2-Hspb1 pathway but ultimately contributes to neurodegeneration and inflammation when overexpressed. Understanding this dual role is crucial for developing therapeutic strategies targeting Hspb1 and Nrf2 in PD.
Collapse
Affiliation(s)
- Jieyi Meng
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinyu Fang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yutong Bao
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huizhu Chen
- School of Clinical Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xiaodan Hu
- School of Clinical Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ziyuan Wang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Man Li
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Quancheng Cheng
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yaqiong Dong
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xiaoda Yang
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yushu Zou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Jiping Tang
- Physiology and Pharmacology Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda 92350, USA
| | - Weiguang Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
42
|
Zhang W, Fan C, Yi Z, Du T, Wang N, Tian W, Pan Q, Ma X, Wang Z. TMEM79 Ameliorates Cerebral Ischemia/Reperfusion Injury Through Regulating Inflammation and Oxidative Stress via the Nrf2/NLRP3 Pathway. Immunol Invest 2024; 53:872-890. [PMID: 38809063 DOI: 10.1080/08820139.2024.2354268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (CIRI) is still a complicated disease with high fatality rates worldwide. Transmembrane Protein 79 (TMEM79) regulates inflammation and oxidative stress in some other diseases. METHODS CIRI mouse model was established using C57BL/6J mice through middle cerebral artery occlusion-reperfusion (MCAO/R), and BV2 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to simulate CIRI. Brain tissue or BV2 cells were transfected or injected with lentivirus-carried TMEM79 overexpression vector. The impact of TMEM79 on CIRI-triggered oxidative stress was ascertained by dihydroethidium (DHE) staining and examination of oxidative stress indicators. Regulation of TMEM79 in neuronal apoptosis and inflammation was determined using TUNEL staining and ELISA. RESULTS TMEM79 overexpression mitigated neurological deficit induced by MCAO/R and decreased the extent of cerebral infarct. TMEM79 prevented neuronal death in brain tissue of MCAO/R mouse model and suppressed inflammatory response by reducing inflammatory cytokines levels. Moreover, TMEM79 significantly attenuated inflammation and oxidative stress caused by OGD/R in BV2 cells. TMEM79 facilitated the activation of Nrf2 and inhibited NLRP3 and caspase-1 expressions. Rescue experiments indicated that the Nrf2/NLRP3 signaling pathway mediated the mitigative effect of TMEM79 on CIRI in vivo and in vitro. CONCLUSION Overall, TMEM79 was confirmed to attenuate CIRI via regulating the Nrf2/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Fifth Department of Encephalopathy Rehabilitation, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chengcheng Fan
- Organization Department of the Party Committee, Department of Basic Sciences of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhongxue Yi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Tao Du
- Fifth Department of Encephalopathy Rehabilitation, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Nana Wang
- Fifth Department of Encephalopathy Rehabilitation, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Weizhu Tian
- Department of Encephalopathy, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qian Pan
- Department of Pathology, College of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiande Ma
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhe Wang
- Department of Pathology, College of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
43
|
Yang C, Dong W, Wang Y, Dong X, Xu X, Yu X, Wang J. DDIT3 aggravates TMJOA cartilage degradation via Nrf2/HO-1/NLRP3-mediated autophagy. Osteoarthritis Cartilage 2024; 32:921-937. [PMID: 38719085 DOI: 10.1016/j.joca.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/10/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE DNA damage-inducible transcript 3 (DDIT3), as a downstream transcription factor of endoplasmic reticulum stress, is reported to regulate chondrogenic differentiation under physiological and pathological state. However, the specific involvement of DDIT3 in the degradation of condylar cartilage of temporomandibular joint osteoarthritis (TMJOA) is unclarified. DESIGN The expression patterns of DDIT3 in condylar cartilage from monosodium iodoacetate-induced TMJOA mice were examined to uncover the potential role of DDIT3 in TMJOA. The Ddit3 knockout (Ddit3-/-) mice and their wildtype littermates (Ddit3+/+) were used to clarify the effect of DDIT3 on cartilage degradation. Primary condylar chondrocytes and ATDC5 cells were applied to explore the mechanisms of DDIT3 on autophagy and extracellular matrix (ECM) degradation in chondrocytes. The autophagy inhibitor chloroquine (CQ) was used to determine the effect of DDIT3-inhibited autophagy in vivo. RESULTS DDIT3 were highly expressed in condylar cartilage from TMJOA mice. Ddit3 knockout alleviated condylar cartilage degradation and subchondral bone loss, compared with their wildtype littermates. In vitro study demonstrated that DDIT3 exacerbated ECM degradation in chondrocytes induced by TNF-α through inhibiting autophagy. The intraperitoneal injection of CQ further confirmed that Ddit3 knockout alleviated cartilage degradation in TMJOA through activating autophagy in vivo. CONCLUSIONS Our findings identified the crucial role of DDIT3-inhibited autophagy in condylar cartilage degradation during the development of TMJOA.
Collapse
Affiliation(s)
- Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaofei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaoxiao Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xijie Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
44
|
Lu S, Li Y, Yu Y. Glutathione-Scavenging Celastrol-Cu Nanoparticles Induce Self-Amplified Cuproptosis for Augmented Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404971. [PMID: 38935977 DOI: 10.1002/adma.202404971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Cuproptosis is a novel copper-dependent programmed cell death. The efficacy of cuproptosis is highly dependent on intracellular copper accumulation and counteracted by a high level of glutathione (GSH) in tumor cells. Here, this work develops a self-amplified cuproptosis nanoparticles (Cel-Cu NP) using celastrol (Cel), a natural product isolated from medical plant. In Cel-Cu NP, Cel serves as a versatile copper ionophore, exhibiting an ideal coordination capacity toward copper ions without compromising the cuproptosis induction. Notably, Cel can simultaneously scavenge GSH content to amplify cuproptosis. Moreover, this self-amplified cuproptosis further activates immunogenic cell death (ICD) to elicit robust immune response. Combining with immune checkpoint blockade, Cel-Cu NP effectively eradicates metastatic tumors in a mouse lung metastasis model. This study provides an efficient nanomedicine by inducing self-amplified cuproptosis for robust immunotherapy.
Collapse
Affiliation(s)
- Sheng Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
45
|
Tan W, Cheng S, Qiu Q, Huang J, Xie M, Song L, Zhou Z, Wang Y, Guo F, Jin X, Li Z, Xu X, Jiang H, Zhou X. Celastrol exerts antiarrhythmic effects in chronic heart failure via NLRP3/Caspase-1/IL-1β signaling pathway. Biomed Pharmacother 2024; 177:117121. [PMID: 39002443 DOI: 10.1016/j.biopha.2024.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
OBJECTIVES Celastrol has widespread therapeutic applications in various pathological conditions, including chronic inflammation. Previous studies have demonstrated the potent cardioprotective effects of celastrol. Nevertheless, limited attention has been given to its potential in reducing ventricular arrhythmias (VAs) following myocardial infarction (MI). Hence, this study aimed to elucidate the potential mechanisms underlying the regulatory effects of celastrol on VAs and cardiac electrophysiological parameters in rats after MI. METHODS Sprague-Dawley rats were divided at random: the sham, MI, and MI + celastrol groups. The left coronary artery was occluded in the MI and MI + Cel groups. Electrocardiogram, heart rate variability (HRV), ventricular electrophysiological parameters analysis, histology staining of ventricles, Enzyme-linked immunosorbent assay (ELISA), western blotting and Quantitative real-time polymerase chain reaction (qRT-PCR) were performed to elucidate the underlying mechanism of celastrol. Besides, H9c2 cells were subjected to hypoxic conditions to create an in vitro model of MI and then treated with celastrol for 24 hours. Nigericin was used to activate the NLRP3 inflammasome. RESULTS Compared with that MI group, cardiac electrophysiology instability was significantly alleviated in the MI + celastrol group. Additionally, celastrol improved HRV, upregulated the levels of Cx43, Kv.4.2, Kv4.3 and Cav1.2, mitigated myocardial fibrosis, and inhibited the NLRP3 inflammasome pathway. In vitro conditions also supported the regulatory effects of celastrol on the NLRP3 inflammasome pathway. CONCLUSIONS Celastrol could alleviate the adverse effects of VAs after MI partially by promoting autonomic nerve remodeling, ventricular electrical reconstruction and ion channel remodeling, and alleviating ventricular fibrosis and inflammatory responses partly by through inhibiting the NLRP3/Caspase-1/IL-1β pathway.
Collapse
Affiliation(s)
- Wuping Tan
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Siyi Cheng
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Qinfang Qiu
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Jiaxing Huang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Mengjie Xie
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Lingpeng Song
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Zhen Zhou
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Yijun Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Fuding Guo
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Xiaoxing Jin
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Zeyan Li
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Xiao Xu
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Hong Jiang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China.
| | - Xiaoya Zhou
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
46
|
Franco R, Garrigós C, Lillo J, Rivas-Santisteban R. The Potential of Metabolomics to Find Proper Biomarkers for Addressing the Neuroprotective Efficacy of Drugs Aimed at Delaying Parkinson's and Alzheimer's Disease Progression. Cells 2024; 13:1288. [PMID: 39120318 PMCID: PMC11311351 DOI: 10.3390/cells13151288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
The first objective is to highlight the lack of tools to measure whether a given intervention affords neuroprotection in patients with Alzheimer's or Parkinson's diseases. A second aim is to present the primary outcome measures used in clinical trials in cohorts of patients with neurodegenerative diseases. The final aim is to discuss whether metabolomics using body fluids may lead to the discovery of biomarkers of neuroprotection. Information on the primary outcome measures in clinical trials related to Alzheimer's and Parkinson's disease registered since 2018 was collected. We analysed the type of measures selected to assess efficacy, not in terms of neuroprotection since, as stated in the aims, there is not yet any marker of neuroprotection. Proteomic approaches using plasma or CSF have been proposed. PET could estimate the extent of lesions, but disease progression does not necessarily correlate with a change in tracer uptake. We propose some alternatives based on considering the metabolome. A new opportunity opens with metabolomics because there have been impressive technological advances that allow the detection, among others, of metabolites related to mitochondrial function and mitochondrial structure in serum and/or cerebrospinal fluid; some of the differentially concentrated metabolites can become reliable biomarkers of neuroprotection.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
| | - Rafael Rivas-Santisteban
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
47
|
Liu J, Fan Y, Chen J, Zhao M, Jiang C. FOXA1 Suppresses Endoplasmic Reticulum Stress, Oxidative Stress, and Neuronal Apoptosis in Parkinson's Disease by Activating PON2 Transcription. Neurotox Res 2024; 42:31. [PMID: 38935306 DOI: 10.1007/s12640-024-00709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Endoplasmic reticulum (ER) stress and oxidative stress (OS) are often related states in pathological conditions including Parkinson's disease (PD). This study investigates the role of anti-oxidant protein paraoxonase 2 (PON2) in ER stress and OS in PD, along with its regulatory molecule. PD was induced in C57BL/6 mice using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treatment and in SH-SY5Y cells using 1-methyl-4-phenylpyridinium. PON2 was found to be poorly expressed in the substantia nigra pars compacta (SNc) of PD mice, and its overexpression improved motor coordination of mice. Through the evaluation of tyrosine hydroxylase, dopamine transporter, reactive oxygen species (ROS), and C/EBP homologous protein (CHOP) levels and neuronal loss in mice, as well as the examination of CHOP, glucose-regulated protein 94 (GRP94), GRP78, caspase-12, sarco/endoplasmic reticulum calcium ATPase 2, malondialdehyde, and superoxide dismutase levels in SH-SY5Y cells, we observed that PON2 overexpression mitigated ER stress, OS, and neuronal apoptosis both in vivo and in vitro. Forkhead box A1 (FOXA1) was identified as a transcription factor binding to the PON2 promoter to activate its transcription. Upregulation of FOXA1 similarly protected against neuronal loss by alleviating ER stress and OS, while the protective roles were abrogated by additional PON2 silencing. In conclusion, this study demonstrates that FOXA1-mediated transcription of PON2 alleviates ER stress and OS, ultimately reducing neuronal apoptosis in PD.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Neurology, The Baotou Central Hospital, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Yu Fan
- Department of Neurology, The Baotou Central Hospital, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Jinyu Chen
- Department of Neurology, The Baotou Central Hospital, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Meili Zhao
- Department of Neurology, The Baotou Central Hospital, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Changchun Jiang
- Department of Neurology, The Baotou Central Hospital, Baotou, 014040, Inner Mongolia, People's Republic of China.
| |
Collapse
|
48
|
Su J, Chen W, Zhou F, Li R, Tong Z, Wu S, Ye Z, Zhang Y, Lin B, Yu X, Guan B, Feng Z, Chen K, Chen Q, Chen L. Inhibitory mechanisms of decoy receptor 3 in cecal ligation and puncture-induced sepsis. mBio 2024; 15:e0052124. [PMID: 38700314 PMCID: PMC11237498 DOI: 10.1128/mbio.00521-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Despite its high mortality, specific and effective drugs for sepsis are lacking. Decoy receptor 3 (DcR3) is a potential biomarker for the progression of inflammatory diseases. The recombinant human DcR3-Fc chimera protein (DcR3.Fc) suppresses inflammatory responses in mice with sepsis, which is critical for improving survival. The Fc region can exert detrimental effects on the patient, and endogenous peptides are highly conducive to clinical application. However, the mechanisms underlying the effects of DcR3 on sepsis are unknown. Herein, we aimed to demonstrate that DcR3 may be beneficial in treating sepsis and investigated its mechanism of action. Recombinant DcR3 was obtained in vitro. Postoperative DcR3 treatment was performed in mouse models of lipopolysaccharide- and cecal ligation and puncture (CLP)-induced sepsis, and their underlying molecular mechanisms were explored. DcR3 inhibited sustained excessive inflammation in vitro, increased the survival rate, reduced the proinflammatory cytokine levels, changed the circulating immune cell composition, regulated the gut microbiota, and induced short-chain fatty acid synthesis in vivo. Thus, DcR3 protects against CLP-induced sepsis by inhibiting the inflammatory response and apoptosis. Our study provides valuable insights into the molecular mechanisms associated with the protective effects of DcR3 against sepsis, paving the way for future clinical studies. IMPORTANCE Sepsis affects millions of hospitalized patients worldwide each year, but there are no sepsis-specific drugs, which makes sepsis therapies urgently needed. Suppression of excessive inflammatory responses is important for improving the survival of patients with sepsis. Our results demonstrate that DcR3 ameliorates sepsis in mice by attenuating systematic inflammation and modulating gut microbiota, and unveil the molecular mechanism underlying its anti-inflammatory effect.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Rui Li
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Tong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhen Ye
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Ben Lin
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Xing Yu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Gu M, Li C, Deng Q, Chen X, Lei R. Celastrol enhances the viability of random-pattern skin flaps by regulating autophagy through the AMPK-mTOR-TFEB axis. Phytother Res 2024; 38:3020-3036. [PMID: 38600729 DOI: 10.1002/ptr.8198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/06/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
In reconstructive and plastic surgery, random-pattern skin flaps (RPSF) are often used to correct defects. However, their clinical usefulness is limited due to their susceptibility to necrosis, especially on the distal side of the RPSF. This study validates the protective effect of celastrol (CEL) on flap viability and explores in terms of underlying mechanisms of action. The viability of different groups of RPSF was evaluated by survival zone analysis, laser doppler blood flow, and histological analysis. The effects of CEL on flap angiogenesis, apoptosis, oxidative stress, and autophagy were evaluated by Western blot, immunohistochemistry, and immunofluorescence assays. Finally, its mechanistic aspects were explored by autophagy inhibitor and Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor. On the seventh day after surgery, the survival area size, blood supply, and microvessel count of RPSF were augmented following the administration of CEL. Additionally, CEL stimulated angiogenesis, suppressed apoptosis, and lowered oxidative stress levels immediately after elevated autophagy in ischemic regions; These effects can be reversed using the autophagy inhibitor chloroquine (CQ). Specifically, CQ has been observed to counteract the protective impact of CEL on the RPSF. Moreover, it has also been discovered that CEL triggers the AMPK-mTOR-TFEB axis activation in the area affected by ischemia. In CEL-treated skin flaps, AMPK inhibitors were demonstrated to suppress the AMPK-mTOR-TFEB axis and reduce autophagy levels. This investigation suggests that CEL benefits the survival of RPSF by augmenting angiogenesis and impeding oxidative stress and apoptosis. The results are credited to increased autophagy, made possible by the AMPK-mTOR-TFEB axis activation.
Collapse
Affiliation(s)
- Mingbao Gu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenchao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qingyu Deng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Shen W, Li C, Liu Q, Cai J, Wang Z, Pang Y, Ning G, Yao X, Kong X, Feng S. Celastrol inhibits oligodendrocyte and neuron ferroptosis to promote spinal cord injury recovery. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155380. [PMID: 38507854 DOI: 10.1016/j.phymed.2024.155380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) is a traumatic injury to the central nervous system and can cause lipid peroxidation in the spinal cord. Ferroptosis, an iron-dependent programmed cell death, plays a key role in the pathophysiology progression of SCI. Celastrol, a widely used antioxidant drug, has potential therapeutic value for nervous system. PURPOSE To investigate whether celastrol can be a reliable candidate for ferroptosis inhibitor and the molecular mechanism of celastrol in repairing SCI by inhibiting ferroptosis. METHODS First, a rat SCI model was constructed, and the recovery of motor function was observed after treatment with celastrol. The regulatory effect of celastrol on ferroptosis pathway Nrf2-xCT-GPX4 was detected by Western blot and immunofluorescence. Finally, the ferroptosis model of neurons and oligodendrocytes was constructed in vitro to further verify the mechanism of inhibiting ferroptosis by celastrol. RESULTS Our results demonstrated that celastrol promoted the recovery of spinal cord tissue and motor function in SCI rats. Further in vitro and in vivo studies showed that celastrol significantly inhibited ferroptosis in neurons and oligodendrocytes and reduced the accumulation of ROS. Finally, we found that celastrol could inhibit ferroptosis by up-regulating the Nrf2-xCT-GPX4 axis to repair SCI. CONCLUSION Celastrol effectively inhibits ferroptosis after SCI by upregulating the Nrf2-xCT-GPX4 axis, reducing the production of lipid ROS, protecting the survival of neurons and oligodendrocytes, and improving the functional recovery.
Collapse
Affiliation(s)
- Wenyuan Shen
- Spine Surgery Department of the Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, PR China; Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China
| | - Chuanhao Li
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Quan Liu
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Jun Cai
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, PR China
| | - Zhishuo Wang
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Yilin Pang
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Guangzhi Ning
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Xue Yao
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China.
| | - Xiaohong Kong
- Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China.
| | - Shiqing Feng
- Spine Surgery Department of the Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, PR China; Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China.
| |
Collapse
|