1
|
Cheng J, Venkatesh S, Ke K, Barratt MJ, Gordon JI. A human gut Faecalibacterium prausnitzii fatty acid amide hydrolase. Science 2024; 386:eado6828. [PMID: 39446943 PMCID: PMC11572954 DOI: 10.1126/science.ado6828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/14/2024] [Indexed: 10/26/2024]
Abstract
Undernutrition in Bangladeshi children is associated with disruption of postnatal gut microbiota assembly; compared with standard therapy, a microbiota-directed complementary food (MDCF) substantially improved their ponderal and linear growth. Here, we characterize a fatty acid amide hydrolase (FAAH) from a growth-associated intestinal strain of Faecalibacterium prausnitzii cultured from these children. This enzyme, expressed and purified from Escherichia coli, hydrolyzes a variety of N-acylamides, including oleoylethanolamide (OEA), neurotransmitters, and quorum sensing N-acyl homoserine lactones; it also synthesizes a range of N-acylamides, notably N-acyl amino acids. Treating germ-free mice with N-oleoylarginine and N-oleolyhistidine, major products of FAAH OEA metabolism, markedly affected expression of intestinal immune function pathways. Administering MDCF to Bangladeshi children considerably reduced fecal OEA, a satiety factor whose levels were negatively correlated with abundance and expression of their F. prausnitzii FAAH. This enzyme, structurally and catalytically distinct from mammalian FAAH, is positioned to regulate levels of a variety of bioactive molecules.
Collapse
Affiliation(s)
- Jiye Cheng
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- The Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Siddarth Venkatesh
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- The Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Ke Ke
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- The Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Michael J. Barratt
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- The Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Jeffrey I. Gordon
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- The Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
2
|
Shin J, Ahn SH, Oh DJ. Pseudomonas aeruginosa N-3-Oxododecanoyl Homoserine Lactone Disrupts Endothelial Integrity by Activating the Angiopoietin-Tie System. Cell Biochem Biophys 2024; 82:1555-1566. [PMID: 38762714 DOI: 10.1007/s12013-024-01307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
The activation of the angiopoietin (Angpt)-Tie system is linked to endothelial dysfunction during sepsis. Bacterial quorum-sensing molecules function as pathogen-associated molecular patterns. However, their impact on the endothelium and the Angpt-Tie system remains unclear. Therefore, this study investigated whether treatment with N-3-oxododecanoyl homoserine lactone (3OC12-HSL), a quorum-sensing molecule derived from Pseudomonas aeruginosa, impaired endothelial function in human umbilical vein endothelial cells. 3OC12-HSL treatment impaired tube formation even at sublethal concentrations, and immunocytochemistry analysis revealed that it seemed to reduce vascular endothelial-cadherin expression at the cell-cell interface. Upon assessing the mRNA expression patterns of genes associated with the Angpt-Tie axis, the expressions of Angpt2, Forkhead box protein O1, Tie1, and vascular endothelial growth factor 2 were found to be upregulated in the 3OC12-HSL-treated cells. Moreover, western blot analysis revealed that 3OC12-HSL treatment increased Angpt2 expression. A co-immunoprecipitation assay was conducted to assess the effect of 3OC12-HSL on the IQ motif containing GTPase activating protein 1 (IQGAP1) and Rac1 complex and the interaction between these proteins was consistently maintained regardless of 3OC12-HSL treatment. Next, recombinant human (rh)-Angpt1 was added to assess whether it modulated the effects of 3OC12-HSL treatment. rh-Angpt1 addition increased cellular viability, improved endothelial function, and reversed the overall patterns of mRNA and protein expression in endothelial cells treated with 3OC12-HSL. Additionally, it was related to the increased expression of phospho-Akt and the IQGAP1 and Rac1 complex. Collectively, our findings indicated that 3OC12-HSL from Pseudomonas aeruginosa can impair endothelial integrity via the activation of the Angpt-Tie axis, which appeared to be reversed by rh-Angpt1 treatment.
Collapse
Affiliation(s)
- Jungho Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sun Hee Ahn
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea.
| |
Collapse
|
3
|
Coquant G, Aguanno D, Pham S, Grellier N, Thenet S, Carrière V, Grill JP, Seksik P. Gossip in the gut: Quorum sensing, a new player in the host-microbiota interactions. World J Gastroenterol 2021; 27:7247-7270. [PMID: 34876787 PMCID: PMC8611211 DOI: 10.3748/wjg.v27.i42.7247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/17/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bacteria are known to communicate with each other and regulate their activities in social networks by secreting and sensing signaling molecules called autoinducers, a process known as quorum sensing (QS). This is a growing area of research in which we are expanding our understanding of how bacteria collectively modify their behavior but are also involved in the crosstalk between the host and gut microbiome. This is particularly relevant in the case of pathologies associated with dysbiosis or disorders of the intestinal ecosystem. This review will examine the different QS systems and the evidence for their presence in the intestinal ecosystem. We will also provide clues on the role of QS molecules that may exert, directly or indirectly through their bacterial gossip, an influence on intestinal epithelial barrier function, intestinal inflammation, and intestinal carcinogenesis. This review aims to provide evidence on the role of QS molecules in gut physiology and the potential shared by this new player. Better understanding the impact of intestinal bacterial social networks and ultimately developing new therapeutic strategies to control intestinal disorders remains a challenge that needs to be addressed in the future.
Collapse
Affiliation(s)
- Garance Coquant
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Doriane Aguanno
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Sandrine Pham
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Nathan Grellier
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Sophie Thenet
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Véronique Carrière
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Jean-Pierre Grill
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- Department of Gastroenterology and Nutrition, Saint-Antoine Hospital, APHP, Paris 75012, France
| |
Collapse
|
4
|
Wagener BM, Hu R, Wu S, Pittet JF, Ding Q, Che P. The Role of Pseudomonas aeruginosa Virulence Factors in Cytoskeletal Dysregulation and Lung Barrier Dysfunction. Toxins (Basel) 2021; 13:776. [PMID: 34822560 PMCID: PMC8625199 DOI: 10.3390/toxins13110776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas (P.) aeruginosa is an opportunistic pathogen that causes serious infections and hospital-acquired pneumonia in immunocompromised patients. P. aeruginosa accounts for up to 20% of all cases of hospital-acquired pneumonia, with an attributable mortality rate of ~30-40%. The poor clinical outcome of P. aeruginosa-induced pneumonia is ascribed to its ability to disrupt lung barrier integrity, leading to the development of lung edema and bacteremia. Airway epithelial and endothelial cells are important architecture blocks that protect the lung from invading pathogens. P. aeruginosa produces a number of virulence factors that can modulate barrier function, directly or indirectly, through exploiting cytoskeleton networks and intercellular junctional complexes in eukaryotic cells. This review summarizes the current knowledge on P. aeruginosa virulence factors, their effects on the regulation of the cytoskeletal network and associated components, and molecular mechanisms regulating barrier function in airway epithelial and endothelial cells. A better understanding of these processes will help to lay the foundation for new therapeutic approaches against P. aeruginosa-induced pneumonia.
Collapse
Affiliation(s)
- Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruihan Hu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Internal Medicine, Guiqian International General Hospital, Guiyang 550024, China
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qiang Ding
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pulin Che
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Shin J, Ahn SH, Kim SH, Oh DJ. N-3-oxododecanoyl homoserine lactone exacerbates endothelial cell death by inducing receptor-interacting protein kinase 1-dependent apoptosis. Am J Physiol Cell Physiol 2021; 321:C644-C653. [PMID: 34432536 DOI: 10.1152/ajpcell.00094.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial dysfunction is associated with the initiation of sepsis-associated organ failure. Bacterial quorum-sensing molecules act as pathogen-associated molecular patterns; however, the effects of quorum-sensing molecules on endothelial cells remain less understood. This study investigated the molecular mechanisms of quorum-sensing molecule-induced cell death and their interaction with lipopolysaccharide (LPS) in human umbilical vein endothelial cells. Endothelial cells were treated with N-3-oxododecanoyl homoserine lactone (3OC12-HSL) and LPS derived from Pseudomonas aeruginosa. Treatment with 3OC12-HSL reduced cell viability in a dose-dependent manner, and cotreatment with 3OC12-HSL and LPS enhanced cell death. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay revealed an increase in apoptotic cell death following 3OC12-HSL treatment; furthermore, cotreatment with 3OC12-HSL and LPS enhanced apoptosis. Western blotting revealed that treatment with 3OC12-HSL activated the receptor-interacting protein kinase 1 (RIPK1) pathway, leading to an increase in the levels of cleaved caspase 8 and 3. In addition, we found that treatment with necrostatin-1, an RIPK1 inhibitor, reduced cell death and ameliorated the activation of the RIPK1-dependent apoptotic pathway in 3OC12-HSL-treated cells. In conclusion, 3OC12-HSL induced endothelial cell apoptosis via the activation of the RIPK1 pathway, independent of LPS toxicity. Inhibition of RIPK1 may act as a therapeutic option for preserving endothelial cell integrity in patients with sepsis by disrupting the mechanism by which quorum-sensing molecules mediate their toxicity.
Collapse
Affiliation(s)
- Jungho Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sun Hee Ahn
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Su Hyun Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea
| |
Collapse
|
6
|
Kuang Z, Bennett RC, Lin J, Hao Y, Zhu L, Akinbi HT, Lau GW. Surfactant phospholipids act as molecular switches for premature induction of quorum sensing-dependent virulence in Pseudomonas aeruginosa. Virulence 2021; 11:1090-1107. [PMID: 32842850 PMCID: PMC7549932 DOI: 10.1080/21505594.2020.1809327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The virulence behaviors of many Gram-negative bacterial pathogens are governed by quorum-sensing (QS), a hierarchical system of gene regulation that relies on population density by producing and detecting extracellular signaling molecules. Although extensively studied under in vitro conditions, adaptation of QS system to physiologically relevant host environment is not fully understood. In this study, we investigated the influence of lung environment on the regulation of Pseudomonas aeruginosa virulence factors by QS in a mouse model of acute pneumonia. When cultured under laboratory conditions in lysogeny broth, wild-type P. aeruginosa strain PAO1 began to express QS-regulated virulence factors elastase B (LasB) and rhamnolipids (RhlA) during transition from late-exponential into stationary growth phase. In contrast, during acute pneumonia as well as when cultured in mouse bronchial alveolar lavage fluids (BALF), exponential phase PAO1 bacteria at low population density prematurely expressed QS regulatory genes lasI-lasR and rhlI-rhlR and their downstream virulence genes lasB and rhlA. Further analysis indicated that surfactant phospholipids were the primary components within BALF that induced the synthesis of N-(3-oxododecanoyl)-L-homoserine lactone (C12-HSL), which triggered premature expression of LasB and RhlA. Both phenol extraction and phospholipase A2 digestion abolished the ability of mouse BALF to promote LasB and RhlA expression. In contrast, provision of the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) restored the expression of both virulence factors. Collectively, our study demonstrates P. aeruginosa modulates its QS to coordinate the expression of virulence factors during acute pneumonia by recognizing pulmonary surfactant phospholipids.
Collapse
Affiliation(s)
- Zhizhou Kuang
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Richard C Bennett
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Jingjun Lin
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Yonghua Hao
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Luchang Zhu
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Henry T Akinbi
- Division of Pulmonary Medicine, Cincinnati Children Hospital , Cincinnati, OH, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| |
Collapse
|
7
|
Cheng W, Wang Z, Xiong Y, Wu Z, Tan X, Yang Y, Zhang H, Zhu X, Wei H, Tao S. N-(3-oxododecanoyl)-homoserine lactone disrupts intestinal barrier and induces systemic inflammation through perturbing gut microbiome in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146347. [PMID: 34030388 DOI: 10.1016/j.scitotenv.2021.146347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As a quorum sensing signal molecule, N-(3-oxododecanoyl)-homoserine lactone (3OC12) regulate the population behavior of microorganisms. Many studies have proved that 3OC12 harm the physiological function of host intestinal epithelial cells. However, the detrimental effects of 3OC12 on intestinal health need verification in animals. Besides, the role of gut microbiome in 3OC12-induced intestinal damage also needs further understanding. In our study, 3OC12 was first administered to specific pathogen-free (SPF) mice, then the fecal microbiome of SPF mice was transplanted into germ-free (GF) mice to reveal the effects of 3OC12 on intestinal health and regulatory mechanisms of the intestinal microbiome. 3OC12 treatment significantly decreased body weight, shortened colonic length, disrupted the morphology of the colonic epithelium and increased the histopathological score of the colon in SPF mice. The levels of diamine peroxidase, d-lactate, TNF-α, IL-1β, and IL-8 were found to be significantly elevated in the serum of 3OC12 mice, while the levels of IL-10 were significantly reduced. Besides, the fecal microbial community of mice was also altered in the 3OC12-treated SPF mice. The results of fecal microbial transplantation (FMT) experiment showed that the phenotypes in SPF mice were almost reproduced in GF mice, manifested by body weight loss, colon damage and changed in serum chemical markers. More importantly, a joint analysis of fecal microbes in SPF and GF mice revealed Feature14_Elizabethkingia spp. was common differential bacteria in the feces of two kinds of mice treated with and without FMT. Our results demonstrated that 3OC12 challenge led to systemic inflammation and body weight loss in mice by disrupting intestinal barrier function, in which gut microbiome played a key role. These findings increased our understanding of the mechanism of intestinal injury caused by 3CO12, providing new ideas for the prevention and therapy of diseases caused by bacterial infection from the perspective of intestinal microbiome.
Collapse
Affiliation(s)
- Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Tan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yapeng Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hang Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Zhu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Xue J, Chi L, Tu P, Lai Y, Liu CW, Ru H, Lu K. Detection of gut microbiota and pathogen produced N-acyl homoserine in host circulation and tissues. NPJ Biofilms Microbiomes 2021; 7:53. [PMID: 34183673 PMCID: PMC8239043 DOI: 10.1038/s41522-021-00224-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Recent studies suggest that quorum-sensing molecules may play a role in gut microbiota-host crosstalk. However, whether microbiota produces quorum-sensing molecules and whether those molecules can trans-kingdom transport to the host are still unknown. Here, we develop a UPLC-MS/MS-based assay to screen the 27 N-acyl homoserine lactones (AHLs) in the gut microbiota and host. Various AHL molecules are exclusively detected in the cecal contents, sera and livers from conventionally-raised mice but cannot be detected in germ-free mice. Pathogen-produced C4-HSL is detected in the cecal contents and sera of Citrobacter rodentium (C. rodentium)-infected mice, but not found in uninfected controls. Moreover, C. rodentium infection significantly increases the level of multiple AHL molecules in sera. Our findings demonstrate that both commensal and pathogenic bacteria, can produce AHLs that can be detected in host bodies, suggesting that quorum-sensing molecules could be a group of signaling molecules in trans-kingdom microbiota-host crosstalk.
Collapse
Affiliation(s)
- Jingchuan Xue
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
10
|
Yadav VK, Singh PK, Sharma D, Pandey H, Singh SK, Agarwal V. Autoinducer N-(3-oxododecanoyl)-l-homoserine lactone induces calcium and reactive oxygen species-mediated mitochondrial damage and apoptosis in blood platelets. Microb Pathog 2021; 154:104792. [PMID: 33636321 DOI: 10.1016/j.micpath.2021.104792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/08/2023]
Abstract
Acylated homoserine lactones (AHL) such as N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12 HSL) and N-butyryl-l-homoserine lactone (C4 HSL) are the most common autoinducer molecules in Pseudomonas aeruginosa. These AHL molecules not only regulate the expression of virulence factors but also have been shown to interfere with the host cell and modulate its functions. Recently, we reported that 3-oxo-C12 HSL but not C4 HSL causes cytosolic Ca2+ rise and ROS production in platelets. In this study, we examined the potential of AHLs to induce apoptosis in the human blood platelet. Our result showed that 3-oxo-C12 HSL but not C4 HSL causes phosphatidylserine (PS) exposure, mitochondrial dysfunction (mitochondrial transmembrane potential loss, and mitochondrial permeability transition pore (mPTP) formation). Besides, 3-oxo-C12 HSL also inhibited thrombin-induced platelet aggregation and clot retraction. The pretreatment of an intracellular calcium chelator BAPTA-AM or ROS inhibitor (DPI) significantly attenuated the 3-oxo-C12 HSL induced apoptotic characters such as PS exposure and mitochondrial dysfunctions. These data, including our previous findings, confirmed that 3-oxo-C12 HSL induced intracellular Ca2+ mediated ROS production results in the activation and subsequent induction of apoptotic features in platelets. Our results demonstrated that the 3-oxo-C12 HSL modulates the functions of platelets that may cause severe thrombotic complications in P. aeruginosa infected individuals.
Collapse
Affiliation(s)
- Vivek Kumar Yadav
- Department of Biotechnology Motilal Nehru National Institute of Technology, Allahabad, India
| | - Pradeep Kumar Singh
- Department of Biotechnology Motilal Nehru National Institute of Technology, Allahabad, India; Maharana Pratap Government Post Graduate College Gadarwara, Madhya Pradesh, India
| | - Deepmala Sharma
- Department of Mathematics National Institute of Technology, Raipur, India
| | - Himanshu Pandey
- Faculty of Sowa Rigpa Central Institute of Higher Tibetan Studies Sarnath, Varanasi, India
| | - Sunil Kumar Singh
- Department of Zoology, Central University of Punjab, Bathinda, India.
| | - Vishnu Agarwal
- Department of Biotechnology Motilal Nehru National Institute of Technology, Allahabad, India.
| |
Collapse
|
11
|
Tang J, Chen Y, Wang X, Ding Y, Sun X, Ni Z. Contribution of the AbaI/AbaR Quorum Sensing System to Resistance and Virulence of Acinetobacter baumannii Clinical Strains. Infect Drug Resist 2020; 13:4273-4281. [PMID: 33262621 PMCID: PMC7699449 DOI: 10.2147/idr.s276970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii (A. baumannii) is one of the most important pathogens that cause serious nosocomial infections worldwide. However, there are few reports on the virulence of A. baumannii clinical isolates, and little is known about the mechanism regulating virulence and drug resistance. The aim of this study was to determine the prevalence of drug resistance and virulence profiles and explore features related to quorum sensing (QS). METHODS A total of 80 clinical A. baumannii isolates were collected from Jilin province of China from 2012 to 2017. We investigated these clinical isolates with respect to biofilm formation, surface motility, adherence, invasion into A549 human alveolar epithelial cells, and virulence to Galleria mellonella. We also explored the prevalence of the AbaI/AbaR QS system and its correlation with bacterial virulence and drug resistance. RESULTS The resistance rates of the isolates to 17 commonly used antibiotics were higher than 50%, and 75% of the isolates were multi-drug resistant. Approximately 95% (76/80) of the isolates showed the ability to form biofilms, of which 38 showed strong biofilm formation ability (+++). Only 5 strains showed strong surface-related motility. A high level of variability was found in adherence and invasion into A549 epithelial cells, and 16 isolates showed strong virulence to Galleria mellonella (none survived after 6 days of infection). Of the 61 isolates carrying abaI and abaR genes, 24 were found to produce N-acyl homoserine lactones (AHLs) detectable by biosensor bacteria. Correlation analysis revealed that abaI and abaR genes positively correlated with bacterial resistance rates. All strains showing obvious surface-related motility carried abaI and abaR genes and produced AHLs. The isolates with detectable QS systems also showed stronger invasiveness into A549 cells and pathogenicity toward G. mellonella than the QS-deficient isolates. CONCLUSION Our study demonstrates that the AbaI/AbaR QS system was widely distributed among the A. baumannii clinical isolates, was necessary for surface-related motility, and significantly correlated with drug resistance, invasion into epithelial cells, and virulence to G. mellonella.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pathogen Biology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Yan Chen
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China130041, People’s Republic of China
| | - Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun130041, People’s Republic of China
| | - Yue Ding
- Department of Pathogen Biology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Xiaoyu Sun
- Department of Pathogen Biology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Zhaohui Ni
- Department of Pathogen Biology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| |
Collapse
|
12
|
Pessione E. The Russian Doll Model: How Bacteria Shape Successful and Sustainable Inter-Kingdom Relationships. Front Microbiol 2020; 11:573759. [PMID: 33193180 PMCID: PMC7606975 DOI: 10.3389/fmicb.2020.573759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Successful inter-kingdom relationships are based upon a dynamic balance between defense and cooperation. A certain degree of competition is necessary to guarantee life spread and development. On the other hand, cooperation is a powerful tool to ensure a long lasting adaptation to changing environmental conditions and to support evolution to a higher level of complexity. Bacteria can interact with their (true or potential) parasites (i.e., phages) and with their multicellular hosts. In these model interactions, bacteria learnt how to cope with their inner and outer host, transforming dangerous signals into opportunities and modulating responses in order to achieve an agreement that is beneficial for the overall participants, thus giving rise to a more complex "organism" or ecosystem. In this review, particular attention will be addressed to underline the minimal energy expenditure required for these successful interactions [e.g., moonlighting proteins, post-translational modifications (PTMs), and multitasking signals] and the systemic vision of these processes and ways of life in which the system proves to be more than the sum of the single components. Using an inside-out perspective, I will examine the possibility of multilevel interactions, in which viruses help bacteria to cope with the animal host and bacteria support the human immune system to counteract viral infection in a circular vision. In this sophisticated network, bacteria represent the precious link that insures system stability with relative low energy expenditure.
Collapse
Affiliation(s)
- Enrica Pessione
- Department of Life Sciences and Systems Biology, School of Nature Sciences, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
13
|
Aguanno D, Coquant G, Postal BG, Osinski C, Wieckowski M, Stockholm D, Grill JP, Carrière V, Seksik P, Thenet S. The intestinal quorum sensing 3-oxo-C12:2 Acyl homoserine lactone limits cytokine-induced tight junction disruption. Tissue Barriers 2020; 8:1832877. [PMID: 33100129 PMCID: PMC7714502 DOI: 10.1080/21688370.2020.1832877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The intestine is home to the largest microbiota community of the human body and strictly regulates its barrier function. Tight junctions (TJ) are major actors of the intestinal barrier, which is impaired in inflammatory bowel disease (IBD), along with an unbalanced microbiota composition. With the aim to identify new actors involved in host-microbiota interplay in IBD, we studied N-acyl homoserine lactones (AHL), molecules of the bacterial quorum sensing, which also impact the host. We previously identified in the gut a new and prominent AHL, 3-oxo-C12:2, which is lost in IBD. We investigated how 3-oxo-C12:2 impacts the intestinal barrier function, in comparison to 3-oxo-C12, a structurally close AHL produced by the opportunistic pathogen P. aeruginosa. Using Caco-2/TC7 cells as a model of polarized enterocytes, we compared the effects on paracellular permeability and TJ integrity of these two AHL, separately or combined with pro-inflammatory cytokines, Interferon-γ and Tumor Necrosis Factor-α, known to disrupt the barrier function during IBD. While 3-oxo-C12 increased paracellular permeability and decreased occludin and tricellulin signal at bicellular and tricellular TJ, respectively, 3-oxo-C12:2 modified neither permeability nor TJ integrity. Whereas 3-oxo-C12 potentiated the hyperpermeability induced by cytokines, 3-oxo-C12:2 attenuated their deleterious effects on occludin and tricellulin, and maintained their interaction with their partner ZO-1. In addition, 3-oxo-C12:2 limited the cytokine-induced ubiquitination of occludin and tricellulin, suggesting that this AHL prevented their endocytosis. In conclusion, the role of 3-oxo-C12:2 in maintaining TJ integrity under inflammatory conditions identifies this new AHL as a potential beneficial actor of host–microbiota interactions in IBD.
Collapse
Affiliation(s)
- Doriane Aguanno
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,EPHE, PSL University , Paris, France
| | - Garance Coquant
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France
| | - Barbara G Postal
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,Université de Paris, Centre De Recherche sur l'Inflammation, INSERM UMR 1149 , Paris, France.,Biology and Genetics of Bacterial Cell Wall Unit, Pasteur Institute , Paris, France
| | - Céline Osinski
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches , Paris, France
| | - Margaux Wieckowski
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,EPHE, PSL University , Paris, France
| | - Daniel Stockholm
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,EPHE, PSL University , Paris, France
| | - Jean-Pierre Grill
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France
| | - Véronique Carrière
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,Département De Gastroentérologie Et Nutrition , Paris, France
| | - Sophie Thenet
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM , Paris, France.,EPHE, PSL University , Paris, France
| |
Collapse
|
14
|
Zheng M, Sun S, Zhou J, Liu M. Virulence factors impair epithelial junctions during bacterial infection. J Clin Lab Anal 2020; 35:e23627. [PMID: 33070380 PMCID: PMC7891540 DOI: 10.1002/jcla.23627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial cells are typically connected through different types of cell junctions that are localized from the apical membrane to the basal surface. In this way, epithelium cells form the first barrier against pathogenic microorganisms and prevent their entry into internal organs and the circulatory system. Recent studies demonstrate that bacterial pathogens disrupt epithelial cell junctions through targeting junctional proteins by secreted virulence factors. In this review, we discuss the diverse strategies used by common bacterial pathogens, including Pseudomonas aeruginosa, Helicobacter pylori, and enteropathogenic Escherichia coli, to disrupt epithelial cell junctions during infection. We also discuss the potential of targeting the pathogenic mechanisms in the treatment of pathogen-associated diseases.
Collapse
Affiliation(s)
- Manxi Zheng
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shuang Sun
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
15
|
Coquant G, Grill JP, Seksik P. Impact of N-Acyl-Homoserine Lactones, Quorum Sensing Molecules, on Gut Immunity. Front Immunol 2020; 11:1827. [PMID: 32983093 PMCID: PMC7484616 DOI: 10.3389/fimmu.2020.01827] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023] Open
Abstract
Among numerous molecules found in the gut ecosystem, quorum sensing (QS) molecules represent an overlooked part that warrants highlighting. QS relies on the release of small molecules (auto-inducers) by bacteria that accumulate in the environment depending on bacterial cell density. These molecules not only are sensed by the microbial community but also interact with host cells and contribute to gut homeostasis. It therefore appears entirely appropriate to highlight the role of these molecules on the immune system in dysbiosis-associated inflammatory conditions where the bacterial populations are imbalanced. Here, we intent to focus on one of the most studied QS molecule family, namely, the type I auto-inducers represented by N-acyl-homoserine lactones (AHL). First described in pathogens such as Pseudomonas aeruginosa, these molecules have also been found in commensals and have been recently described within the complex microbial communities of the mammalian intestinal tract. In this mini-review, we will expound on this emergent field of research. We will first recall evidence on AHL structure, synthesis, receptors, and functions regarding interbacterial communication. Then, we will discuss their interactions with the host and particularly with agents of the innate and adaptive gut mucosa immunity. This will reveal how this new set of molecules, driven by microbial imbalance, can interact with inflammation pathways and could be a potential target in inflammatory bowel disease (IBD). The discovery of the general impact of these compounds on the detection of the bacterial quorum and on the dynamic and immune responses of eukaryotic cells opens up a new field of pathophysiology.
Collapse
Affiliation(s)
- Garance Coquant
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Hôpital Saint Antoine, Paris, France
| | - Jean-Pierre Grill
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Hôpital Saint Antoine, Paris, France
| | - Philippe Seksik
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Hôpital Saint Antoine, Paris, France
- Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| |
Collapse
|
16
|
Guo J, Wang Z, Weng Y, Yuan H, Yoshida K, Ikegame M, Uchibe K, Kamioka H, Ochiai K, Okamura H, Qiu L. N-(3-oxododecanoyl)-homoserine lactone regulates osteoblast apoptosis and differentiation by mediating intracellular calcium. Cell Signal 2020; 75:109740. [PMID: 32818672 DOI: 10.1016/j.cellsig.2020.109740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is associated with periapical periodontitis. The lesions are characterized by a disorder in osteoblast metabolism. Quorum sensing molecular N-(3-oxododecanoyl)-homoserine lactone (AHL) is secreted by P. aeruginosa and governs the expression of numerous virulence factors. AHL can trigger intracellular calcium ([Ca2+]i) fluctuations in many host cells. However, it is unclear whether AHL can regulate osteoblast metabolism by affecting [Ca2+]i changes or its spatial correlation. We explored AHL-induced apoptosis and differentiation in pre-osteoblastic MC3T3-E1 cells and evaluated [Ca2+]i mobilization using several extraction methods. The spatial distribution pattern of [Ca2+]i among cells was investigated by Moran's I, an index of spatial autocorrelation. We found that 30 μM and 50 μM AHL triggered opposing osteoblast fates. At 50 μM, AHL inhibited osteoblast differentiation by promoting mitochondrial-dependent apoptosis and negatively regulating osteogenic marker genes, including Runx2, Osterix, bone sialoprotein (Bsp), and osteocalcin (OCN). In contrast, prolonged treatment with 30 μM AHL promoted osteoblast differentiation concomitantly with cell apoptosis. The elevation of [Ca2+]i levels in osteoblasts treated with 50 μM AHL was spatially autocorrelated, while no such phenomenon was observed in 30 μM AHL-treated osteoblasts. The blocking of cell-to-cell spatial autocorrelation in the osteoblasts provoked by 50 μM AHL significantly inhibited apoptosis and partially restored differentiation. Our observations suggest that AHL affects the fate of osteoblasts (apoptosis and differentiation) by affecting the spatial correlation of [Ca2+]i changes. Thus, AHL acts as a double-edged sword for osteoblast function.
Collapse
Affiliation(s)
- Jiajie Guo
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China; Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Haoze Yuan
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kenta Uchibe
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Lihong Qiu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
17
|
Guo J, Yoshida K, Ikegame M, Okamura H. Quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone: An all-rounder in mammalian cell modification. J Oral Biosci 2020; 62:16-29. [DOI: 10.1016/j.job.2020.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/17/2023]
|
18
|
King MM, Kayastha BB, Franklin MJ, Patrauchan MA. Calcium Regulation of Bacterial Virulence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:827-855. [PMID: 31646536 DOI: 10.1007/978-3-030-12457-1_33] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) is a universal signaling ion, whose major informational role shaped the evolution of signaling pathways, enabling cellular communications and responsiveness to both the intracellular and extracellular environments. Elaborate Ca2+ regulatory networks have been well characterized in eukaryotic cells, where Ca2+ regulates a number of essential cellular processes, ranging from cell division, transport and motility, to apoptosis and pathogenesis. However, in bacteria, the knowledge on Ca2+ signaling is still fragmentary. This is complicated by the large variability of environments that bacteria inhabit with diverse levels of Ca2+. Yet another complication arises when bacterial pathogens invade a host and become exposed to different levels of Ca2+ that (1) are tightly regulated by the host, (2) control host defenses including immune responses to bacterial infections, and (3) become impaired during diseases. The invading pathogens evolved to recognize and respond to the host Ca2+, triggering the molecular mechanisms of adhesion, biofilm formation, host cellular damage, and host-defense resistance, processes enabling the development of persistent infections. In this review, we discuss: (1) Ca2+ as a determinant of a host environment for invading bacterial pathogens, (2) the role of Ca2+ in regulating main events of host colonization and bacterial virulence, and (3) the molecular mechanisms of Ca2+ signaling in bacterial pathogens.
Collapse
Affiliation(s)
- Michelle M King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Michael J Franklin
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
19
|
Farnesol contributes to intestinal epithelial barrier function by enhancing tight junctions via the JAK/STAT3 signaling pathway in differentiated Caco-2 cells. J Bioenerg Biomembr 2019; 51:403-412. [PMID: 31845097 DOI: 10.1007/s10863-019-09817-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
Candida albicans causes mucosal diseases and secretes farnesol, a quorum-sensing molecule, which plays a vital role in suppressing the yeast-to-mycelia switch. Farnesol can also regulate immune cell function. However, how farnesol interacts with the intestinal epithelium remains unknown. Herein, we identified that farnesol promotes intestinal barrier function, by promoting transepithelial electrical resistance, reducing paracellular flux, inducing the Zonula Occludens-1 Protein (ZO-1) and occludin expression. Moreover, the JAK/STAT3 signaling pathway was activated after farnesol treatment, and inhibition of STAT3 phosphorylation by stattic remarkably suppressed the expression level of ZO-1. Additionally, chromatin immunoprecipitation assay (Chip) revealed that farnesol facilitated the transcriptional activation of STAT3 to significantly enhance the expression of ZO-1. Taken together, our findings demonstrated that farnesol facilitated intestinal epithelial barrier transcriptional regulation via activating JAK/STAT3 signaling. The involved molecules may be potentially targeted for treatment of Candida albicans invasion.
Collapse
|
20
|
Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxo-dodecanoyl)-l-homoserine lactone triggers mitochondrial dysfunction and apoptosis in neutrophils through calcium signaling. Med Microbiol Immunol 2019; 208:855-868. [DOI: 10.1007/s00430-019-00631-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/27/2019] [Indexed: 01/29/2023]
|
21
|
Yadav VK, Singh PK, Sharma D, Singh SK, Agarwal V. Mechanism underlying N-(3-oxo-dodecanoyl)-L-homoserine lactone mediated intracellular calcium mobilization in human platelets. Blood Cells Mol Dis 2019; 79:102340. [PMID: 31207554 DOI: 10.1016/j.bcmd.2019.102340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/19/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
Abstract
Acyl-homoserine lactones (AHLs), are the key autoinducer molecules that mediate Pseudomonas aeruginosa associated quorum sensing. P. aeruginosa produces two types of AHLs; N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12 HSL) and N-butyryl-L-homoserine lactone (C4 HSL). AHLs are not only regulating the virulence gene of bacteria but also influence the host cell functions by interkingdom signaling. In this study, we explored the mechanism of AHLs induced calcium mobilization in human platelets. We found that 3-oxo-C12 HSL but not C4 HSL induces intracellular calcium release. 3-oxo-C12 HSL induced calcium mobilization was majorly contributed from the dense tubular system (DTS). Furthermore, 3-oxo-C12 HSL also stimulates the store-operated Ca2+ entry (SOCE) in platelet. Intracellular calcium rise was significantly lowered in rotenone, and bafilomycin pre-treated platelets suggesting partial involvement of mitochondria and acidic vacuoles. The significant effect of 3-oxo-C12 HSL on calcium mobilization can alter the platelet functions that might results in thrombotic disorders in individuals infected with P. aeruginosa.
Collapse
Affiliation(s)
- Vivek Kumar Yadav
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Pradeep Kumar Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Deepmala Sharma
- Department of Mathematics, National Institute of Technology, Raipur, India
| | - Sunil Kumar Singh
- Department of Animal Sciences, Central University of Punjab, Bathinda, India.
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
22
|
Tao S, Sun Q, Cai L, Geng Y, Hua C, Ni Y, Zhao R. Caspase-1-dependent mechanism mediating the harmful impacts of the quorum-sensing molecule N-(3-oxo-dodecanoyl)-l-homoserine lactone on the intestinal cells. J Cell Physiol 2018; 234:3621-3633. [PMID: 30471106 DOI: 10.1002/jcp.27132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL), a quorum-sensing (QS) molecule produced by Gram-negative bacteria in the gastrointestinal tract, adversly impacts host cells. Our previous study demonstrated that 3-oxo-C12-HSL induced a decrease in cell viability via cell apoptosis and eventually disrupted mucin synthesis from LS174T goblet cells. However, the molecular mechanism underlying cell apoptosis and whether pyroptosis was involved in this process are still unknown. In this study, we emphasized on the caspases signal pathway and sterile inflammation to reveal the harmful effects of 3-oxo-C12-HSL on LS174T goblet cells. Our data showed that 3-oxo-C12-HSL is a major inducer of oxidative stress indicated by a high level of intracellular reactive oxygen species (ROS). However, TQ416, an inhibitor of paraoxonase 2, can effectively block oxidative stress. A higher ROS level is the trigger for activating the caspase-1 and 3 cascade signal pathways. Blockade of ROS synthesis and caspase-1 and 3 cascades can obviously rescue the viability of LS174T cells after 3-oxo-C12-HSL treatment. We also found that paralleled with a higher level of ROS and caspases activation, an abnormal expression of proinflammatory cytokines was induced by 3-oxo-C12-HSL treatment; however, the blockage of TLRs-NF-κB pathway cannot restore cell viability and secretary function. These data collectively indicate that 3-oxo-C12-HSL exposure induces damages to cell viability and secretary function of LS174T goblet cells, which is mediated by oxidative stress, cell apoptosis, and sterile inflammation. Overall, the data in this study will provide a better understanding of the harmful impacts of some QS molecules on host cells and their underlying mechanism.
Collapse
Affiliation(s)
- Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qinwei Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Turkina MV, Vikström E. Bacteria-Host Crosstalk: Sensing of the Quorum in the Context of Pseudomonas aeruginosa Infections. J Innate Immun 2018; 11:263-279. [PMID: 30428481 DOI: 10.1159/000494069] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
Cell-to-cell signaling via small molecules is an essential process to coordinate behavior in single species within a community, and also across kingdoms. In this review, we discuss the quorum sensing (QS) systems used by the opportunistic pathogen Pseudomonas aeruginosa to sense bacterial population density and fitness, and regulate virulence, biofilm development, metabolite acquisition, and mammalian host defense. We also focus on the role of N-acylhomoserine lactone-dependent QS signaling in the modulation of innate immune responses connected together via calcium signaling, homeostasis, mitochondrial and cytoskeletal dynamics, and governing transcriptional and proteomic responses of host cells. A future perspective emphasizes the need for multidisciplinary efforts to bring current knowledge of QS into a more detailed understanding of the communication between bacteria and host, as well as into strategies to prevent and treat P. aeruginosa infections and reduce the rate of antibiotic resistance.
Collapse
Affiliation(s)
- Maria V Turkina
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,
| |
Collapse
|
24
|
Yadav VK, Singh PK, Kalia M, Sharma D, Singh SK, Agarwal V. Pseudomonas aeruginosa quorum sensing molecule N-3-oxo-dodecanoyl-l-homoserine lactone activates human platelets through intracellular calcium-mediated ROS generation. Int J Med Microbiol 2018; 308:858-864. [DOI: 10.1016/j.ijmm.2018.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/15/2018] [Accepted: 07/29/2018] [Indexed: 01/20/2023] Open
|
25
|
Qu W, Zhao Z, Chen S, Zhang L, Wu D, Chen Z. Bisphenol A suppresses proliferation and induces apoptosis in colonic epithelial cells through mitochondrial and MAPK/AKT pathways. Life Sci 2018; 208:167-174. [DOI: 10.1016/j.lfs.2018.07.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/19/2018] [Indexed: 01/26/2023]
|
26
|
Tao S, Niu L, Cai L, Geng Y, Hua C, Ni Y, Zhao R. N-(3-oxododecanoyl)-l-homoserine lactone modulates mitochondrial function and suppresses proliferation in intestinal goblet cells. Life Sci 2018; 201:81-88. [PMID: 29596921 DOI: 10.1016/j.lfs.2018.03.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/17/2018] [Accepted: 03/25/2018] [Indexed: 02/08/2023]
Abstract
AIMS The quorum-sensing molecule N‑(3‑oxododecanoyl)‑l‑homoserine lactone (C12-HSL), produced by the Gram negative human pathogenic bacterium Pseudomonas aeruginosa, modulates mammalian cell behavior. Our previous findings suggested that C12-HSL rapidly decreases viability and induces apoptosis in LS174T goblet cells. MAIN METHODS In this study, the effects of 100 μM C12-HSL on mitochondrial function and cell proliferation in LS174T cells treated for 4 h were evaluated by real-time PCR, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. KEY FINDINGS The results showed that the activities of mitochondrial respiratory chain complexes IV and V were significantly increased (P < 0.05) in LS174T cells after C12-HSL treatment, with elevated intracellular ATP generation (P < 0.05). Flow cytometry analysis revealed significantly increased intracellular Ca2+ levels (P < 0.05), as well as disrupted mitochondrial activity and cell cycle arrest upon C12-HSL treatment. Apoptosis and cell proliferation related genes showed markedly altered expression levels (P < 0.05) in LS174T cells after C12-HSL treatment. Moreover, the paraoxonase 2 (PON2) inhibitor TQ416 (1 μM) remarkably reversed the above C12-HSL associated effects in LS174T cells. SIGNIFICANCE These findings indicated that C12-HSL alters mitochondrial energy production and function, and inhibits cell proliferation in LS174T cells, with PON2 involvement.
Collapse
Affiliation(s)
- Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liqiong Niu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Golovkine G, Reboud E, Huber P. Pseudomonas aeruginosa Takes a Multi-Target Approach to Achieve Junction Breach. Front Cell Infect Microbiol 2018; 7:532. [PMID: 29379773 PMCID: PMC5770805 DOI: 10.3389/fcimb.2017.00532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which uses a number of strategies to cross epithelial and endothelial barriers at cell–cell junctions. In this review, we describe how the coordinated actions of P. aeruginosa's virulence factors trigger various molecular mechanisms to disarm the junctional gate responsible for tissue integrity.
Collapse
Affiliation(s)
- Guillaume Golovkine
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| | - Emeline Reboud
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| | - Philippe Huber
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
28
|
Everett J, Gabrilska R, Rumbaugh KP, Vikström E. Assessing Pseudomonas aeruginosa Autoinducer Effects on Mammalian Epithelial Cells. Methods Mol Biol 2018; 1673:213-225. [PMID: 29130176 DOI: 10.1007/978-1-4939-7309-5_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The human mucosal environment in the gut is rich with interactions between microbiota and mammalian epithelia. Microbes such as the Gram-negative bacterium Pseudomonas aeruginosa may use quorum sensing to communicate with other microorganisms and mammalian cells to alter gene expression. Here, we present methodologies to evaluate the effects of P. aeruginosa N-(3-oxo-dodecanoyl)-L-homoserine lactone (3O-C12-HSL) on Caco-2 cell monolayers. First, we describe a method for assessing barrier function and permeability of epithelial cells when exposed to 3O-C12-HSL by measuring transepithelial electrical resistance (TER) and paracellular flow using fluorescently labeled dextran. Secondly, we detail methods to investigate the effect of 3O-C12-HSL on protein-protein interactions of epithelial junction proteins. Lastly, we will detail imaging techniques to visualize Caco-2 barrier disruption following exposure to 3O-C12-HSL through the use of confocal laser scanning microscopy (CLSM) and a super resolution technique, stimulated emission depletion (STED) microscopy, to achieve nanoscale visualization of Caco-2 monolayers.
Collapse
Affiliation(s)
- Jake Everett
- Department of Surgery, Texas Tech University Health Sciences Center, MS8312, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Rebecca Gabrilska
- Department of Surgery, Texas Tech University Health Sciences Center, MS8312, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, MS8312, 3601 4th Street, Lubbock, TX, 79430, USA.
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 , Linköping, Sweden
| |
Collapse
|
29
|
Ma JH, Wang JJ, Li J, Pfeffer BA, Zhong Y, Zhang SX. The Role of IRE-XBP1 Pathway in Regulation of Retinal Pigment Epithelium Tight Junctions. Invest Ophthalmol Vis Sci 2017; 57:5244-5252. [PMID: 27701635 PMCID: PMC5054729 DOI: 10.1167/iovs.16-19232] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose The retinal pigment epithelium (RPE) tight junctions play a pivotal role in maintaining the homeostatic environment of the neural retina. Herein, we investigated the role of X-box binding protein 1 (XBP1), an endoplasmic reticulum (ER) stress-responsive transcription factor, in regulation of RPE tight junctions. Methods Human RPE cell line (ARPE-19) and primary primate RPE cells were used for in vitro experiments and RPE-specific XBP1 knockout (KO) mice were used for in vivo study. Endoplasmic reticulum stress was induced by a sublethal dose of thapsigargin or tunicamycin. XBP1 activation was manipulated by IRE inhibitor 4μ8C, which suppresses XBP1 mRNA splicing. The integrity of tight junctions and the involvement of calcium-dependent RhoA/Rho kinase pathway were examined. Results Induction of ER stress by thapsigargin, but not tunicamycin, disrupted RPE tight junctions in ARPE-19 cells. Inhibition of XBP1 activation by 4μ8C resulted in a remarkable downregulation of tight junction proteins (ZO-1 and occludin) and defects in tight junction formation in the presence or absence of ER stress inducers. Overexpression of active XBP1 partially reversed 4μ8C-induced anomalies in tight junctions. Mechanistically, XBP1 inhibition resulted in increased intracellular Ca2+ concentration, upregulation of RhoA expression, redistribution of F-actin, and tight junction damage, which was attenuated by Rho kinase inhibitor Y27632. In vivo, deletion of XBP1 in the RPE resulted in defective RPE tight junctions accompanied by increased VEGF expression. Conclusions Taken together, these results suggest a protective role of XBP1 in maintaining RPE tight junctions possibly through regulation of calcium-dependent RhoA/Rho kinase signaling and actin cytoskeletal reorganization.
Collapse
Affiliation(s)
- Jacey H Ma
- Departments of Ophthalmology and Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, United States 2SUNY Eye Institute, State University of New York, New York, United States 3Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Joshua J Wang
- Departments of Ophthalmology and Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, United States 2SUNY Eye Institute, State University of New York, New York, United States
| | - Junhua Li
- Departments of Ophthalmology and Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, United States 2SUNY Eye Institute, State University of New York, New York, United States
| | - Bruce A Pfeffer
- Departments of Ophthalmology and Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, United States 2SUNY Eye Institute, State University of New York, New York, United States 4Research Service, Veterans Administration Western New York Healthcare System, Buffalo, New York, United States
| | - Yiming Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sarah X Zhang
- Departments of Ophthalmology and Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, United States 2SUNY Eye Institute, State University of New York, New York, United States
| |
Collapse
|
30
|
Bedi B, Maurice NM, Ciavatta VT, Lynn KS, Yuan Z, Molina SA, Joo M, Tyor WR, Goldberg JB, Koval M, Hart CM, Sadikot RT. Peroxisome proliferator-activated receptor-γ agonists attenuate biofilm formation by Pseudomonas aeruginosa. FASEB J 2017; 31:3608-3621. [PMID: 28442545 DOI: 10.1096/fj.201700075r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022]
Abstract
Pseudomonas aeruginosa is a significant contributor to recalcitrant multidrug-resistant infections, especially in immunocompromised and hospitalized patients. The pathogenic profile of P. aeruginosa is related to its ability to secrete a variety of virulence factors and to promote biofilm formation. Quorum sensing (QS) is a mechanism wherein P. aeruginosa secretes small diffusible molecules, specifically acyl homo serine lactones, such as N-(3-oxo-dodecanoyl)-l-homoserine lactone (3O-C12-HSL), that promote biofilm formation and virulence via interbacterial communication. Strategies that strengthen the host's ability to inhibit bacterial virulence would enhance host defenses and improve the treatment of resistant infections. We have recently shown that peroxisome proliferator-activated receptor γ (PPARγ) agonists are potent immunostimulators that play a pivotal role in host response to virulent P. aeruginosa Here, we show that QS genes in P. aeruginosa (strain PAO1) and 3O-C12-HSL attenuate PPARγ expression in bronchial epithelial cells. PAO1 and 3O-C12-HSL induce barrier derangements in bronchial epithelial cells by lowering the expression of junctional proteins, such as zonula occludens-1, occludin, and claudin-4. Expression of these proteins was restored in cells that were treated with pioglitazone, a PPARγ agonist, before infection with PAO1 and 3O-C12-HSL. Barrier function and bacterial permeation studies that have been performed in primary human epithelial cells showed that PPARγ agonists are able to restore barrier integrity and function that are disrupted by PAO1 and 3O-C12-HSL. Mechanistically, we show that these effects are dependent on the induction of paraoxonase-2, a QS hydrolyzing enzyme, that mitigates the effects of QS molecules. Importantly, our data show that pioglitazone, a PPARγ agonist, significantly inhibits biofilm formation on epithelial cells by a mechanism that is mediated via paraoxonase-2. These findings elucidate a novel role for PPARγ in host defense against P. aeruginosa Strategies that activate PPARγ can provide a therapeutic complement for treatment of resistant P. aeruginosa infections.-Bedi, B., Maurice, N. M., Ciavatta, V. T., Lynn, K. S., Yuan, Z., Molina, S. A., Joo, M., Tyor, W. R., Goldberg, J. B., Koval, M., Hart, C. M., Sadikot, R. T. Peroxisome proliferator-activated receptor-γ agonists attenuate biofilm formation by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Brahmchetna Bedi
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA.,Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - Nicholas M Maurice
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA.,Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - Vincent T Ciavatta
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA.,Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | - K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - Zhihong Yuan
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA.,Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - Samuel A Molina
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, Georgia, USA.,Emory + Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University, Atlanta, Georgia, USA
| | - Myungsoo Joo
- Department of Immunology, Pusan University, Yangsan, South Korea
| | - William R Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA.,Department of Neurology, Emory University, Atlanta, Georgia, USA
| | | | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, Georgia, USA.,Emory + Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University, Atlanta, Georgia, USA.,Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - C Michael Hart
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA.,Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - Ruxana T Sadikot
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA; .,Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
31
|
Tao S, Luo Y, Bin He, Liu J, Qian X, Ni Y, Zhao R. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Sci Rep 2016; 6:28778. [PMID: 27364593 PMCID: PMC4929476 DOI: 10.1038/srep28778] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
A mucus layer coats the gastrointestinal tract and serves as the first line of intestinal defense against infection. N-acyl-homoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence the homeostasis of intestinal epithelium. In this study, we investigated the effects of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on cell viability and mucus secretion in LS174T cells. C12-HSL but not C4-HSL significantly decreased cell viability by inducing mitochondrial dysfunction and activating cell apoptosis which led to a decrease in mucin expression. Pretreatment with lipid raft disruptor (Methyl-β-cyclodextrin, MβCD) and oxidative stress inhibitor (N-acetyl-L-cysteine, NAC) slightly rescued the viability of cells damaged by C12-HSL exposure, while the paraoxonase 2 (PON2) inhibitor (Triazolo[4,3-a]quinolone, TQ416) significantly affected recovering cells viability and mucin secretion. When LS174T cells were treated with C12-HSL and TQ416 simultaneously, TQ416 showed the maximal positive effect on cells viability. However, if cells were first treated with C12-HSL for 40 mins, and then TQ46 was added, the TQ416 had no effect on cell viability. These results suggest that the C12-HSL-acid process acts at an early step to activate apoptosis as part of C12-HSL’s effect on intestinal mucus barrier function.
Collapse
Affiliation(s)
- Shiyu Tao
- Key Laboratory of Animal Physiology &Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanwen Luo
- Key Laboratory of Animal Physiology &Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Bin He
- Key Laboratory of Animal Physiology &Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Liu
- Key Laboratory of Animal Physiology &Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xi Qian
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05452, USA
| | - Yingdong Ni
- Key Laboratory of Animal Physiology &Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology &Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Schikora A, Schenk ST, Hartmann A. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. PLANT MOLECULAR BIOLOGY 2016; 90:605-12. [PMID: 26898296 DOI: 10.1007/s11103-016-0457-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/18/2016] [Indexed: 05/08/2023]
Abstract
Bacterial quorum sensing (QS) mechanisms play a crucial role in the proper performance and ecological fitness of bacterial populations. Many key physiological processes are regulated in a QS-dependent manner by auto-inducers, like the N-acyl homoserine lactones (AHLs) in numerous Gram-negative bacteria. In addition, also the interaction between bacteria and eukaryotic hosts can be regulated by AHLs. Those mechanisms gained much attention, because of the positive effects of different AHL molecules on plants. This positive impact ranges from growth promotion to induced resistance and is quite contrasting to the rather negative effects observed in the interactions between bacterial AHL molecules and animals. Only very recently, we began to understand the molecular mechanisms underpinning plant responses to AHL molecules. In this review, we gathered the latest information in this research field. The first part gives an overview of the bacterial aspects of quorum sensing. Later we focus on the impact of AHLs on plant growth and AHL-priming, as one of the most understood phenomena in respect to the inter-kingdom interactions based on AHL-quorum sensing molecules. Finally, we discuss the potential benefits of the understanding of bacteria-plant interaction for the future agricultural applications.
Collapse
Affiliation(s)
- Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Brunswick, Germany.
| | - Sebastian T Schenk
- Institute of Plant Sciences - Paris-Saclay, INRA/CNRS, 630 rue de Noetzlin, Plateau du Moulon, 91405, Orsay, France
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions, Department for Environmental Sciences, German Research Center for Environmental Health (GmbH), Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
33
|
Holm A, Magnusson KE, Vikström E. Pseudomonas aeruginosa N-3-oxo-dodecanoyl-homoserine Lactone Elicits Changes in Cell Volume, Morphology, and AQP9 Characteristics in Macrophages. Front Cell Infect Microbiol 2016; 6:32. [PMID: 27047801 PMCID: PMC4805602 DOI: 10.3389/fcimb.2016.00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/07/2016] [Indexed: 12/21/2022] Open
Abstract
Quorum sensing (QS) communication allows Pseudomonas aeruginosa to collectively control its population density and the production of biofilms and virulence factors. QS signal molecules, like N-3-oxo-dodecanoyl-L-homoserine lactone (3O-C12-HSL), can also affect the behavior of host cells, e.g., by modulating the chemotaxis, migration, and phagocytosis of human leukocytes. Moreover, host water homeostasis and water channels aquaporins (AQP) are critical for cell morphology and functions as AQP interact indirectly with the cell cytoskeleton and signaling cascades. Here, we investigated how P. aeruginosa 3O-C12-HSL affects cell morphology, area, volume and AQP9 expression and distribution in human primary macrophages, using quantitative PCR, immunoblotting, two- and three-dimensional live imaging, confocal and nanoscale imaging. Thus, 3O-C12-HSL enhanced cell volume and area and induced cell shape and protrusion fluctuations in macrophages, processes tentatively driven by fluxes of water across cell membrane through AQP9, the predominant AQP in macrophages. Moreover, 3O-C12-HSL upregulated the expression of AQP9 at both the protein and mRNA levels. This was accompanied with enhanced whole cell AQP9 fluorescent intensity and redistribution of AQP9 to the leading and trailing regions, in parallel with increased cell area in the macrophages. Finally, nanoscopy imaging provided details on AQP9 dynamics and architecture within the lamellipodial area of 3O-C12-HSL-stimulated cells. We suggest that these novel events in the interaction between P. aeruginosa and macrophage may have an impact on the effectiveness of innate immune cells to fight bacteria, and thereby resolve the early stages of infections and inflammations.
Collapse
Affiliation(s)
- Angelika Holm
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Karl-Eric Magnusson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| |
Collapse
|
34
|
Liu YC, Chan KG, Chang CY. Modulation of Host Biology by Pseudomonas aeruginosa Quorum Sensing Signal Molecules: Messengers or Traitors. Front Microbiol 2015; 6:1226. [PMID: 26617576 PMCID: PMC4637427 DOI: 10.3389/fmicb.2015.01226] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
Bacterial cells sense their population density and respond accordingly by producing various signal molecules to the surrounding environments thereby trigger a plethora of gene expression. This regulatory pathway is termed quorum sensing (QS). Plenty of bacterial virulence factors are controlled by QS or QS-mediated regulatory systems and QS signal molecules (QSSMs) play crucial roles in bacterial signaling transduction. Moreover, bacterial QSSMs were shown to interfere with host cell signaling and modulate host immune responses. QSSMs not only regulate the expression of bacterial virulence factors but themselves act in the modulation of host biology that can be potential therapeutic targets.
Collapse
Affiliation(s)
- Yi-Chia Liu
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee Dundee, UK
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Chien-Yi Chang
- Centre for Bacterial Cell Biology, Medical School, Newcastle University Newcastle upon Tyne, UK ; Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing Science, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Losa D, Köhler T, Bacchetta M, Saab JB, Frieden M, van Delden C, Chanson M. Airway Epithelial Cell Integrity Protects from Cytotoxicity of Pseudomonas aeruginosa Quorum-Sensing Signals. Am J Respir Cell Mol Biol 2015; 53:265-75. [PMID: 25562674 DOI: 10.1165/rcmb.2014-0405oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell communication via gap junctions regulates airway epithelial cell homeostasis and maintains the epithelium host defense. Quorum-sensing molecules produced by Pseudomonas aeruginosa coordinate the expression of virulence factors by this respiratory pathogen. These bacterial signals may also incidentally modulate mammalian airway epithelial cell responses to the pathogen, a process called interkingdom signaling. We investigated the interactions between the P. aeruginosa N-3-oxo-dodecanoyl-L-homoserine lactone (C12) quorum-sensing molecule and human airway epithelial cell gap junctional intercellular communication (GJIC). C12 degradation and its effects on cells were monitored in various airway epithelial cell models grown under nonpolarized and polarized conditions. Its concentration was further monitored in daily tracheal aspirates of colonized intubated patients. C12 rapidly altered epithelial integrity and decreased GJIC in nonpolarized airway epithelial cells, whereas other quorum-sensing molecules had no effect. The effects of C12 were dependent on [Ca(2+)]i and could be prevented by inhibitors of Src tyrosine family and Rho-associated protein kinases. In contrast, polarized airway cells grown on Transwell filters were protected from C12 except when undergoing repair after wounding. In vivo during colonization of intubated patients, C12 did not accumulate, but it paralleled bacterial densities. In vitro C12 degradation, a reaction catalyzed by intracellular paraoxonase 2 (PON2), was impaired in nonpolarized cells, whereas PON2 expression was increased during epithelial polarization. The cytotoxicity of C12 on nonpolarized epithelial cells, combined with its impaired degradation allowing its accumulation, provides an additional pathogenic mechanism for P. aeruginosa infections.
Collapse
Affiliation(s)
| | - Thilo Köhler
- 2 Service of Infectious Diseases and Department of Microbiology and Molecular Genetics, and
| | - Marc Bacchetta
- 1 Laboratory of Clinical Investigation III.,3 Department of Cell Physiology and Metabolism, Geneva University Hospitals and Medical School of the University of Geneva, Geneva, Switzerland
| | - Joanna Bou Saab
- 1 Laboratory of Clinical Investigation III.,3 Department of Cell Physiology and Metabolism, Geneva University Hospitals and Medical School of the University of Geneva, Geneva, Switzerland
| | - Maud Frieden
- 3 Department of Cell Physiology and Metabolism, Geneva University Hospitals and Medical School of the University of Geneva, Geneva, Switzerland
| | - Christian van Delden
- 2 Service of Infectious Diseases and Department of Microbiology and Molecular Genetics, and
| | - Marc Chanson
- 1 Laboratory of Clinical Investigation III.,3 Department of Cell Physiology and Metabolism, Geneva University Hospitals and Medical School of the University of Geneva, Geneva, Switzerland
| |
Collapse
|
36
|
Kamath KS, Kumar SS, Kaur J, Venkatakrishnan V, Paulsen IT, Nevalainen H, Molloy MP. Proteomics of hosts and pathogens in cystic fibrosis. Proteomics Clin Appl 2015; 9:134-46. [DOI: 10.1002/prca.201400122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/27/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sheemal Shanista Kumar
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Jashanpreet Kaur
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | | | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Helena Nevalainen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Mark P. Molloy
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
- Australian Proteome Analysis Facility; Macquarie University; Sydney Australia
| |
Collapse
|
37
|
Karshovska E, Zhao Z, Blanchet X, Schmitt MMN, Bidzhekov K, Soehnlein O, von Hundelshausen P, Mattheij NJ, Cosemans JMEM, Megens RTA, Koeppel TA, Schober A, Hackeng TM, Weber C, Koenen RR. Hyperreactivity of junctional adhesion molecule A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice. Circ Res 2014; 116:587-99. [PMID: 25472975 DOI: 10.1161/circresaha.116.304035] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE Besides their essential role in hemostasis, platelets also have functions in inflammation. In platelets, junctional adhesion molecule (JAM)-A was previously identified as an inhibitor of integrin αIIbβ3-mediated outside-in signaling and its genetic knockdown resulted in hyperreactivity. OBJECTIVE This gain-of-function was specifically exploited to investigate the role of platelet hyperreactivity in plaque development. METHODS AND RESULTS JAM-A-deficient platelets showed increased aggregation and cellular and sarcoma tyrosine-protein kinase activation. On αIIbβ3 ligation, JAM-A was shown to be dephosphorylated, which could be prevented by protein tyrosine phosphatase nonreceptor type 1 inhibition. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe(-/-)) background were fed a high-fat diet. After ≤12 weeks of diet, trJAM-A(-/-)apoe-/- mice showed increased aortic plaque formation when compared with trJAM-A(+/+) apoe(-/-) controls, and these differences were most evident at early time points. At 2 weeks, the plaques of the trJAM-A(-/-) apoe(-/-) animals revealed increased macrophage, T cell, and smooth muscle cell content. Interestingly, plasma levels of chemokines CC chemokine ligand 5 and CXC-chemokine ligand 4 were increased in the trJAM-A(-/-) apoe(-/-)mice, and JAM-A-deficient platelets showed increased binding to monocytes and neutrophils. Whole-blood perfusion experiments and intravital microscopy revealed increased recruitment of platelets and monocytes to the inflamed endothelium in blood of trJAM-A(-/-) apoe(-/-)mice. Notably, these proinflammatory effects of JAM-A-deficient platelets could be abolished by the inhibition of αIIbβ3 signaling in vitro. CONCLUSIONS Deletion of JAM-A causes a gain-of-function in platelets, with lower activation thresholds and increased inflammatory activities. This leads to an increase of plaque formation, particularly in early stages of the disease.
Collapse
Affiliation(s)
- Ela Karshovska
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Zhen Zhao
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Xavier Blanchet
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Martin M N Schmitt
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Kiril Bidzhekov
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Philipp von Hundelshausen
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Nadine J Mattheij
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Judith M E M Cosemans
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Remco T A Megens
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Thomas A Koeppel
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Andreas Schober
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Tilman M Hackeng
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Rory R Koenen
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.).
| |
Collapse
|
38
|
Eum SY, Jaraki D, Bertrand L, András IE, Toborek M. Disruption of epithelial barrier by quorum-sensing N-3-(oxododecanoyl)-homoserine lactone is mediated by matrix metalloproteinases. Am J Physiol Gastrointest Liver Physiol 2014; 306:G992-G1001. [PMID: 24742991 PMCID: PMC4042118 DOI: 10.1152/ajpgi.00016.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal epithelium forms a selective barrier maintained by tight junctions (TJs) and separating the luminal environment from the submucosal tissues. N-acylhomoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence homeostasis of the host intestinal epithelium. In the present study, we evaluated the regulatory mechanisms affecting the impact of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on barrier function of human intestinal epithelial Caco-2 cells. Treatment with C12-HSL, but not with C4-HSL, perturbed Caco-2 barrier function; the effect was associated with decreased levels of the TJ proteins occludin and tricellulin and their delocalization from the TJs. C12-HSL also induced matrix metalloprotease (MMP)-2 and MMP-3 activation via lipid raft- and protease-activated receptor (PAR)-dependent signaling. Pretreatment with lipid raft disruptors, PAR antagonists, or MMP inhibitors restored the C12-HSL-induced loss of the TJ proteins and increased permeability of Caco-2 cell monolayers. These results indicate that PAR/lipid raft-dependent MMP-2 and -3 activation followed by degradation of occludin and tricellulin are involved in C12-HSL-induced alterations of epithelial paracellular barrier functions.
Collapse
Affiliation(s)
- Sung Yong Eum
- 1Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Dima Jaraki
- 1Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Luc Bertrand
- 1Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Ibolya E. András
- 1Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida; and Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
39
|
Schwarzer C, Ravishankar B, Patanwala M, Shuai S, Fu Z, Illek B, Fischer H, Machen TE. Thapsigargin blocks Pseudomonas aeruginosa homoserine lactone-induced apoptosis in airway epithelia. Am J Physiol Cell Physiol 2014; 306:C844-55. [PMID: 24598360 DOI: 10.1152/ajpcell.00002.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa secretes N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule to regulate gene expression. Micromolar concentrations are found in the airway surface liquid of infected lungs. Exposure of the airway surface to C12 caused a loss of transepithelial resistance within 1 h that was accompanied by disassembly of tight junctions, as indicated by relocation of the tight junction protein zonula occludens 1 from the apical to the basolateral pole and into the cytosol of polarized human airway epithelial cell cultures (Calu-3 and primary tracheal epithelial cells). These effects were blocked by carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone, a pan-caspase blocker, indicating that tight junction disassembly was an early event in C12-triggered apoptosis. Short-duration (10 min) pretreatment of airway epithelial (Calu-3 and JME) cells with 1 μM thapsigargin (Tg), an inhibitor of Ca(2+) uptake into the endoplasmic reticulum (ER), was found to be protective against the C12-induced airway epithelial barrier breakdown and also against other apoptosis-related effects, including shrinkage and fragmentation of nuclei, activation of caspase 3/7 (the executioner caspase in apoptosis), release of ER-targeted redox-sensitive green fluorescent protein into the cytosol, and depolarization of mitochondrial membrane potential. Pretreatment of Calu-3 airway cell monolayers with BAPTA-AM [to buffer cytosolic Ca(2+) concentration (Cacyto)] or Ca(2+)-free solution + BAPTA-AM reduced C12 activation of apoptotic events, suggesting that C12-triggered apoptosis may involve Ca(2+). Because C12 and Tg reduced Ca(2+) concentration in the ER and increased Cacyto, while Tg increased mitochondrial Ca(2+) concentration (Camito) and C12 reduced Camito, it is proposed that Tg may reduce C12-induced apoptosis in host cells not by raising Cacyto, but by preventing C12-induced decreases in Camito.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Joe GH, Andoh M, Nomura M, Iwaya H, Lee JS, Shimizu H, Tsuji Y, Maseda H, Miyazaki H, Hara H, Ishizuka S. Acyl-homoserine lactones suppresses IEC-6 cell proliferation and increase permeability of isolated rat colon. Biosci Biotechnol Biochem 2014; 78:462-5. [DOI: 10.1080/09168451.2014.882748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
We investigated to determine whether a variety of acyl-homoserine lactones (AHLs) influences epithelial cell proliferation and mucosal permeability. 3-Oxo-C12-homoserine lactone (HSL) and 3-oxo-C14-HSL significantly suppressed IEC-6 cell proliferation. A significant increase in mucosal permeability was observed in isolated rat colon tissue exposed to C12-HSL, 3-oxo-C12-HSL, and 3-oxo-C14-HSL. These data indicate that AHLs suppress epithelial proliferation and disrupt barrier function in intestinal mucosa.
Collapse
Affiliation(s)
- Ga-Hyun Joe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Midori Andoh
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mikako Nomura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hitoshi Iwaya
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jae-Sung Lee
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Department of Animal Bioscience and Technology, Konkuk University, Seoul, South Korea
| | - Hidehisa Shimizu
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Youhei Tsuji
- Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hideaki Maseda
- Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hitoshi Miyazaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hiroshi Hara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Satoshi Ishizuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
41
|
Schwarzer C, Fu Z, Shuai S, Babbar S, Zhao G, Li C, Machen TE. Pseudomonas aeruginosa homoserine lactone triggers apoptosis and Bak/Bax-independent release of mitochondrial cytochrome C in fibroblasts. Cell Microbiol 2014; 16:1094-104. [PMID: 24438098 DOI: 10.1111/cmi.12263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/16/2013] [Accepted: 01/09/2014] [Indexed: 12/30/2022]
Abstract
Pseudomonas aeruginosa use N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule to regulate gene expression in the bacteria. It is expected that in patients with chronic infections with P. aeruginosa, especially as biofilms, local [C12] will be high and, since C12 is lipid soluble, diffuse from the airways into the epithelium and underlying fibroblasts, capillary endothelia and white blood cells. Previous work showed that C12 has multiple effects in human host cells, including activation of apoptosis. The present work tested the involvement of Bak and Bax in C12-triggered apoptosis in mouse embryo fibroblasts (MEF) by comparing MEF isolated from embryos of wild-type (WT) and Bax(-/-) /Bak(-/-) (DKO) mice. In WT MEF C12 rapidly triggered (minutes to 2 h): activation of caspases 3/7 and 8, depolarization of mitochondrial membrane potential (Δψmito ), release of cytochrome C from mitochondria into the cytosol, blebbing of plasma membranes, shrinkage/condensation of cells and nuclei and, subsequently, cell killing. A DKO MEF line that was relatively unaffected by the Bak/Bax-dependent proapoptotic stimulants staurosporine and etoposide responded to C12 similarly to WT MEF: activation of caspase 3/7, depolarization of Δψmito and release of cytochrome C and cell death. Re-expression of Bax or Bak in DKO MEF did not alter the WT-like responses to C12 in DKO MEF. These data showed that C12 triggers novel, rapid proapoptotic Bak/Bax-independent responses that include events commonly associated with activation of both the intrinsic pathway (depolarization of Δψmito and release of cytochrome C from mitochondria into the cytosol) and the extrinsic pathway (activation of caspase 8). Unlike the proapoptotic agonists staurosporine and etoposide that release cytochrome C from mitochondria, C12's effects do not require participation of either Bak or Bax.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720-3200, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Holm A, Vikström E. Quorum sensing communication between bacteria and human cells: signals, targets, and functions. FRONTIERS IN PLANT SCIENCE 2014; 5:309. [PMID: 25018766 PMCID: PMC4071818 DOI: 10.3389/fpls.2014.00309] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/10/2014] [Indexed: 05/10/2023]
Abstract
Both direct and long-range interactions between pathogenic Pseudomonas aeruginosa bacteria and their eukaryotic hosts are important in the outcome of infections. For cell-to-cell communication, these bacteria employ the quorum sensing (QS) system to pass on information of the density of the bacterial population and collectively switch on virulence factor production, biofilm formation, and resistance development. Thus, QS allows bacteria to behave as a community to perform tasks which would be impossible for individual cells, e.g., to overcome defense and immune systems and establish infections in higher organisms. This review highlights these aspects of QS and our own recent research on how P. aeruginosa communicates with human cells using the small QS signal molecules N-acyl homoserine lactones (AHL). We focus on how this conversation changes the behavior and function of neutrophils, macrophages, and epithelial cells and on how the signaling machinery in human cells responsible for the recognition of AHL. Understanding the bacteria-host relationships at both cellular and molecular levels is essential for the identification of new targets and for the development of novel strategies to fight bacterial infections in the future.
Collapse
Affiliation(s)
| | - Elena Vikström
- *Correspondence: Elena Vikström, Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping SE-58185, Sweden e-mail:
| |
Collapse
|
43
|
Junctional adhesion molecule-A suppresses platelet integrin αIIbβ3 signaling by recruiting Csk to the integrin-c-Src complex. Blood 2013; 123:1393-402. [PMID: 24300854 DOI: 10.1182/blood-2013-04-496232] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fibrinogen binding to activated integrin induces outside-in signaling that results in stable platelet aggregates and clot retraction. How integrin αIIbβ3 is discouraged from spontaneous activation is not known. We have recently shown that junctional adhesion molecule-A (JAM-A) renders protection from thrombosis by suppressing integrin outside-in signaling. In this study, we show that JAM-A associates with integrin αIIbβ3 in resting platelets and dissociates upon platelet activation by agonists. We also show that integrin-associated JAM-A is tyrosine phosphorylated and is rapidly dephosphorylated upon platelet activation. C-terminal Src kinase (Csk) binds to tyrosine phosphorylated JAM-A through its Src homology 2 domain. Thus, JAM-A recruits Csk to the integrin-c-Src complex in resting platelets. Csk, in turn, keeps integrin-associated c-Src in an inactive state by phosphorylating Y(529) in its regulatory domain. Absence of JAM-A results in impaired c-SrcY(529) phosphorylation and augmentation of outside-in signaling-dependent c-Src activation. Our results strongly suggest that tyrosine-phosphorylated JAM-A is a Csk-binding protein and functions as an endogenous inhibitor of integrin signaling. JAM-A recruits Csk to the integrin-c-Src complex, where Csk negatively regulates c-Src activation, thereby suppressing the initiation of outside-in signaling. Upon agonist stimulation, JAM-A is dephosphorylated on the tyrosine, allowing the dissociation of Csk from the integrin complex, and thus facilitating outside-in signaling.
Collapse
|
44
|
Karlsson T, Turkina MV, Yakymenko O, Magnusson KE, Vikström E. The Pseudomonas aeruginosa N-acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate epithelial cell migration. PLoS Pathog 2012; 8:e1002953. [PMID: 23071436 PMCID: PMC3469656 DOI: 10.1371/journal.ppat.1002953] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 08/23/2012] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL) as QS signals, which coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human cell behavior. Little is known about the mechanisms of the action of AHL on their eukaryotic targets. Here, we found that N-3-oxo-dodecanoyl-L-homoserine lactone 3O-C12-HSL modulates human intestinal epithelial Caco-2 cell migration in a dose- and time-dependent manner. Using new 3O-C12-HSL biotin and fluorescently-tagged probes for LC-MS/MS and confocal imaging, respectively, we demonstrated for the first time that 3O-C12-HSL interacts and co-localizes with the IQ-motif-containing GTPase-activating protein IQGAP1 in Caco-2 cells. The interaction between IQGAP1 and 3O-C12-HSL was further confirmed by pull-down assay using a GST-tagged protein with subsequent Western blot of IQGAP1 and by identifying 3O-C12-HSL with a sensor bioassay. Moreover, 3O-C12-HSL induced changes in the phosphorylation status of Rac1 and Cdc42 and the localization of IQGAP1 as evidenced by confocal and STED microscopy and Western blots. Our findings suggest that the IQGAP1 is a novel partner for P.aeruginosa 3O-C12-HSL and likely the integrator of Rac1 and Cdc42- dependent altered cell migration. We propose that the targeting of IQGAP1 by 3O-C12-HSL can trigger essential changes in the cytoskeleton network and be an essential component in bacterial – human cell communication. The human pathogen Pseudomonas aeruginosa and other bacteria communicate with each other using quorum sensing (QS). This is important for their growth, virulence, motility and the formation of biofilms. Furthermore, eukaryotic cells “listen and respond” to QS signaling, but the exact mechanisms and receptors on mammalian cells have not been identified. We have previously shown that N-acylhomoserine lactones (AHL) alter epithelial barrier functions and increase chemotaxis in human neutrophils. We show here that 3O-C12-HSL modulates the migration of epithelial cells in a dose- and time-dependent manner. Using newly designed and validated biotin- and fluorescein-based 3O-C12-HSL probes we identified the IQ-motif-containing GTPase-activating protein IQGAP1 as a human target of 3O-C12-HSL. We propose that the interaction between IQGAP1 and 3O-C12-HSL provides a novel mechanism for its mode of action on eukaryotic cells, and by affecting the distribution of IQGAP1 and phosphorylation of Rac1 and Cdc42, upstream effectors of filamentous actin remodeling, also cell migration. We suggest that recognition of IQGAP1 by 3O-C12-HSL is a very early event in the communication between bacteria and human epithelial cells.
Collapse
Affiliation(s)
- Thommie Karlsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Maria V. Turkina
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Olena Yakymenko
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Karl-Eric Magnusson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Elena Vikström
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
45
|
Schwarzer C, Fu Z, Patanwala M, Hum L, Lopez-Guzman M, Illek B, Kong W, Lynch SV, Machen TE. Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia. Cell Microbiol 2012; 14:698-709. [PMID: 22233488 DOI: 10.1111/j.1462-5822.2012.01753.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa (PA) forms biofilms in lungs of cystic fibrosis (CF) patients, a process regulated by quorum-sensing molecules including N-(3-oxododecanoyl)-l-homoserine lactone (C12). C12 (10-100 µM) rapidly triggered events commonly associated with the intrinsic apoptotic pathway in JME (CF ΔF508CFTR, nasal surface) epithelial cells: depolarization of mitochondrial (mito) membrane potential (Δψ(mito)) and release of cytochrome C (cytoC) from mitos into cytosol and activation of caspases 3/7, 8 and 9. C12 also had novel effects on the endoplasmic reticulum (release of both Ca(2+) and ER-targeted GFP and oxidized contents into the cytosol). Effects began within 5 min and were complete in 1-2 h. C12 caused similar activation of caspases and release of cytoC from mitos in Calu-3 (wtCFTR, bronchial gland) cells, showing that C12-triggered responses occurred similarly in different airway epithelial types. C12 had nearly identical effects on three key aspects of the apoptosis response (caspase 3/7, depolarization of Δψ(mito) and reduction of redox potential in the ER) in JME and CFTR-corrected JME cells (adenoviral expression), showing that CFTR was likely not an important regulator of C12-triggered apoptosis in airway epithelia. Exposure of airway cultures to biofilms from PAO1wt caused depolarization of Δψ(mito) and increases in Ca(cyto) like 10-50 µM C12. In contrast, biofilms from PAO1ΔlasI (C12 deficient) had no effect, suggesting that C12 from P. aeruginosa biofilms may contribute to accumulation of apoptotic cells that cannot be cleared from CF lungs. A model to explain the effects of C12 is proposed.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Callaghan M, McClean S. Bacterial host interactions in cystic fibrosis. Curr Opin Microbiol 2012; 15:71-7. [DOI: 10.1016/j.mib.2011.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 01/01/2023]
|
47
|
Exploitation of host signaling pathways by microbial quorum sensing signals. Curr Opin Microbiol 2011; 15:162-8. [PMID: 22204809 DOI: 10.1016/j.mib.2011.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/28/2011] [Accepted: 12/02/2011] [Indexed: 02/07/2023]
Abstract
Environmental and commensal microbes that live within, on and around us have an enormous impact on human health. Recent progress in studies of prokaryotic interplay as well as host-bacteria interactions suggests that secreted microbial products, including quorum sensing signals (QSS), are important mediators of these intrakingdom and interkingdom relations. Reports have assigned QSS diverse and sometimes seemingly contradictory effects on mammalian cell physiology ranging from either blunting of the immune response or exerting pro-inflammatory activities to inducing cellular stress pathways and ultimately apoptosis. Thus, it is still unclear whether microbes utilize QSS to establish and maintain infections via modulation of host signaling pathways or if the eukaryotic host uses the conserved microbial QSS structures as molecular danger beacons to detect and fight infections. Along the same lines exactly how and under what circumstances QSS are detected by host cells remains a mystery, especially considering the distinct chemical properties of the QSS classes with some being small enough to passively diffuse across membranes while others most likely require extracellular recognition mechanisms.
Collapse
|
48
|
Karlsson T, Musse F, Magnusson KE, Vikström E. N-Acylhomoserine lactones are potent neutrophil chemoattractants that act via calcium mobilization and actin remodeling. J Leukoc Biol 2011; 91:15-26. [PMID: 21807742 DOI: 10.1189/jlb.0111034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In gram-negative bacteria, cell-cell communication based on HSL QS molecules is known to coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human immune cell behavior. Using a Transwell migration assay, we found that human primary neutrophils are strongly stimulated by 3O-C(12)-HSL and -C(10)-HSL but not C(4)-HSL in a concentration-dependent manner. Moreover, 3O-C(12)-HSL and -C(10)-HSL activate PLCγ1 but not -γ2, mobilize intracellular calcium, and up-regulate IP(3)R. These changes were paralleled by F-actin accumulation, primarily in the leading edge of neutrophils, as evidenced by phalloidin staining and confocal microscopy. F- and G-actin isolation and quantification by immunoblotting revealed that the F/G-actin ratio was increased significantly after treatment with all three HSLs. Furthemore, 3O-C(12)-HSL- and 3O-C(10)-HSL treatment resulted in phosphorylation of Rac1 and Cdc42. In contrast, C(4)-HSL had negligible influence on the phosphorylation status of PLC and Rac1/Cdc42 and failed to attract neutrophils and induce calcium release. The calcium inhibitor thapsigargin, which blocks ER calcium uptake, strongly prevented neutrophil migration toward 3O-C(12)-HSL and -C(10)-HSL. These findings show that the bacterial QS molecules 3O-C(12)-HSL and -C(10)-HSL may attract human neutrophils to the sites of bacterial infection and developing biofilms. Indeed, recognition of HSL QS signals by neutrophils may play a critical role in their recruitment during infections.
Collapse
Affiliation(s)
- Thommie Karlsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
49
|
Samak G, Narayanan D, Jaggar JH, Rao R. CaV1.3 channels and intracellular calcium mediate osmotic stress-induced N-terminal c-Jun kinase activation and disruption of tight junctions in Caco-2 CELL MONOLAYERS. J Biol Chem 2011; 286:30232-43. [PMID: 21737448 DOI: 10.1074/jbc.m111.240358] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the role of a Ca(2+) channel and intracellular calcium concentration ([Ca(2+)](i)) in osmotic stress-induced JNK activation and tight junction disruption in Caco-2 cell monolayers. Osmotic stress-induced tight junction disruption was attenuated by 1,2-bis(2-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-mediated intracellular Ca(2+) depletion. Depletion of extracellular Ca(2+) at the apical surface, but not basolateral surface, also prevented tight junction disruption. Similarly, thapsigargin-mediated endoplasmic reticulum (ER) Ca(2+) depletion attenuated tight junction disruption. Thapsigargin or extracellular Ca(2+) depletion partially reduced osmotic stress-induced rise in [Ca(2+)](i), whereas thapsigargin and extracellular Ca(2+) depletion together resulted in almost complete loss of rise in [Ca(2+)](i). L-type Ca(2+) channel blockers (isradipine and diltiazem) or knockdown of the Ca(V)1.3 channel abrogated [Ca(2+)](i) rise and disruption of tight junction. Osmotic stress-induced JNK2 activation was abolished by BAPTA and isradipine, and partially reduced by extracellular Ca(2+) depletion, thapsigargin, or Ca(V)1.3 knockdown. Osmotic stress rapidly induced c-Src activation, which was significantly attenuated by BAPTA, isradipine, or extracellular Ca(2+) depletion. Tight junction disruption by osmotic stress was blocked by tyrosine kinase inhibitors (genistein and PP2) or siRNA-mediated knockdown of c-Src. Osmotic stress induced a robust increase in tyrosine phosphorylation of occludin, which was attenuated by BAPTA, SP600125 (JNK inhibitor), or PP2. These results demonstrate that Ca(V)1.3 and rise in [Ca(2+)](i) play a role in the mechanism of osmotic stress-induced tight junction disruption in an intestinal epithelial monolayer. [Ca(2+)](i) mediate osmotic stress-induced JNK activation and subsequent c-Src activation and tyrosine phosphorylation of tight junction proteins. Additionally, inositol 1,4,5-trisphosphate receptor-mediated release of ER Ca(2+) also contributes to osmotic stress-induced tight junction disruption.
Collapse
Affiliation(s)
- Geetha Samak
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
50
|
Mayer ML, Sheridan JA, Blohmke CJ, Turvey SE, Hancock REW. The Pseudomonas aeruginosa autoinducer 3O-C12 homoserine lactone provokes hyperinflammatory responses from cystic fibrosis airway epithelial cells. PLoS One 2011; 6:e16246. [PMID: 21305014 PMCID: PMC3031552 DOI: 10.1371/journal.pone.0016246] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/07/2010] [Indexed: 12/02/2022] Open
Abstract
The discovery of novel antiinflammatory targets to treat inflammation in the cystic fibrosis (CF) lung stands to benefit patient populations suffering with this disease. The Pseudomonas aeruginosa quorum sensing autoinducer N-3-oxododecanoyl homoserine lactone (3O-C12) is an important bacterial virulence factor that has been reported to induce proinflammatory cytokine production from a variety of cell types. The goal of this study was to examine the ability of 3O-C12 to induce proinflammatory cytokine production in normal and CF bronchial epithelial cells, and better understand the cellular mechanisms by which this cytokine induction occurs. 3O-C12 was found to induce higher levels of IL-6 production in the CF cell lines IB3-1 and CuFi, compared to their corresponding control cell lines C38 and NuLi. Systems biology and network analysis revealed a high predominance of over-represented innate immune pathways bridged together by calcium-dependant transcription factors governing the transcriptional responses of A549 airway cells to stimulation with 3O-C12. Using calcium-flux assays, 3O-C12 was found to induce larger and more sustained increases in intracellular calcium in IB3-1 cells compared to C38, and blocking this calcium flux with BAPTA-AM reduced the production of IL-6 by IB3-1 to the levels produced by C38. These data suggest that 3O-C12 induces proinflammatory cytokine production in airway epithelial cells in a calcium-dependent manner, and that dysregulated calcium storage or signalling in CF cells results in an increased production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Matthew L. Mayer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Jared A. Sheridan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Christoph J. Blohmke
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Child and Family Research Institute, BC Children's Hospital, Vancouver, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Child and Family Research Institute, BC Children's Hospital, Vancouver, Canada
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|