1
|
Shuai Y, Ma Z, Ju J, Wei T, Gao S, Kang Y, Yang Z, Wang X, Yue J, Yuan P. Liquid-based biomarkers in breast cancer: looking beyond the blood. J Transl Med 2023; 21:809. [PMID: 37957623 PMCID: PMC10644618 DOI: 10.1186/s12967-023-04660-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In recent decades, using circulating tumor cell (CTC), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), exosomes and etc. as liquid biomarkers has received enormous attention in various tumors, including breast cancer (BC). To date, efforts in the area of liquid biopsy predominantly focus on the analysis of blood-based markers. It is worth noting that the identifications of markers from non-blood sources provide unique advantages beyond the blood and these alternative sources may be of great significance in offering supplementary information in certain settings. Here, we outline the latest advances in the analysis of non-blood biomarkers, predominantly including urine, saliva, cerebrospinal fluid, pleural fluid, stool and etc. The unique advantages of such testings, their current limitations and the appropriate use of non-blood assays and blood assays in different settings are further discussed. Finally, we propose to highlight the challenges of these alternative assays from basic to clinical implementation and explore the areas where more investigations are warranted to elucidate its potential utility.
Collapse
Affiliation(s)
- You Shuai
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jie Ju
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tong Wei
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Songlin Gao
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yikun Kang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixuan Yang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Ma S, Zhou M, Xu Y, Gu X, Zou M, Abudushalamu G, Yao Y, Fan X, Wu G. Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol Cancer 2023; 22:7. [PMID: 36627698 PMCID: PMC9832643 DOI: 10.1186/s12943-023-01715-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer (GC) is one of the most common tumors worldwide and the leading cause of tumor-related mortality. Endoscopy and serological tumor marker testing are currently the main methods of GC screening, and treatment relies on surgical resection or chemotherapy. However, traditional examination and treatment methods are more harmful to patients and less sensitive and accurate. A minimally invasive method to respond to GC early screening, prognosis monitoring, treatment efficacy, and drug resistance situations is urgently needed. As a result, liquid biopsy techniques have received much attention in the clinical application of GC. The non-invasive liquid biopsy technique requires fewer samples, is reproducible, and can guide individualized patient treatment by monitoring patients' molecular-level changes in real-time. In this review, we introduced the clinical applications of circulating tumor cells, circulating free DNA, circulating tumor DNA, non-coding RNAs, exosomes, and proteins, which are the primary markers in liquid biopsy technology in GC. We also discuss the current limitations and future trends of liquid biopsy technology as applied to early clinical biopsy technology.
Collapse
Affiliation(s)
- Shuo Ma
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Meiling Zhou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yanhua Xu
- grid.452743.30000 0004 1788 4869Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, 225000 Jiangsu China
| | - Xinliang Gu
- grid.440642.00000 0004 0644 5481Department of Laboratory Medicine, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001 Jiangsu China
| | - Mingyuan Zou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Gulinaizhaer Abudushalamu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yuming Yao
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Xiaobo Fan
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Guoqiu Wu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009 Jiangsu China
| |
Collapse
|
3
|
Guimarães CF, Cruz-Moreira D, Caballero D, Pirraco RP, Gasperini L, Kundu SC, Reis RL. Shining a Light on Cancer - Photonics in Microfluidic Tumor Modelling and Biosensing. Adv Healthc Mater 2022:e2201442. [PMID: 35998112 DOI: 10.1002/adhm.202201442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Indexed: 11/08/2022]
Abstract
Microfluidic platforms represent a powerful approach to miniaturizing important characteristics of cancers, improving in vitro testing by increasing physiological relevance. Different tools can manipulate cells and materials at the microscale, but few offer the efficiency and versatility of light and optical technologies. Moreover, light-driven technologies englobe a broad toolbox for quantifying critical biological phenomena. Herein, we review the role of photonics in microfluidic 3D cancer modeling and biosensing from three major perspectives. First, we look at optical-driven technologies that allow biomaterials and living cells to be manipulated with micro-sized precision and the opportunities to advance 3D microfluidic models by engineering cancer microenvironments' hallmarks, such as their architecture, cellular complexity, and vascularization. Second, we delve into the growing field of optofluidics, exploring how optical tools can directly interface microfluidic chips, enabling the extraction of relevant biological data, from single fluorescent signals to the complete 3D imaging of diseased cells within microchannels. Third, we review advances in optical cancer biosensing, focusing on how light-matter interactions can detect biomarkers, rare circulating tumor cells, and cell-derived structures such as exosomes. We overview photonic technologies' current challenges and caveats in microfluidic 3D cancer models, outlining future research avenues that may catapult the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Daniela Cruz-Moreira
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - David Caballero
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Luca Gasperini
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| |
Collapse
|
4
|
Dotse E, Lim KH, Wang M, Wijanarko KJ, Chow KT. An Immunological Perspective of Circulating Tumor Cells as Diagnostic Biomarkers and Therapeutic Targets. Life (Basel) 2022; 12:323. [PMID: 35207611 PMCID: PMC8878951 DOI: 10.3390/life12020323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Immune modulation is a hallmark of cancer. Cancer-immune interaction shapes the course of disease progression at every step of tumorigenesis, including metastasis, of which circulating tumor cells (CTCs) are regarded as an indicator. These CTCs are a heterogeneous population of tumor cells that have disseminated from the tumor into circulation. They have been increasingly studied in recent years due to their importance in diagnosis, prognosis, and monitoring of treatment response. Ample evidence demonstrates that CTCs interact with immune cells in circulation, where they must evade immune surveillance or modulate immune response. The interaction between CTCs and the immune system is emerging as a critical point by which CTCs facilitate metastatic progression. Understanding the complex crosstalk between the two may provide a basis for devising new diagnostic and treatment strategies. In this review, we will discuss the current understanding of CTCs and the complex immune-CTC interactions. We also present novel options in clinical interventions, targeting the immune-CTC interfaces, and provide some suggestions on future research directions.
Collapse
Affiliation(s)
- Eunice Dotse
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - King H. Lim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Meijun Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Kevin Julio Wijanarko
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia;
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Kwan T. Chow
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| |
Collapse
|
5
|
Advances in microfluidics devices and its applications in personalized medicines. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:191-201. [PMID: 35033284 DOI: 10.1016/bs.pmbts.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microfluidics is an exponentially growing area and is being used for numerous applications from basic science to advanced biotechnology and medicines. Microfluidics provides a platform to the research community for studying and building new strategies for the diagnosis and therapeutics applications. In the last decade, microfluidic have enriched the field of diagnostics by providing new solutions which was not possible with conventional detection and treatment methods. Microfluidics has the ability to precisely control and perform high-throughput functions. It has been proven as an efficient and rapid method for biological sample preparation, analysis and controlled drug delivery system. Microfluidics plays significant role in personalized medicine. These personalized medicines are used for medical decisions, practices and other interventions as well as for individual patients based on their predicted response or risk of disease. This chapter highlights microfluidics in developing personalized medical applications for its applications in diseases such as cancer, cardiovascular disease, diabetes, pulmonary disease and several others.
Collapse
|
6
|
Akpe V, Kim TH, Brown CL, Cock IE. Circulating tumour cells: a broad perspective. J R Soc Interface 2020; 17:20200065. [PMCID: PMC7423436 DOI: 10.1098/rsif.2020.0065] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/09/2020] [Indexed: 08/13/2023] Open
Abstract
Circulating tumour cells (CTCs) have recently been identified as valuable biomarkers for diagnostic and prognostic evaluations, as well for monitoring therapeutic responses to treatments. CTCs are rare cells which may be present as one CTC surrounded by approximately 1 million white blood cells and 1 billion red blood cells per millilitre of peripheral blood. Despite the various challenges in CTC detection, considerable progress in detection methods have been documented in recent times, particularly for methodologies incorporating nanomaterial-based platforms and/or integrated microfluidics. Herein, we summarize the importance of CTCs as biological markers for tumour detection, highlight their mechanism of cellular invasion and discuss the various challenges associated with CTC research, including vulnerability, heterogeneity, phenotypicity and size differences. In addition, we describe nanomaterial agents used for electrochemistry and surface plasmon resonance applications, which have recently been used to selectively capture cancer cells and amplify signals for CTC detection. The intrinsic properties of nanomaterials have also recently been exploited to achieve photothermal destruction of cancer cells. This review describes recent advancements and future perspectives in the CTC field.
Collapse
Affiliation(s)
- Victor Akpe
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Tak H. Kim
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Christopher L. Brown
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Ian E. Cock
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| |
Collapse
|
7
|
Künzel J, Gribko A, Lu Q, Stauber RH, Wünsch D. Nanomedical detection and downstream analysis of circulating tumor cells in head and neck patients. Biol Chem 2020; 400:1465-1479. [PMID: 30903749 DOI: 10.1515/hsz-2019-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 12/27/2022]
Abstract
The establishment of novel biomarkers in liquid biopsies of cancer patients has come more into focus in prognostic and diagnostic research efforts. Due to their prognostic relevance disseminated tumor cells or circulating tumor cells are the subject of intensive research and are discussed as early diagnostic indicators for treatment failure and the formation of micrometastases. A potential association of this early-systemic tumor component with poor prognosis of cancer patients could be already demonstrated for various entities including breast, colon, lung, melanoma, ovarian and prostate cancers. Thus, the detection of circulating tumor cells seems to be also applicable for minimal-invasive monitoring of therapy progress in head and neck cancer patients. A major problem of the use in clinical routine is that circulating tumor cells could not be detected by modern imaging techniques. To overcome these limitations highly sensitive detection methods and techniques for their molecular characterization are urgently needed allowing mechanistic understanding and targeting of circulating tumor cells. Especially the medical application of nanotechnology (nanomedical methods) has made valuable contributions to the field. Here, we want to provide a comprehensive overview on (nanomedical) detection methods for circulating tumor cells and discuss their merits, pitfalls and future perspectives especially for head and neck solid squamous cell carcinoma (HNSCC) patients.
Collapse
Affiliation(s)
- Julian Künzel
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Alena Gribko
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Qiang Lu
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Désirée Wünsch
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| |
Collapse
|
8
|
Boateng F, Ngwa W. Delivery of Nanoparticle-Based Radiosensitizers for Radiotherapy Applications. Int J Mol Sci 2019; 21:ijms21010273. [PMID: 31906108 PMCID: PMC6981554 DOI: 10.3390/ijms21010273] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Nanoparticle-based radiosensitization of cancerous cells is evolving as a favorable modality for enhancing radiotherapeutic ratio, and as an effective tool for increasing the outcome of concomitant chemoradiotherapy. Nevertheless, delivery of sufficient concentrations of nanoparticles (NPs) or nanoparticle-based radiosensitizers (NBRs) to the targeted tumor without or with limited systemic side effects on healthy tissues/organs remains a challenge that many investigators continue to explore. With current systemic intravenous delivery of a drug, even targeted nanoparticles with great prospect of reaching targeted distant tumor sites, only a portion of the administered NPs/drug dosage can reach the tumor, despite the enhanced permeability and retention (EPR) effect. The rest of the targeted NPs/drug remain in systemic circulation, resulting in systemic toxicity, which can decrease the general health of patients. However, the dose from ionizing radiation is generally delivered across normal tissues to the tumor cells (especially external beam radiotherapy), which limits dose escalation, making radiotherapy (RT) somewhat unsafe for some diseased sites despite the emerging development in RT equipment and technologies. Since radiation cannot discriminate healthy tissue from diseased tissue, the radiation doses delivered across healthy tissues (even with nanoparticles delivered via systemic administration) are likely to increase injury to normal tissues by accelerating DNA damage, thereby creating free radicals that can result in secondary tumors. As a result, other delivery routes, such as inhalation of nanoparticles (for lung cancers), localized delivery via intratumoral injection, and implants loaded with nanoparticles for local radiosensitization, have been studied. Herein, we review the current NP delivery techniques; precise systemic delivery (injection/infusion and inhalation), and localized delivery (intratumoral injection and local implants) of NBRs/NPs. The current challenges, opportunities, and future prospects for delivery of nanoparticle-based radiosensitizers are also discussed.
Collapse
Affiliation(s)
- Francis Boateng
- TIDTAC LLC, Orlando, FL 32828, USA
- Correspondence: ; Tel.: +1-7745264723
| | - Wilfred Ngwa
- TIDTAC LLC, Orlando, FL 32828, USA
- Department of Physics and Applied Physics, University of Massachusetts Lowell Lowell, MA 01854, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Malihi PD, Morikado M, Welter L, Liu ST, Miller ET, Cadaneanu RM, Knudsen BS, Lewis MS, Carlsson A, Velasco CR, Kolatkar A, Rodriguez-Lee M, Garraway IP, Hicks J, Kuhn P. Clonal diversity revealed by morphoproteomic and copy number profiles of single prostate cancer cells at diagnosis. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2018; 4:015003. [PMID: 32670616 PMCID: PMC7363158 DOI: 10.1088/2057-1739/aaa00b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tumor heterogeneity is prevalent in both treatment-naïve and end-stage metastatic castration-resistant prostate cancer (PCa), and may contribute to the broad range of clinical presentation, treatment response, and disease progression. To characterize molecular heterogeneity associated with de novo metastatic PCa, multiplatform single cell profiling was performed using high definition single cell analysis (HD-SCA). HD-SCA enabled morphoproteomic and morphogenomic profiling of single cells from touch preparations of tissue cores (prostate and bone marrow biopsies) as well as liquid samples (peripheral blood and bone marrow aspirate). Morphology, nuclear features, copy number alterations, and protein expression were analyzed. Tumor cells isolated from prostate tissue touch preparation (PTTP) and bone marrow touch preparation (BMTP) as well as metastatic tumor cells (MTCs) isolated from bone marrow aspirate were characterized by morphology and cytokeratin expression. Although peripheral blood was examined, circulating tumor cells were not definitively observed. Targeted proteomics of PTTP, BMTP, and MTCs revealed cell lineage and luminal prostate epithelial differentiation associated with PCa, including co-expression of EpCAM, PSA, and PSMA. Androgen receptor expression was highest in MTCs. Hallmark PCa copy number alterations, including PTEN and ETV6 deletions and NCOA2 amplification, were observed in cells within the primary tumor and bone marrow biopsy samples. Genomic landscape of MTCs revealed to be a mix of both primary and bone metastatic tissue. This multiplatform analysis of single cells reveals several clonal origins of metastatic PCa in a newly diagnosed, untreated patient with polymetastatic disease. This case demonstrates that real-time molecular profiling of cells collected through prostate and bone marrow biopsies is feasible and has the potential to elucidate the origin and evolution of metastatic tumor cells. Altogether, biological and genomic data obtained through longitudinal biopsies can be used to reveal the properties of PCa and can impact clinical management.
Collapse
Affiliation(s)
- Paymaneh D Malihi
- USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, United States of America
| | - Michael Morikado
- USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, United States of America
| | - Lisa Welter
- USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, United States of America
| | - Sandy T Liu
- Department of Urology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Eric T Miller
- Department of Urology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Radu M Cadaneanu
- Department of Urology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Beatrice S Knudsen
- Departments of Biomedical Sciences and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Michael S Lewis
- Greater Los Angeles VA Healthcare System, Los Angeles, CA, United States of America
| | - Anders Carlsson
- USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, United States of America
| | - Carmen Ruiz Velasco
- USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, United States of America
| | - Anand Kolatkar
- USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, United States of America
| | - Mariam Rodriguez-Lee
- USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, United States of America
| | - Isla P Garraway
- Department of Urology, University of California Los Angeles, Los Angeles, CA, United States of America
- Greater Los Angeles VA Healthcare System, Los Angeles, CA, United States of America
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - James Hicks
- USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, United States of America
| | - Peter Kuhn
- USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
10
|
Baxter AE, O'Doherty U, Kaufmann DE. Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs. Retrovirology 2018; 15:18. [PMID: 29394935 PMCID: PMC5797386 DOI: 10.1186/s12977-018-0392-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
Recent years have seen a substantial increase in the number of tools available to monitor and study HIV reservoirs. Here, we discuss recent technological advances that enable an understanding of reservoir dynamics beyond classical assays to measure the frequency of cells containing provirus able to propagate a spreading infection (replication-competent reservoir). Specifically, we focus on the characterization of cellular reservoirs containing proviruses able to transcribe viral mRNAs (so called transcription-competent) and translate viral proteins (translation-competent). We suggest that the study of these alternative reservoirs provides complementary information to classical approaches, crucially at a single-cell level. This enables an in-depth characterization of the cellular reservoir, both following reactivation from latency and, importantly, directly ex vivo at baseline. Furthermore, we propose that the study of cellular reservoirs that may not contain fully replication-competent virus, but are able to produce HIV mRNAs and proteins, is of biological importance. Lastly, we detail some of the key contributions that the study of these transcription and translation-competent reservoirs has made thus far to investigations into HIV persistence, and outline where these approaches may take the field next.
Collapse
Affiliation(s)
- Amy E Baxter
- CR-CHUM, Université de Montréal, Montréal, QC, Canada.,Scripps CHAVI-ID, La Jolla, CA, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine and Therapeutic Pathology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Daniel E Kaufmann
- CR-CHUM, Université de Montréal, Montréal, QC, Canada. .,Scripps CHAVI-ID, La Jolla, CA, USA.
| |
Collapse
|
11
|
An L, Wang G, Han Y, Li T, Jin P, Liu S. Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array. LAB ON A CHIP 2018; 18:335-342. [PMID: 29260185 DOI: 10.1039/c7lc01117b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The detection of rare circulating tumour cells (CTCs) in patients' blood is crucial for the early diagnosis of cancer, highly precise cancer therapy and monitoring therapeutic outcomes in real time. In this study we have developed an efficient strategy to capture and detect CTCs from the blood of cancer patients using a benzoboric acid modified gold-plated polymeric substrate with a regular 3D surface array. Compared with the smooth substrate, the substrate with the surface 3D microarrays exhibited a higher capture efficiency, i.e. 3.8 times that afforded by the smooth substrate. Additionally, due to the reversible reaction between the benzoboric acid on the 3D microarray and the sialic acid on CTCs, our strategy allowed for easy detachment of the captured CTCs from the substrate without causing critical damage to the cells. This will be of benefit for gaining further access to these rare cells for downstream characterization. The proposed strategy provides several advantages, including enhanced capture efficiency, high sensitivity, low cost and recovery of isolated CTCs, and could become a promising platform for early stage diagnosis of cancer.
Collapse
Affiliation(s)
- Li An
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | | | | | | | | | | |
Collapse
|
12
|
Gesley M, Puri R. A high throughput spectral image microscopy system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:013705. [PMID: 29390702 DOI: 10.1063/1.4998725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A high throughput spectral image microscopy system is configured for rapid detection of rare cells in large populations. To overcome flow cytometry rates and use of fluorophore tags, a system architecture integrates sample mechanical handling, signal processors, and optics in a non-confocal version of light absorption and scattering spectroscopic microscopy. Spectral images with native contrast do not require the use of exogeneous stain to render cells with submicron resolution. Structure may be characterized without restriction to cell clusters of differentiation.
Collapse
Affiliation(s)
- M Gesley
- Spynsite LLC, 31 Rydal Court, Oakland, California 94611, USA
| | - R Puri
- Spynsite LLC, 31 Rydal Court, Oakland, California 94611, USA
| |
Collapse
|
13
|
McDaniel AS, Ferraldeschi R, Krupa R, Landers M, Graf R, Louw J, Jendrisak A, Bales N, Marrinucci D, Zafeiriou Z, Flohr P, Sideris S, Mateo J, de Bono JS, Dittamore R, Tomlins SA, Attard G. Phenotypic diversity of circulating tumour cells in patients with metastatic castration-resistant prostate cancer. BJU Int 2017; 120:E30-E44. [PMID: 27539393 PMCID: PMC5316381 DOI: 10.1111/bju.13631] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To use a non-biased assay for circulating tumour cells (CTCs) in patients with prostate cancer (PCa) in order to identify non-traditional CTC phenotypes potentially excluded by conventional detection methods that are reliant on antigen- and/or size-based enrichment. PATIENTS AND METHODS A total of 41 patients with metastatic castration-resistant PCa (mCRPC) and 20 healthy volunteers were analysed on the Epic CTC platform, via high-throughput imaging of DAPI expression and CD45/cytokeratin (CK) immunofluorescence (IF) on all circulating nucleated cells plated on glass slides. To confirm the PCa origin of CTCs, IF was used for androgen receptor (AR) expression and fluorescence in situ hybridization was used for PTEN and ERG assessment. RESULTS Traditional CTCs (CD45- /CK+ /morphologically distinct) were identified in all patients with mCRPC and we also identified CTC clusters and non-traditional CTCs in patients with mCRPC, including CK- and apoptotic CTCs. Small CTCs (≤white blood cell size) were identified in 98% of patients with mCRPC. Total, traditional and non-traditional CTCs were significantly increased in patients who were deceased vs alive after 18 months; however, only non-traditional CTCs were associated with overall survival. Traditional and total CTC counts according to the Epic platform in the mCRPC cohort were also significantly correlated with CTC counts according to the CellSearch system. CONCLUSIONS Heterogeneous non-traditional CTC populations are frequent in mCRPC and may provide additional prognostic or predictive information.
Collapse
Affiliation(s)
- Andrew S. McDaniel
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Roberta Ferraldeschi
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | | | | | - Ryon Graf
- Epic Sciences, San Diego, CA, 92121, USA
| | | | | | | | | | - Zafeiris Zafeiriou
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Penelope Flohr
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK
| | - Spyridon Sideris
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Joaquin Mateo
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Johann S. de Bono
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | | | - Scott A. Tomlins
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Gerhardt Attard
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| |
Collapse
|
14
|
Kuhn P, Keating SM, Baxter GT, Thomas K, Kolatkar A, Sigman CC. Lessons Learned: Transfer of the High-Definition Circulating Tumor Cell Assay Platform to Development as a Commercialized Clinical Assay Platform. Clin Pharmacol Ther 2017; 102:777-785. [PMID: 28160285 PMCID: PMC5653379 DOI: 10.1002/cpt.645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/05/2023]
Abstract
Planning and transfer of a new technology platform developed in an academic setting to a start-up company for medical diagnostic product development may appear daunting and costly in terms of complexity, time, and resources. In this review we outline the key steps taken and lessons learned when a technology platform developed in an academic setting was transferred to a start-up company for medical diagnostic product development in the interest of elucidating development toolkits for academic groups and small start-up companies starting on the path to commercialization and regulatory approval.
Collapse
Affiliation(s)
- Peter Kuhn
- The Scripps Research Institute, La Jolla, California 92037. Current address is University of Southern California, Los Ángeles California, USA 90089-4012
| | | | | | | | - Anand Kolatkar
- The Scripps Research Institute, La Jolla, California 92037. Current address is University of Southern California, Los Ángeles California, USA 90089-4012
| | | |
Collapse
|
15
|
Li Y, Wu S, Bai F. Molecular characterization of circulating tumor cells-from bench to bedside. Semin Cell Dev Biol 2017; 75:88-97. [PMID: 28899718 DOI: 10.1016/j.semcdb.2017.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells discovered in cancer patients' peripheral blood that successfully escape from the primary tumor site and/or metastases, struggle to survive in the bloodstream, and have potential for seeding metastases. Numerous methods have been proposed to capture CTCs. The value of CTCs as a means of understanding cancer metastasis and a major form of 'liquid biopsy' has been widely demonstrated. Recently, single-cell molecular analyses of CTCs have provided profound biological insights into tumor heterogeneity, mechanism of metastasis and tumor evolution. In addition, because CTC analysis is non-invasive, CTCs exhibit great potential as biomarkers for assessment of cancer prognosis and therapy response. In this review, we summarize modern technologies for CTC detection and isolation, single-cell genomic/transcriptomic characterization of CTCs, and prospective clinical applications of CTCs. We expect that, after further technical improvements in methods of detection and sequencing, CTC analyses will shed new light on the mechanisms driving cancer metastasis and benefit many cancer patients.
Collapse
Affiliation(s)
- Yanmeng Li
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Science, Peking University, Beijing 100871, China
| | - Shaohan Wu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Science, Peking University, Beijing 100871, China
| | - Fan Bai
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Science, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Analytical evaluation for somatic mutation detection in circulating tumor cells isolated using a lateral magnetophoretic microseparator. Biomed Microdevices 2017; 18:91. [PMID: 27628059 DOI: 10.1007/s10544-016-0116-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CTCs are currently in the spotlight because provide comprehensive genetic information that enables monitoring of the evolution of cancer and selection of appropriate therapeutic strategies that cannot be obtained from a single-site tumor biopsy. Despite their importance, current techniques for isolating CTCs are limited in terms of their ability to yield high-quality CTCs from peripheral blood for use in profiling cancer genetic mutations by DNA sequencing technologies. This paper introduces a lateral magnetophoretic microseparator (the 'CTC-μChip') for isolating highly pure CTCs from blood, which facilitates the detection of somatic mutations in isolated CTCs. To isolate CTCs from peripheral blood, nucleated cells were first prepared by red blood cell lysis. Then, CTCs were isolated from nucleated cells within 30 min using the CTC-μChip. Analytical evaluation using 5 mL blood samples spiked with 5-50 MCF7 breast cancer cells demonstrated that the average recovery rate of the CTC-μChip was 99.08 %. The average number of residual white blood cells (WBCs) in isolated samples was 53, meaning that the WBC depletion rate is 472,000-fold (5.67 log), assuming that blood contains 5 × 10(6) WBCs per milliliter. The isolated MCF7 cells had a purity of 6.9 - 67.9 %, depending on the spiked MCF7 concentration. Using next-generation sequencing technology, heterozygous somatic mutations (PIK3CA and APC) of MCF7 cells were evaluated in the isolated samples. The results showed that somatic mutations could be detected in as few as two MCF7 cells per milliliter of blood, indicating that the CTC-μChip facilitates the detection of somatic variants in CTCs.
Collapse
|
17
|
Sun D, Chen Z, Wu M, Zhang Y. Nanomaterial-based Microfluidic Chips for the Capture and Detection of Circulating Tumor Cells. Nanotheranostics 2017; 1:389-402. [PMID: 29071201 PMCID: PMC5647762 DOI: 10.7150/ntno.21268] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 01/27/2023] Open
Abstract
Circulating tumor cells (CTCs), a type of cancer cells that spreads from primary or metastatic tumors into the bloodstream, can lead to a new fatal metastasis. As a new type of liquid biopsy, CTCs have become a hot pursuit and detection of CTCs offers the possibility for early diagnosis of cancers, earlier evaluation of chemotherapeutic efficacy and cancer recurrence, and choice of individual sensitive anti-cancer drugs. The fundamental challenges of capturing and characterizing CTCs are the extremely low number of CTCs in the blood and the intrinsic heterogeneity of CTCs. A series of microfluidic devices have been proposed for the analysis of CTCs with automation capability, precise flow behaviors, and significant advantages over the conventional larger scale systems. This review aims to provide in-depth insights into CTCs analysis, including various nanomaterial-based microfluidic chips for the capture and detection of CTCs based on the specific biochemical and physical properties of CTCs. The current developmental trends and promising research directions in the establishment of microfluidic chips for the capture and detection of CTCs are also discussed.
Collapse
Affiliation(s)
- Duanping Sun
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zuanguang Chen
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Minhao Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Yuanqing Zhang
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
18
|
Su DW, Nieva J. Biophysical technologies for understanding circulating tumor cell biology and metastasis. Transl Lung Cancer Res 2017; 6:473-485. [PMID: 28904890 DOI: 10.21037/tlcr.2017.05.08] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An understanding of cancer evolution in lung cancer with its associated resistance to therapy can only be achieved with repeated sampling and analysis of the cancer. Given the high risks and costs associated with repeat physical biopsy, alternative technologies must be applied. Several modalities exist for analysis and re-analysis of cancer biology. Among them are the CellSearch platform, the CTC chip, and the high-definition CTC platform. While the former is primarily able to provide prognosticating information in the form of CTC enumeration, the latter two have the advantage of serving as a platform to study tumor biology. Techniques for analysis of single cell genomics, as well as protein expression on a single cell basis provide scientists with the capacity to understand cancer cell populations as a collection of individual cells, rather than as an average of all cells. A multimodal combination of circulating tumor DNAs (ctDNAs), CTCs, proteomics, and CTC-derived xenografts (CDXs) to create computational models useful in diagnosis, prognostication, and predictiveness to treatment is likely the future of tailoring individualized cancer care.
Collapse
Affiliation(s)
- Derrick W Su
- Norris Cancer Center, University of Southern California, Los Angeles, USA
| | - Jorge Nieva
- Norris Cancer Center, University of Southern California, Los Angeles, USA
| |
Collapse
|
19
|
Ao Z, Liu X. Fiber-Optic Array Scanning Technology (FAST) for Detection and Molecular Characterization of Circulating Tumor Cells. Methods Mol Biol 2017; 1634:235-246. [PMID: 28819856 DOI: 10.1007/978-1-4939-7144-2_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Circulating tumor cell (CTC) as an important component in "liquid biopsy" holds crucial clinical relevance in cancer prognosis, treatment efficiency evaluation, prediction and potentially early detection. Here, we present a Fiber-optic Array Scanning Technology (FAST) that enables antigen-agnostic, size-agnostic detection of CTC. By immunofluorescence staining detection of a combination of a panel of markers, FAST technology can be applied to detect rare CTC in non-small cell lung cancer (NSCLC) setting with high sensitivity and specificity. In combination with Automated Digital Microscopy (ADM) platform, companion markers on CTC such as Vimentin and Programmed death-ligand 1 (PD-L1) can also be analyzed to further characterize these CTCs. FAST data output is also compatible with downstream single cell picking platforms. Single cell can be isolated post ADM confirmation and used for "actionable" genetic mutations analysis.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/blood
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Early Detection of Cancer
- Fiber Optic Technology/instrumentation
- Fiber Optic Technology/methods
- Fluorescent Antibody Technique/instrumentation
- Fluorescent Antibody Technique/methods
- Fluorescent Dyes/chemistry
- Humans
- Keratins/genetics
- Keratins/immunology
- Keratins/metabolism
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/immunology
- Leukocyte Common Antigens/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lung Neoplasms/blood
- Lung Neoplasms/diagnosis
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Mucin-1/genetics
- Mucin-1/immunology
- Mucin-1/metabolism
- Neoplastic Cells, Circulating/immunology
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Sensitivity and Specificity
- Single-Cell Analysis/instrumentation
- Single-Cell Analysis/methods
- Vimentin/genetics
- Vimentin/immunology
- Vimentin/metabolism
Collapse
Affiliation(s)
- Zheng Ao
- Discovery Technology, SRI International Biosciences Division, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
| | - Xiaohe Liu
- Discovery Technology, SRI International Biosciences Division, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| |
Collapse
|
20
|
Lannin TB, Thege FI, Kirby BJ. Comparison and optimization of machine learning methods for automated classification of circulating tumor cells. Cytometry A 2016; 89:922-931. [DOI: 10.1002/cyto.a.22993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/15/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy B. Lannin
- Sibley School of Mechanical and Aerospace Engineering; Cornell University; Ithaca, NY U.S.A
| | - Fredrik I. Thege
- Department of Biomedical Engineering; Cornell University; Ithaca, NY U.S.A
| | - Brian J. Kirby
- Sibley School of Mechanical and Aerospace Engineering; Cornell University; Ithaca, NY U.S.A
- Division of Hematology & Medical Oncology, Department of Medicine; Weill Cornell Medicine; New York, NY U.S.A
| |
Collapse
|
21
|
Ferreira MM, Ramani VC, Jeffrey SS. Circulating tumor cell technologies †. Mol Oncol 2016; 10:374-94. [PMID: 26897752 PMCID: PMC5528969 DOI: 10.1016/j.molonc.2016.01.007] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/16/2016] [Accepted: 01/19/2016] [Indexed: 02/08/2023] Open
Abstract
Circulating tumor cells, a component of the “liquid biopsy”, hold great potential to transform the current landscape of cancer therapy. A key challenge to unlocking the clinical utility of CTCs lies in the ability to detect and isolate these rare cells using methods amenable to downstream characterization and other applications. In this review, we will provide an overview of current technologies used to detect and capture CTCs with brief insights into the workings of individual technologies. We focus on the strategies employed by different platforms and discuss the advantages of each. As our understanding of CTC biology matures, CTC technologies will need to evolve, and we discuss some of the present challenges facing the field in light of recent data encompassing epithelial‐to‐mesenchymal transition, tumor‐initiating cells, and CTC clusters.
We present a comprehensive overview of CTC detection and capture technologies. We provide a conceptual description of strategies used in different technologies. We highlight the key features of individual technologies. We discuss CTC technology performance in the context of clinical studies.
Collapse
Affiliation(s)
- Meghaan M Ferreira
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vishnu C Ramani
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Rejniak KA. Circulating Tumor Cells: When a Solid Tumor Meets a Fluid Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 936:93-106. [PMID: 27739044 PMCID: PMC5113997 DOI: 10.1007/978-3-319-42023-3_5] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solid tumor dissemination from the primary site to the sites of metastasis involves tumor cell transport through the blood or lymph circulation systems. Once the tumor cells enter the bloodstream, they encounter a new hostile microenvironment. The cells must withstand hemodynamic forces and overcome the effects of fluid shear. The cells are exposed to immunological signaling insults from leukocytes, to collisions with erythrocytes, and to interactions with platelets or macrophages. Finally, the cells need to attach to the blood vessel walls and extravasate to the surrounding stroma to form tumor metastases. Although only a small fraction of invasive cells is able to complete the metastatic process, most cancer-related deaths are the result of tumor metastasis. Thus, investigating the intracellular properties of circulating tumor cells and the extracellular conditions that allow the tumor cells to survive and thrive in this microenvironment is of vital interest. In this chapter, we discuss the intravascular microenvironment that the circulating tumor cells must endure. We summarize the current experimental and computational literature on tumor cells in the circulation system. We also illustrate various aspects of the intravascular transport of circulating tumor cells using a mathematical model based on immersed boundary principles.
Collapse
Affiliation(s)
- Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, Center of Excellence in Cancer Imaging and Technology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
23
|
Beltran H, Jendrisak A, Landers M, Mosquera JM, Kossai M, Louw J, Krupa R, Graf RP, Schreiber NA, Nanus DM, Tagawa ST, Marrinucci D, Dittamore R, Scher HI. The Initial Detection and Partial Characterization of Circulating Tumor Cells in Neuroendocrine Prostate Cancer. Clin Cancer Res 2015; 22:1510-9. [PMID: 26671992 DOI: 10.1158/1078-0432.ccr-15-0137] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The transition of prostate adenocarcinoma to a predominantly androgen receptor (AR) signaling independent phenotype can occur in the later stages of the disease and is associated with low AR expression +/- the development of small-cell or neuroendocrine tumor characteristics. As metastatic tumor biopsies are not always feasible and are difficult to repeat, we sought to evaluate noninvasive methods to identify patients transitioning toward a neuroendocrine phenotype (NEPC). EXPERIMENTAL DESIGN We prospectively studied a metastatic tumor biopsy, serum biomarkers, and circulating tumor cells (CTC, Epic Sciences) from patients with castration-resistant prostate cancer (CRPC) including those with pure or mixed NEPC histology present on biopsy. CTCs labeled with the patient's clinical status were used to learn features that discriminate NEPC patients, which was then applied to an independent cohort. RESULTS Twenty-seven patients with CRPC including 12 NEPC and 5 with atypical clinical features suggestive of NEPC transition were studied. CTCs from NEPC patients demonstrated frequent clusters, low or absent AR expression, lower cytokeratin expression, and smaller morphology relative to typical CRPC. A multivariate analysis of protein and morphologic variables enabled distinguishing CTCs of NEPC from CRPC. This CTC classifier was applied to an independent prospective cohort of 159 metastatic CRPC patients and identified in 17/159 (10.7%) of cases, enriched in patients with high CTC burden (P < 0.01) and visceral metastases (P = 0.04). CONCLUSIONS CTCs from patients with NEPC have unique morphologic characteristics, which were also identified in a subset of CRPC patients with aggressive clinical features potentially undergoing NEPC transition.
Collapse
Affiliation(s)
- Himisha Beltran
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York. Institute for Precision Medicine, New York Presbyterian-Weill Cornell Medicine, New York, New York.
| | | | | | - Juan Miguel Mosquera
- Institute for Precision Medicine, New York Presbyterian-Weill Cornell Medicine, New York, New York. Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Myriam Kossai
- Institute for Precision Medicine, New York Presbyterian-Weill Cornell Medicine, New York, New York
| | | | | | | | - Nicole A Schreiber
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York
| | - David M Nanus
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Scott T Tagawa
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | | | | | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York
| |
Collapse
|
24
|
Wang D, Liu X, Hsieh B, Bruce R, Somlo G, Huang J, Sambucetti L. Exploring Glycan Markers for Immunotyping and Precision-targeting of Breast Circulating Tumor Cells. Arch Med Res 2015; 46:642-50. [PMID: 26657044 DOI: 10.1016/j.arcmed.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Recognition of abnormal glycosylation in virtually every cancer type has raised great interest in exploration of the tumor glycome for biomarker discovery. Identifying glycan markers of circulating tumor cells (CTCs) represents a new development in tumor biomarker discovery. The aim of this study was to establish an experimental approach to enable rapid screening of CTCs for glycan marker identification and characterization. METHODS We applied carbohydrate microarrays and a high-speed fiber-optic array scanning technology (FAST scan) to explore potential glycan markers of breast CTCs (bCTCs) and targeting antibodies. An anti-tumor monoclonal antibody, HAE3-C1 (C1), was identified as a key immunological probe in this study. RESULTS In our carbohydrate microarray analysis, C1 was found to be highly specific for an O-glycan cryptic epitope, gp(C1). Using FAST-scan technology, we established a procedure to quantify expression levels of gp(C1) in tumor cells. In blood samples from five stage IV metastatic breast cancer patients, the gp(C1) positive CTCs were detected in all subjects; ∼40% of bCTCs were strongly gp(C1) positive. Interestingly, CTCs from a triple-negative breast cancer patient with multiple sites of metastasis were predominantly gp(C1) positive (92.5%, 37/40 CTCs). CONCLUSIONS Together we present here a practical approach to examine rare cell expression of glycan markers. Using this approach, we identified an O-core glyco-determinant gp(C1) as a potential immunological target of bCTCs. Given its bCTC-expression profile, this target warrants an extended investigation in a larger cohort of breast cancer patients.
Collapse
Affiliation(s)
- Denong Wang
- Tumor Glycomics Laboratory, Menlo Park, California, USA; SRI International Biosciences Division, Menlo Park, California, USA.
| | - Xiaohe Liu
- SRI International Biosciences Division, Menlo Park, California, USA
| | - Ben Hsieh
- Palo Alto Research Center, Palo Alto, California, USA
| | - Richard Bruce
- Palo Alto Research Center, Palo Alto, California, USA
| | - George Somlo
- Departments of Medical Oncology and Therapeutics Research, City of Hope Cancer Center, Duarte, California, USA
| | - Jiaoti Huang
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Lidia Sambucetti
- SRI International Biosciences Division, Menlo Park, California, USA
| |
Collapse
|
25
|
Li YQ, Chandran BK, Lim CT, Chen X. Rational Design of Materials Interface for Efficient Capture of Circulating Tumor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500118. [PMID: 27980914 PMCID: PMC5115340 DOI: 10.1002/advs.201500118] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/25/2015] [Indexed: 05/11/2023]
Abstract
Originating from primary tumors and penetrating into blood circulation, circulating tumor cells (CTCs) play a vital role in understanding the biology of metastasis and have great potential for early cancer diagnosis, prognosis and personalized therapy. By exploiting the specific biophysical and biochemical properties of CTCs, various material interfaces have been developed for the capture and detection of CTCs from blood. However, due to the extremely low number of CTCs in peripheral blood, there exists a need to improve the efficiency and specificity of the CTC capture and detection. In this regard, a critical review of the numerous reports of advanced platforms for highly efficient and selective capture of CTCs, which have been spurred by recent advances in nanotechnology and microfabrication, is essential. This review gives an overview of unique biophysical and biochemical properties of CTCs, followed by a summary of the key material interfaces recently developed for improved CTC capture and detection, with focus on the use of microfluidics, nanostructured substrates, and miniaturized nuclear magnetic resonance-based systems. Challenges and future perspectives in the design of material interfaces for capture and detection of CTCs in clinical applications are also discussed.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue SIngapore 639798 Singapore; School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Medical College of Soochow University Suzhou Jiangsu 215123 China
| | - Bevita K Chandran
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue SIngapore 639798 Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering Mechanobiology Institute Centre for Advanced 2D Materials National University of Singapore 9 Engineering Drive 1 Singapore 117575 Singapore
| | - Xiaodong Chen
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue SIngapore 639798 Singapore
| |
Collapse
|
26
|
Mechanical aspects of microtubule bundling in taxane-treated circulating tumor cells. Biophys J 2015; 107:1236-1246. [PMID: 25185559 DOI: 10.1016/j.bpj.2014.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/15/2014] [Accepted: 07/01/2014] [Indexed: 01/23/2023] Open
Abstract
Microtubules play an important role in many cellular processes, including mitotic spindle formation and cell division. Taxane-based anticancer treatments lead to the stabilization of microtubules, thus preventing the uncontrolled proliferation of tumor cells. One of the striking physical features of taxane-treated cells is the localization of their microtubules, which can be observed via fluorescent microscopy as an intense fluorescent band and are referred to as a microtubule bundle. With the recent advances in capturing and analyzing tumor cells circulating in a patient's blood system, there is increasing interest in using these cells to examine a patient's response to treatment. This includes taxanes that are used routinely in clinics to treat prostate, breast, lung, and other cancers. Here, we have used a computational model of microtubule mechanics to investigate self-arrangement patterns of stabilized microtubules, which allowed for the identification of specific combinations of three physical parameters: microtubule stiffness, intracellular viscosity, and cell shape, that can prevent the formation of microtubule bundles in cells with stabilized microtubules, such as taxane-treated cells. We also developed a method to quantify bundling in the whole microtubule aster structure and a way to compare the simulated results to fluorescent images from experimental data. Moreover, we investigated microtubule rearrangement in both suspended and attached cells and showed that the observed final microtubule patterns depend on the experimental protocol. The results from our computational studies can explain the heterogeneous bundling phenomena observed via fluorescent immunostaining from a mechanical point of view without relying on heterogeneous cellular responses to the microtubule-stabilizing drug.
Collapse
|
27
|
Johnson ES, Anand RK, Chiu DT. Improved Detection by Ensemble-Decision Aliquot Ranking of Circulating Tumor Cells with Low Numbers of a Targeted Surface Antigen. Anal Chem 2015; 87:9389-95. [DOI: 10.1021/acs.analchem.5b02241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Liu Y, Zhu F, Dan W, Fu Y, Liu S. Construction of carbon nanotube based nanoarchitectures for selective impedimetric detection of cancer cells in whole blood. Analyst 2015; 139:5086-92. [PMID: 25110907 DOI: 10.1039/c4an00758a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A carbon nanotube (CNT) based nanoarchitecture is developed for rapid, sensitive and specific detection of cancer cells by using real time electrical impedance sensing. The sensor is constructed with carbon nanotube (CNT) multilayers and EpCAM (epithelial cell adhesion molecule) antibodies, which are assembled on an indium tin oxide (ITO) electrode surface. The binding of tumor cells to EpCAM antibodies causes increase of the electron-transfer resistance. The electrochemical impedance of the prepared biosensors is linear with the logarithm of concentration of the liver cancer cell line (HepG2) within the concentration range of 10 to 10(5) cells per mL. The detection limit for HepG2 cells is 5 cells per mL. The proposed impedimetric sensing devices allow for sensitive and specific detection of cancer cells in whole-blood samples without any sample pretreatment steps.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, China.
| | | | | | | | | |
Collapse
|
29
|
Dent BM, Ogle LF, O'Donnell RL, Hayes N, Malik U, Curtin NJ, Boddy AV, Plummer ER, Edmondson RJ, Reeves HL, May FEB, Jamieson D. High-resolution imaging for the detection and characterisation of circulating tumour cells from patients with oesophageal, hepatocellular, thyroid and ovarian cancers. Int J Cancer 2015; 138:206-16. [PMID: 26178530 PMCID: PMC4737101 DOI: 10.1002/ijc.29680] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 06/09/2015] [Indexed: 12/11/2022]
Abstract
Interest has increased in the potential role of circulating tumour cells in cancer management. Most cell‐based studies have been designed to determine the number of circulating tumour cells in a given volume of blood. Ability to understand the biology of the cancer cells would increase the clinical potential. The purpose of this study was to develop and validate a novel, widely applicable method for detection and characterisation of circulating tumour cells. Cells were imaged with an ImageStreamX imaging flow cytometer which allows detection of expression of multiple biomarkers on each cell and produces high‐resolution images. Depletion of haematopoietic cells was by red cell lysis, leukocyte common antigen CD45 depletion and differential centrifugation. Expression of epithelial cell adhesion molecule, cytokeratins, tumour‐type‐specific biomarkers and CD45 was detected by immunofluorescence. Nuclei were identified with DAPI or DRAQ5 and brightfield images of cells were collected. The method is notable for the dearth of cell damage, recoveries greater than 50%, speed and absence of reliance on the expression of a single biomarker by the tumour cells. The high‐quality images obtained ensure confidence in the specificity of the method. Validation of the methodology on samples from patients with oesophageal, hepatocellular, thyroid and ovarian cancers confirms its utility and specificity. Importantly, this adaptable method is applicable to all tumour types including those of nonepithelial origin. The ability to measure simultaneously the expression of multiple biomarkers will facilitate analysis of the cancer cell biology of individual circulating tumour cells. What's new? Circulating tumour cells (CTCs) are disseminated malignant cells from which biological and therapeutic information may be obtained non‐invasively. Detection of small CTC populations within the large number of normal blood cells is a challenge. This study describes a novel method for the detection and high‐resolution imaging of CTCs. Unlike most other studies, CTC detection is not reliant upon expression of a single biomarker. The method is applicable to all cancers; the authors present preliminary results from four tumour types. The high quality of the images allows biological characterisation of the tumour cells and increases the clinical potential of the approach.
Collapse
Affiliation(s)
- Barry M Dent
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Northern Oesophago-Gastric Cancer Unit, Newcastle upon Tyne, United Kingdom
| | - Laura F Ogle
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel L O'Donnell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.,Queen Elizabeth Hospital, Northern Gynaecological Oncology Centre, Gateshead, United Kingdom
| | - Nicholas Hayes
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Northern Oesophago-Gastric Cancer Unit, Newcastle upon Tyne, United Kingdom
| | - Ujjal Malik
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle upon Tyne, United Kingdom
| | - Nicola J Curtin
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alan V Boddy
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - E Ruth Plummer
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle upon Tyne, United Kingdom
| | - Richard J Edmondson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.,Queen Elizabeth Hospital, Northern Gynaecological Oncology Centre, Gateshead, United Kingdom
| | - Helen L Reeves
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle upon Tyne Hospitals NHS Foundation Trust, The Liver Unit, Newcastle upon Tyne, United Kingdom
| | - Felicity E B May
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle University Institute for Ageing, Newcastle upon Tyne, United Kingdom
| | - David Jamieson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
30
|
The detection of EpCAM(+) and EpCAM(-) circulating tumor cells. Sci Rep 2015; 5:12270. [PMID: 26184843 PMCID: PMC4505332 DOI: 10.1038/srep12270] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
EpCAM expressing circulating tumor cells, detected by CellSearch, are predictive of short survival in several cancers and may serve as a liquid biopsy to guide therapy. Here we investigate the presence of EpCAM(+) CTC detected by CellSearch and EpCAM(-) CTC discarded by CellSearch, after EpCAM based enrichment. EpCAM(-) CTC were identified by filtration and fluorescent labelling. This approach was validated using different cell lines spiked into blood and evaluated on blood samples of 27 metastatic lung cancer patients. The majority of spiked EpCAM(+) cells could be detected with CellSearch, whereas most spiked cells with EpCAM(low) or EpCAM(-) expression were detected using filtration. Five or more CTC were detected in 15% of the patient samples, this increased to 41% when adding the CTC detected in the discarded blood. The number of patients with CTC and the number of CTC detected were doubled by the presence of EpCAM(-) CTC. In this pilot study, the presence of EpCAM(+) CTC was associated with poor outcome, whereas the EpCAM(-) CTC were not. This observation will need to be confirmed in larger studies and molecular characterization needs to be conducted to elucidate differences between EpCAM(-) and EpCAM(+) CTC.
Collapse
|
31
|
Li J, Gregory SG, Garcia-Blanco MA, Armstrong AJ. Using circulating tumor cells to inform on prostate cancer biology and clinical utility. Crit Rev Clin Lab Sci 2015; 52:191-210. [PMID: 26079252 DOI: 10.3109/10408363.2015.1023430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Substantial advances in the molecular biology of prostate cancer have led to the approval of multiple new systemic agents to treat men with metastatic castration-resistant prostate cancer (mCRPC). These treatments encompass androgen receptor directed therapies, immunotherapies, bone targeting radiopharmaceuticals and cytotoxic chemotherapies. There is, however, great heterogeneity in the degree of patient benefit with these agents, thus fueling the need to develop predictive biomarkers that are able to rationally guide therapy. Circulating tumor cells (CTCs) have the potential to provide an assessment of tumor-specific biomarkers through a non-invasive, repeatable "liquid biopsy" of a patient's cancer at a given point in time. CTCs have been extensively studied in men with mCRPC, where CTC enumeration using the Cellsearch® method has been validated and FDA approved to be used in conjunction with other clinical parameters as a prognostic biomarker in metastatic prostate cancer. In addition to enumeration, more sophisticated molecular profiling of CTCs is now feasible and may provide more clinical utility as it may reflect tumor evolution within an individual particularly under the pressure of systemic therapies. Here, we review technologies used to detect and characterize CTCs, and the potential biological and clinical utility of CTC molecular profiling in men with metastatic prostate cancer.
Collapse
Affiliation(s)
- Jing Li
- a Duke Cancer Institute, Duke University Medical Center , Durham , NC , USA
| | | | | | | |
Collapse
|
32
|
Strohm EM, Kolios MC. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics. Cytometry A 2015; 87:741-9. [DOI: 10.1002/cyto.a.22698] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/05/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Eric M. Strohm
- Department of Physics; Ryerson University; Toronto Canada
| | | |
Collapse
|
33
|
Rodriguez-Lee M, Kuhn P, Webb DR. Advancing cancer patient care by integrating circulating tumor cell technology to understand the spatial and temporal dynamics of cancer. Drug Dev Res 2015; 75:384-92. [PMID: 25195582 DOI: 10.1002/ddr.21225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Spatial and temporal dynamics of cancer, studied with physical science approaches at critical transition points of the disease can provide insight into the biology of cancer and the evolutionary changes that occur both naturally and in response to therapy. A very promising development in translational cancer medicine has been the emergence of circulating tumor cells (CTC) as minimally invasive "liquid biopsies." We envision that the future utility of CTC will not simply be confined to enumeration, but also include their routine characterization using a high-content approach that investigates morphometrics, protein expression and genomic profiling. This novel approach guided by mathematical models to predict the spread of disease from the primary site to secondary site can bring the bench to the bedside for cancer patients. It is agnostic with reference to drug choice and treatment regimen, which also means that each patient is unique. The approach is Bayesian from a data collection perspective and is patient-centric rather than drug or new chemical entity-centric. The analysis of data comes from an understanding of commonalities and differences that are detected among patients with a given cancer type. Thus, patients are treated over the course of their disease with various drug regimens that reflects our real-time understanding of their evolving tumor genomics and response to treatment. This likely means that smaller cohorts of patients receive any given regimen but we hypothesize that it would lead to better patient outcomes than with the current classic approach to drug testing and development.
Collapse
Affiliation(s)
- Mariam Rodriguez-Lee
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | | |
Collapse
|
34
|
Enrichment of circulating melanoma cells (CMCs) using negative selection from patients with metastatic melanoma. Oncotarget 2015; 5:2450-61. [PMID: 24811334 PMCID: PMC4058018 DOI: 10.18632/oncotarget.1683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Circulating tumor cells have emerged as prognostic biomarkers in the treatment of metastatic cancers of epithelial origins viz., breast, colorectal and prostate. These tumors express Epithelial Cell Adhesion Molecule (EpCAM) on their cell surface which is used as an antigen for immunoaffinity capture. However, EpCAM capture technologies are of limited utility for non-epithelial cancers such as melanoma. We report a method to enrich Circulating Melanoma Cells (CMCs) that does not presuppose malignant cell characteristics. CMCs were enriched by centrifugation of blood samples from healthy (N = 10) and patient (N = 11) donors, followed by RBC lysis and immunomagnetic depletion of CD45-positive leukocytes in a specialized magnetic separator. CMCs were identified by immunocytochemistry using Melan-A or S100B as melanoma markers and enumerated using automated microscopy image analyses. Separation was optimized for maximum sensitivity and recovery of CMCs. Our results indicate large number of CMCs in Stage IV melanoma patients. Analysis of survival suggested a trend toward decreased survival with increased number of CMCs. Moreover, melanoma-associated miRs were found to be higher in CMC-enriched fractions in two patients when compared with the unseparated samples, validating this method as applicable for molecular analyses. Negative selection is a promising approach for isolation of CMCs and other EpCAM -negative CTCs, and is amenable to molecular analysis of CMCs. Further studies are required to validate its efficacy at capturing specific circulating cells for genomic analysis, and xenograft studies.
Collapse
|
35
|
Kantara C, O’Connell M, Luthra G, Gajjar A, Sarkar S, Ullrich R, Singh P. Methods for detecting circulating cancer stem cells (CCSCs) as a novel approach for diagnosis of colon cancer relapse/metastasis. J Transl Med 2015; 95:100-12. [PMID: 25347154 PMCID: PMC4281282 DOI: 10.1038/labinvest.2014.133] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are believed to be resistant to currently available therapies and may be responsible for relapse of cancer in patients. Measuring circulating tumor cells (CTCs) in the blood of patients has emerged as a non-invasive diagnostic procedure for screening patients who may be at high risk for developing metastatic cancers or relapse of the cancer disease. However, accurate detection of CTCs has remained a problem, as epithelial-cell markers used to date are not always reliable for detecting CTCs, especially during epithelial-mesenchymal transition. As CSCs are required to initiate metastatic tumors, our goal was to optimize and standardize a method for identifying circulating CSCs (CCSCs) in patients, using established CSC markers. Here, we report for the first time the detection of CCSCs in the blood of athymic nude mice, bearing metastatic tumors, and in the blood of patients positive for colonic adenocarcinomas. Using a simple and non-expensive method, we isolated a relatively pure population of CSCs (CD45-/CK19+), free of red blood cells and largely free of contaminating CD45+ white blood cells. Enriched CCSCs from patients with colon adenocarcinomas had a malignant phenotype and co-expressed CSC markers (DCLK1/LGR5) with CD44/Annexin A2. CSCs were not found in the blood of non-cancer patients, free of colonic growths. Enriched CCSCs from colon cancer patients grew primary spheroids, suggesting the presence of tumor-initiating cells in the blood of these patients. In conclusion, we have developed a novel diagnostic assay for detecting CSCs in circulation, which may more accurately predict the risk of relapse or metastatic disease in patients. As CSCs can potentially initiate metastatic growths, patients positive for CCSCs can be treated with inhibitory agents that selectively target CSCs, besides conventional treatments, to reduce the risk of relapse/metastatic disease for improving clinical outcomes.
Collapse
Affiliation(s)
- Carla Kantara
- Department of Neuroscience and Cell Biology, utmbHealth, Galveston, TX
| | - Malaney O’Connell
- Department of Neuroscience and Cell Biology, utmbHealth, Galveston, TX
| | | | | | | | - Robert Ullrich
- Department of Radiation Oncology, utmbHealth, Galveston, TX
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, utmbHealth, Galveston, TX
| |
Collapse
|
36
|
Toss A, Mu Z, Fernandez S, Cristofanilli M. CTC enumeration and characterization: moving toward personalized medicine. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:108. [PMID: 25489582 DOI: 10.3978/j.issn.2305-5839.2014.09.06] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/28/2014] [Indexed: 12/27/2022]
Abstract
The primary cause of tumor-related death in breast cancer (BC) is still represented by distant metastasization. The dissemination of tumor cells from the primary tumor to distant sites through bloodstream cannot be early detected by standard imaging methods. The enumeration of circulating tumor cells (CTCs) represents an effective prognostic and predictive biomarker, which is able to monitor efficacy of adjuvant therapies, detect early development of (micro)metastases and at last, assess therapeutic responses of advanced disease earlier than traditional imaging methods. Moreover, since repeated tissue biopsies are invasive, costly and not always feasible, the assessment of tumor characteristics on CTCs, by a peripheral blood sample as a 'liquid biopsy', represents an attractive opportunity. The implementation of molecular and genomic characterization of CTCs could contribute to improve the treatment selection and thus, to move toward more personalized treatments. This review describes the current state of the art on CTC detection strategies, the evidence to demonstrate their clinical validity, and their potential impact for both future clinical trial design and, decision-making process in our daily practice.
Collapse
Affiliation(s)
- Angela Toss
- 1 Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy ; 2 Department of Medical Oncology, Thomas Jefferson University & Kimmel Cancer Center, Philadelphia, PA, USA
| | - Zhaomei Mu
- 1 Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy ; 2 Department of Medical Oncology, Thomas Jefferson University & Kimmel Cancer Center, Philadelphia, PA, USA
| | - Sandra Fernandez
- 1 Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy ; 2 Department of Medical Oncology, Thomas Jefferson University & Kimmel Cancer Center, Philadelphia, PA, USA
| | - Massimo Cristofanilli
- 1 Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy ; 2 Department of Medical Oncology, Thomas Jefferson University & Kimmel Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
37
|
Mego M, Reuben JM. Prognostic and Predictive Role of Circulating Tumor Cells in Breast Cancer. CURRENT BREAST CANCER REPORTS 2014. [DOI: 10.1007/s12609-014-0164-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Smith JP, Lannin TB, Syed Y, Santana SM, Kirby BJ. Parametric control of collision rates and capture rates in geometrically enhanced differential immunocapture (GEDI) microfluidic devices for rare cell capture. Biomed Microdevices 2014; 16:143-51. [PMID: 24078270 DOI: 10.1007/s10544-013-9814-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The enrichment and isolation of rare cells from complex samples, such as circulating tumor cells (CTCs) from whole blood, is an important engineering problem with widespread clinical applications. One approach uses a microfluidic obstacle array with an antibody surface functionalization to both guide cells into contact with the capture surface and to facilitate adhesion; geometrically enhanced differential immunocapture is a design strategy in which the array is designed to promote target cell–obstacle contact and minimize other interactions (Gleghorn et al. 2010; Kirby et al. 2012). We present a simulation that uses capture experiments in a simple Hele-Shaw geometry (Santana et al. 2012) to inform a target-cell-specific capture model that can predict capture probability in immunocapture microdevices of any arbitrary complex geometry. We show that capture performance is strongly dependent on the array geometry, and that it is possible to select an obstacle array geometry that maximizes capture efficiency (by creating combinations of frequent target cell–obstacle collisions and shear stress low enough to support capture), while simultaneously enhancing purity by minimizing nonspecific adhesion of both smaller contaminant cells (with infrequent cell–obstacle collisions) and larger contaminant cells (by focusing those collisions into regions of high shear stress).
Collapse
|
39
|
Chen TJ, Wu JK, Chang YC, Fu CY, Wang TP, Lin CY, Chang HY, Chieng CC, Tzeng CY, Tseng FG. High-efficiency rare cell identification on a high-density self-assembled cell arrangement chip. BIOMICROFLUIDICS 2014; 8:036501. [PMID: 24926391 PMCID: PMC4032428 DOI: 10.1063/1.4874716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/23/2014] [Indexed: 05/17/2023]
Abstract
Detection of individual target cells among a large amount of blood cells is a major challenge in clinical diagnosis and laboratory protocols. Many researches show that two dimensional cells array technology can be incorporated into routine laboratory procedures for continuously and quantitatively measuring the dynamic behaviours of large number of living cells in parallel, while allowing other manipulations such as staining, rinsing, and even retrieval of targeted cells. In this study, we present a high-density cell self-assembly technology capable of quickly spreading over 300 000 cells to form a dense mono- to triple-layer cell arrangement in 5 min with minimal stacking of cells by the gentle incorporation of gravity and peripheral micro flow. With this self-assembled cell arrangement (SACA) chip technology, common fluorescent microscopy and immunofluorescence can be utilized for detecting and analyzing target cells after immuno-staining. Validated by experiments with real human peripheral blood samples, the SACA chip is suitable for detecting rare cells in blood samples with a ratio lower than 1/100 000. The identified cells can be isolated and further cultured in-situ on a chip for follow-on research and analysis. Furthermore, this technology does not require external mechanical devices, such as pump and valves, which simplifies operation and reduces system complexity and cost. The SACA chip offers a high-efficient, economical, yet simple scheme for identification and analysis of rare cells. Therefore, potentially SACA chip may provide a feasible and economical platform for rare cell detection in the clinic.
Collapse
Affiliation(s)
- Tsung-Ju Chen
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jen-Kuei Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Cheng Chang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Yu Fu
- Institute of Molecular Medicine, National Tsing Hua University, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Tsung-Pao Wang
- Institute of Molecular Medicine, National Tsing Hua University, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Chun-Yen Lin
- Institute of Molecular Medicine, National Tsing Hua University, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ching-Chang Chieng
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Chung-Yuh Tzeng
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan ; Academia Sinica, National Tsing Hua University, Taipei 115, Taiwan
| |
Collapse
|
40
|
Tsujiura M, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Otsuji E. Liquid biopsy of gastric cancer patients: Circulating tumor cells and cell-free nucleic acids. World J Gastroenterol 2014; 20:3265-3286. [PMID: 24696609 PMCID: PMC3964398 DOI: 10.3748/wjg.v20.i12.3265] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/27/2013] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and analyses of these changes have been increasingly utilized for diagnostic, prognostic and therapeutic purposes in malignant diseases including gastric cancer (GC). Surgical and/or biopsy specimens are generally used to understand the tumor-associated alterations; however, those approaches cannot always be performed because of their invasive characteristics and may fail to reflect current tumor dynamics and drug sensitivities, which may change during the therapeutic process. Therefore, the importance of developing a non-invasive biomarker with the ability to monitor real-time tumor dynamics should be emphasized. This concept, so called “liquid biopsy”, would provide an ideal therapeutic strategy for an individual cancer patient and would facilitate the development of “tailor-made” cancer management programs. In the blood of cancer patients, the presence and potent utilities of circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) such as DNA, mRNA and microRNA have been recognized, and their clinical relevance is attracting considerable attention. In this review, we discuss recent developments in this research field as well as the relevance and future perspectives of CTCs and cfNAs in cancer patients, especially focusing on GC.
Collapse
|
41
|
Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E, Martel JM, Kojic N, Smith K, Chen PI, Yang J, Hwang H, Morgan B, Trautwein J, Barber TA, Stott SL, Maheswaran S, Kapur R, Haber DA, Toner M. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 2014; 9:694-710. [PMID: 24577360 DOI: 10.1038/nprot.2014.044] [Citation(s) in RCA: 521] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to isolate and analyze rare circulating tumor cells (CTCs) has the potential to further our understanding of cancer metastasis and enhance the care of cancer patients. In this protocol, we describe the procedure for isolating rare CTCs from blood samples by using tumor antigen-independent microfluidic CTC-iChip technology. The CTC-iChip uses deterministic lateral displacement, inertial focusing and magnetophoresis to sort up to 10⁷ cells/s. By using two-stage magnetophoresis and depletion antibodies against leukocytes, we achieve 3.8-log depletion of white blood cells and a 97% yield of rare cells with a sample processing rate of 8 ml of whole blood/h. The CTC-iChip is compatible with standard cytopathological and RNA-based characterization methods. This protocol describes device production, assembly, blood sample preparation, system setup and the CTC isolation process. Sorting 8 ml of blood sample requires 2 h including setup time, and chip production requires 2-5 d.
Collapse
Affiliation(s)
- Nezihi Murat Karabacak
- 1] Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2]
| | - Philipp S Spuhler
- 1] Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2]
| | - Fabio Fachin
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eugene J Lim
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Vincent Pai
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emre Ozkumur
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joseph M Martel
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nikola Kojic
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kyle Smith
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pin-i Chen
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jennifer Yang
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Henry Hwang
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bailey Morgan
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Julie Trautwein
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas A Barber
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shannon L Stott
- 1] Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Ravi Kapur
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel A Haber
- 1] Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Mehmet Toner
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Breitenbuecher F, Hoffarth S, Worm K, Cortes-Incio D, Gauler TC, Köhler J, Herold T, Schmid KW, Freitag L, Kasper S, Schuler M. Development of a highly sensitive and specific method for detection of circulating tumor cells harboring somatic mutations in non-small-cell lung cancer patients. PLoS One 2014; 9:e85350. [PMID: 24465542 PMCID: PMC3897440 DOI: 10.1371/journal.pone.0085350] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/04/2013] [Indexed: 01/10/2023] Open
Abstract
Background Oncogenic mutations are powerful predictive biomarkers for molecularly targeted cancer therapies. For mutation detection patients have to undergo invasive tumor biopsies. Alternatively, archival samples are used which may no longer reflect the actual tumor status. Circulating tumor cells (CTC) could serve as an alternative platform to detect somatic mutations in cancer patients. We sought to develop a sensitive and specific assay to detect mutations in the EGFR gene in CTC from lung cancer patients. Methods We developed a novel assay based on real-time polymerase chain reaction (PCR) and melting curve analysis to detect activating EGFR mutations in blood cell fractions enriched in CTC. Non-small-cell lung cancer (NSCLC) was chosen as disease model with reportedly very low CTC counts. The assay was prospectively validated in samples from patients with EGFR-mutant and EGFR-wild type NSCLC treated within a randomized clinical trial. Sequential analyses were conducted to monitor CTC signals during therapy and correlate mutation detection in CTC with treatment outcome. Results Assay sensitivity was optimized to enable detection of a single EGFR-mutant CTC/mL peripheral blood. CTC were detected in pretreatment blood samples from all 8 EGFR-mutant lung cancer patients studied. Loss of EGFR-mutant CTC signals correlated with treatment response, and its reoccurrence preceded relapse. Conclusions Despite low abundance of CTC in NSCLC oncogenic mutations can be reproducibly detected by applying an unbiased CTC enrichment strategy and highly sensitive PCR and melting curve analysis. This strategy may enable non-invasive, specific biomarker diagnostics and monitoring in patients undergoing targeted cancer therapies.
Collapse
MESH Headings
- Adult
- Aged
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- ErbB Receptors/genetics
- Female
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/prevention & control
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Nucleic Acid Denaturation
- Real-Time Polymerase Chain Reaction/methods
- Sensitivity and Specificity
- Single-Cell Analysis
Collapse
Affiliation(s)
- Frank Breitenbuecher
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Sandra Hoffarth
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karl Worm
- Institute of Pathology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Diana Cortes-Incio
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas C. Gauler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, Ruhrlandklinik, West German Lung Center, University Duisburg-Essen, Essen, Germany
| | - Jens Köhler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lutz Freitag
- Division of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Duisburg-Essen, Essen, Germany
| | - Stefan Kasper
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, Ruhrlandklinik, West German Lung Center, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
43
|
Jin C, McFaul SM, Duffy SP, Deng X, Tavassoli P, Black PC, Ma H. Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. LAB ON A CHIP 2014; 14:32-44. [PMID: 23963515 DOI: 10.1039/c3lc50625h] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Circulating tumor cells (CTCs) are malignant cells shed into the bloodstream from a tumor that have the potential to establish metastases in different anatomical sites. The separation and subsequent characterization of these cells is emerging as an important tool for both biomarker discovery and the elucidation of mechanisms of metastasis. Established methods for separating CTCs rely on biochemical markers of epithelial cells that are known to be unreliable because of epithelial-to-mesenchymal transition, which reduces expression for epithelial markers. Emerging label-free separation methods based on the biophysical and biomechanical properties of CTCs have the potential to address this key shortcoming and present greater flexibility in the subsequent characterization of these cells. In this review we first present what is known about the biophysical and biomechanical properties of CTCs from historical studies and recent research. We then review biophysical label-free technologies that have been developed for CTC separation, including techniques based on filtration, hydrodynamic chromatography, and dielectrophoresis. Finally, we evaluate these separation methods and discuss requirements for subsequent characterization of CTCs.
Collapse
Affiliation(s)
- Chao Jin
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, Canada V6T 1Z4.
| | | | | | | | | | | | | |
Collapse
|
44
|
Samlowski WE, McGregor JR, Samlowski ST, Tharkar S, Shen S, Bentz JS. Growth of Circulating Tumor Cell-Derived Colonies from Peripheral Blood of Melanoma Patients: Preliminary Characterization of Colony Composition. Health (London) 2014. [DOI: 10.4236/health.2014.612181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Friedlander TW, Premasekharan G, Paris PL. Looking back, to the future of circulating tumor cells. Pharmacol Ther 2013; 142:271-80. [PMID: 24362084 DOI: 10.1016/j.pharmthera.2013.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022]
Abstract
Detection and analysis of circulating tumor cells (CTCs) from patients with metastatic malignancies have become active areas of research in recent years. CTC enumeration has already proven useful in establishing prognosis for patients with metastatic breast, colon, and prostate cancer. More recently, studies are going beyond enumeration, exploring the CTCs as a means to better understand the mechanisms of tumorigenesis, invasion, and metastasis and the value of CTC characterization for prognosis and tailoring of treatment. Analysis of CTC subpopulations, for example, is highlighting the importance of the epithelial to mesenchymal transition (EMT), a process which may be crucial for allowing tumors to invade into and grow at sites distant from the original tumor site. Similarly, the detection of CTCs expressing markers of stemness may also have important implications for treatment resistance. Genomic analysis of CTC and CTC subpopulations may allow for selection of novel therapeutic targets to combat treatment resistance. CTCs become a particularly valuable biospecimen resource when tissue biopsies are unavailable or not feasible and liquid biopsies allow for serial monitoring. Lastly, cultures of patient-derived CTCs may allow for an evaluation of therapeutic strategies performed ex vivo and in real time. This review article will focus on these developments, starting with the CTC pathogenesis, going on to discuss the different platforms available for CTC isolation and their use to date in these arenas, then will explore multiple topics including the existing data concerning CTC subpopulations and their clinical relevance, genomic characterization, and lastly, avenues for future research.
Collapse
Affiliation(s)
- Terence W Friedlander
- Division of Hematology & Medical Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States.
| | - Gayatri Premasekharan
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States
| | - Pamela L Paris
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States
| |
Collapse
|
46
|
Zhao J, Zhu L, Guo C, Gao T, Zhu X, Li G. A new electrochemical method for the detection of cancer cells based on small molecule-linked DNA. Biosens Bioelectron 2013; 49:329-33. [DOI: 10.1016/j.bios.2013.05.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 12/11/2022]
|
47
|
Torino F, Bonmassar E, Bonmassar L, De Vecchis L, Barnabei A, Zuppi C, Capoluongo E, Aquino A. Circulating tumor cells in colorectal cancer patients. Cancer Treat Rev 2013; 39:759-72. [PMID: 23375250 DOI: 10.1016/j.ctrv.2012.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/11/2022]
|
48
|
Zhao M, Nelson WC, Wei B, Schiro PG, Hakimi BM, Johnson ES, Anand RK, Gyurkey GS, White LM, Whiting SH, Coveler AL, Chiu DT. New generation of ensemble-decision aliquot ranking based on simplified microfluidic components for large-capacity trapping of circulating tumor cells. Anal Chem 2013; 85:9671-7. [PMID: 24087951 DOI: 10.1021/ac401985r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ensemble-decision aliquot ranking (eDAR) is a sensitive and high-throughput method to analyze circulating tumor cells (CTCs) from peripheral blood. Here, we report the next generation of eDAR, where we designed and optimized a new hydrodynamic switching scheme for the active sorting step in eDAR, which provided fast cell sorting with an improved reproducibility and stability. The microfluidic chip was also simplified by incorporating a functional area for subsequent purification using microslits fabricated by standard lithography method. Using the reported second generation of eDAR, we were able to analyze 1 mL of whole-blood samples in 12.5 min, with a 95% recovery and a zero false positive rate (n = 15).
Collapse
Affiliation(s)
- Mengxia Zhao
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mutational Analysis of Circulating Tumor Cells Using a Novel Microfluidic Collection Device and qPCR Assay. Transl Oncol 2013; 6:528-38. [PMID: 24151533 DOI: 10.1593/tlo.13367] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/19/2013] [Accepted: 04/24/2013] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) provide a readily accessible source of tumor material from patients with cancer. Molecular profiling of these rare cells can lead to insight on disease progression and therapeutic strategies. A critical need exists to isolate CTCs with sufficient quantity and sample integrity to adapt to conventional analytical techniques. We present a microfluidic platform (IsoFlux) that uses flow control and immunomagnetic capture to enhance CTC isolation. A novel cell retrieval mechanism ensures complete transfer of CTCs into the molecular assay. Improved sensitivity to the capture antigen was demonstrated by spike-in experiments for three cell lines of varying levels of antigen expression. We obtained spike-in recovery rates of 74%, 75%, and 85% for MDA-MB-231 (low), PC3 (middle), and SKBR3 (high) cell lines. Recovery using matched enumeration protocols and matched samples (PC3) yielded 90% and 40% recovery for the IsoFlux and CellSearch systems, respectively. In matched prostate cancer samples (N = 22), patients presenting more than four CTCs per blood draw were 95% and 36% using IsoFlux and CellSearch, respectively. An assay for detecting KRAS mutations was described along with data from patients with colorectal cancer, of which 87% presented CTCs above the assay's limit of detection (four CTCs). The CTC KRAS mutant rate was 50%, with 46% of patients displaying a CTC KRAS mutational status that differed from the previously acquired tissue biopsy data. The microfluidic system and mutation assay presented here provide a complete workflow to track oncogene mutational changes longitudinally with high success rates.
Collapse
|
50
|
Conteduca V, Zamarchi R, Rossi E, Condelli V, Troiani L, Aieta M. Circulating tumor cells: utopia or reality? Future Oncol 2013; 9:1337-52. [DOI: 10.2217/fon.13.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) could be considered a sign of tumor aggressiveness, but highly sensitive and specific methods of CTC detection are necessary owing to the rarity and heterogeneity of CTCs in peripheral blood. This review summarizes recent studies on tumor biology, with particular attention to the metastatic cascade, and the molecular characterization and clinical significance of CTCs. Recent technological approaches to enrich and detect these cells and challenges of CTCs for individualized cancer treatment are also discussed. This review also provides an insight into the positive and negative features of the future potential applications of CTC detection, which sometimes remains still a ‘utopia’, but its actual utility remains among the fastest growing research fields in oncology.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Department of Medical Oncology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Via Piero Maroncelli 40, 47014 Meldola (FC), Italy
| | | | - Elisabetta Rossi
- Department of Surgery, Oncology & Gastroenterology, Oncology Section, University of Padova, Italy
| | - Valentina Condelli
- Centro di Riferimento Oncologico della Basilicata IRCCS, Rionero in Vulture, Italy
| | - Laura Troiani
- Centro di Riferimento Oncologico della Basilicata IRCCS, Rionero in Vulture, Italy
| | - Michele Aieta
- Centro di Riferimento Oncologico della Basilicata IRCCS, Rionero in Vulture, Italy
| |
Collapse
|