1
|
Gorton MW, Goodarzi P, Lei X, Anderson M, Habibi M, Wilson N, Pezeshki A. Dietary Insulinogenic Amino Acid Restriction Improves Glucose Metabolism in a Neonatal Piglet Model. Nutrients 2025; 17:1675. [PMID: 40431415 DOI: 10.3390/nu17101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Dietary consumption of insulinogenic amino acids (IAA) is known to contribute to the development of insulin resistance. It remains to be studied whether dietary IAA restriction improves glucose metabolism and insulin sensitivity and whether this improvement is related to alterations in glucose metabolism in peripheral tissues. The objective of this study was to examine the effect of IAA restriction on glucose metabolism in a piglet model. Methods: Following the acclimation period, thirty-two seven-day-old male piglets were randomly assigned into one of three groups for three weeks as follows (n = 10-11/group): (1) NR (control): basal diet without IAA restriction; (2) R50: basal diet with IAA restricted by 50%; (3) R75: basal diet with IAA restricted by 75%. IAA were alanine (Ala), arginine (Arg), isoleucine (Ile), leucine (Leu), lysine (Lys), threonine (Thr), phenylalanine (Phe), and valine (Val) as suggested by previous studies. Thermal images, body weight, and growth parameters were recorded weekly, oral glucose tolerance tests were performed on week 2 of the study, and blood and tissue samples were collected on week 3 after a meal test. Results: R75 improved glucose tolerance and, together with R50, reduced blood insulin concentration and homeostatic model assessment for insulin resistance (HOMA-IR) value, which is suggestive of improved insulin sensitivity following IAA restriction. R75 increased thermal radiation and decreased adipocyte number in white adipose tissue (WAT). R75 had a greater transcript of glucose transporter 1 (GLUT1), phosphofructokinase, liver type (PFKL), and pyruvate kinase, liver, and RBC (PKLR) in the liver and glucokinase (GCK) in WAT indicating a higher uptake of glucose in the liver and greater glycolysis in both liver and WAT. R75 increased the mRNA abundance of insulin receptor substrate 1 (IRS1) and protein kinase B (AKT1) in skeletal muscle suggestive of enhanced insulin signaling. Further, R75 had a higher mRNA of fibroblast growth factor 21 (FGF-21) in both the liver and hypothalamus and its upstream molecules such as activating transcription factor 4 (ATF4) and inhibin subunit beta E (INHBE) which may contribute to increased energy expenditure and improved glucose tolerance during IAA restriction. Conclusions: IAA restriction improves glucose tolerance and insulin sensitivity in piglets while not reducing body weight, likely through improved hepatic glycolysis and insulin signaling in skeletal muscle, and induced FGF-21 signaling in both the liver and hypothalamus.
Collapse
Affiliation(s)
- Matthew W Gorton
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Parniyan Goodarzi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xia Lei
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael Anderson
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Mohammad Habibi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nedra Wilson
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
2
|
Miao X, Alidadipour A, Saed V, Sayyadi F, Jadidi Y, Davoudi M, Amraee F, Jadidi N, Afrisham R. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol 2024; 61:1339-1361. [PMID: 39031190 DOI: 10.1007/s00592-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Insulin resistance arising from Non-Alcoholic Fatty Liver Disease (NAFLD) stands as a prevalent global ailment, a manifestation within societies stemming from individuals' suboptimal dietary habits and lifestyles. This form of insulin resistance emerges as a pivotal factor in the development of type 2 diabetes mellitus (T2DM). Emerging evidence underscores the significant role of hepatokines, as hepatic-secreted hormone-like entities, in the genesis of insulin resistance and eventual onset of type 2 diabetes. Hepatokines exert influence over extrahepatic metabolism regulation. Their principal functions encompass impacting adipocytes, pancreatic cells, muscles, and the brain, thereby playing a crucial role in shaping body metabolism through signaling to target tissues. This review explores the most important hepatokines, each with distinct influences. Our review shows that Fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand for Toll-like receptor 4 (TLR-4). FGF21 reduces inflammation in diabetes by blocking the nuclear translocation of nuclear factor-κB (NF-κB) in adipocytes and adipose tissue, while also improving glucose metabolism. ANGPTL6 enhances AMPK and insulin signaling in muscle, and suppresses gluconeogenesis. Follistatin can influence insulin resistance and inflammation by interacting with members of the TGF-β family. Adropin show a positive correlation with phosphoenolpyruvate carboxykinase 1 (PCK1), a key regulator of gluconeogenesis. This article delves into hepatokines' impact on NAFLD, inflammation, and T2DM, with a specific focus on insulin resistance. The aim is to comprehend the influence of these recently identified hormones on disease development and their underlying physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Arian Alidadipour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vian Saed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Firooze Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sakaki M, Kamatari Y, Kurisaki A, Funaba M, Hashimoto O. Activin E upregulates uncoupling protein 1 and fibroblast growth factor 21 in brown adipocytes. Mol Cell Endocrinol 2024; 592:112326. [PMID: 38972346 DOI: 10.1016/j.mce.2024.112326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Activin E activates brown and beige adipocytes and has been controversially implicated as a factor that induces obesity and fatty liver. Here, we sought to address this controversial issue by producing recombinant human activin E to evaluate its effects on HB2 brown adipocytes in vitro. Activin E increased uncoupling protein 1 (Ucp1) and fibroblast growth factor 21 (Fgf21) mRNA expression in the adipocytes. This upregulation was suppressed by SB431542, an inhibitor of activin receptor-like kinase (Alk) TGF-β type I receptors. SB431542 also inhibited the activin E-induced phosphorylation of Smad2/3. A promoter assay using a CAGA-Luc reporter and Alk expression vectors revealed that activin E activated the TGF-β/activin pathway via Alk7. The upregulation of Ucp1 and Fgf21 mRNA might be mediated through Alk7 and Smad2/3 phosphorylation. Activin E is a potential stimulator of energy expenditure by activating brown adipocytes and highlights its potential as a therapeutic target for treating obesity.
Collapse
Affiliation(s)
- Maho Sakaki
- Laboratory of Veterinary Toxicology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan; Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Yuji Kamatari
- Life Science Research Center, Gifu University, Gifu, 501-1193, Japan
| | - Akira Kurisaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto, 606-8502, Japan
| | - Osamu Hashimoto
- Laboratory of Veterinary Toxicology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan; Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan.
| |
Collapse
|
4
|
Vestal KA, Kattamuri C, Koyiloth M, Ongaro L, Howard JA, Deaton AM, Ticau S, Dubey A, Bernard DJ, Thompson TB. Activin E is a transforming growth factor β ligand that signals specifically through activin receptor-like kinase 7. Biochem J 2024; 481:547-564. [PMID: 38533769 PMCID: PMC11088876 DOI: 10.1042/bcj20230404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Activins are one of the three distinct subclasses within the greater Transforming growth factor β (TGFβ) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11. While the biological roles and signaling mechanisms of most activins class members have been well-studied, the signaling potential of ActE has remained largely unknown. Here, we characterized the signaling capacity of homodimeric ActE. Molecular modeling of the ligand:receptor complexes showed that ActC and ActE shared high similarity in both the type I and type II receptor binding epitopes. ActE signaled specifically through ALK7, utilized the canonical activin type II receptors, ActRIIA and ActRIIB, and was resistant to the extracellular antagonists follistatin and WFIKKN. In mature murine adipocytes, ActE invoked a SMAD2/3 response via ALK7, like ActC. Collectively, our results establish ActE as a specific signaling ligand which activates the type I receptor, ALK7.
Collapse
Affiliation(s)
- Kylie A. Vestal
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Chandramohan Kattamuri
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Muhasin Koyiloth
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | | | | | - Aditi Dubey
- Alnylam Pharmaceuticals, Cambridge, MA, U.S.A
| | - Daniel J. Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
5
|
Vestal KA, Kattamuri C, Koyiloth M, Ongaro L, Howard JA, Deaton A, Ticau S, Dubey A, Bernard DJ, Thompson TB. Activin E is a TGFβ ligand that signals specifically through activin receptor-like kinase 7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559288. [PMID: 37808681 PMCID: PMC10557571 DOI: 10.1101/2023.09.25.559288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Activins are one of the three distinct subclasses within the greater Transforming Growth Factor β (TGFβ) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11. While the biological roles and signaling mechanisms of most activins class members have been well-studied, the signaling potential of ActE has remained largely unknown. Here, we characterized the signaling capacity of homodimeric ActE. Molecular modeling of the ligand:receptor complexes showed that ActC and ActE shared high similarity in both the type I and type II receptor binding epitopes. ActE signaled specifically through ALK7, utilized the canonical activin type II receptors, ActRIIA and ActRIIB, and was resistant to the extracellular antagonists follistatin and WFIKKN. In mature murine adipocytes, ActE invoked a SMAD2/3 response via ALK7, similar to ActC. Collectively, our results establish ActE as an ALK7 ligand, thereby providing a link between genetic and in vivo studies of ActE as a regulator of adipose tissue.
Collapse
Affiliation(s)
- Kylie A Vestal
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Muhasin Koyiloth
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - James A Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Thomas B Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
6
|
Hahn E, Putra J. Hepatocellular adenoma in the paediatric population: Molecular classification and clinical associations. World J Gastroenterol 2020; 26:2294-2304. [PMID: 32476794 PMCID: PMC7243640 DOI: 10.3748/wjg.v26.i19.2294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/29/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular adenomas (HCAs) represent rare, benign liver tumours occurring predominantly in females taking oral contraceptives. In children, HCAs comprise less than 5% of hepatic tumours and demonstrate association with various conditions. The contemporary classification of HCAs, based on their distinctive genotypes and clinical phenotypes, includes hepatocyte nuclear factor 1 homeobox alpha-inactivated HCAs, beta-catenin-mutated HCAs, inflammatory HCAs, combined beta-catenin-mutated and inflammatory HCAs, sonic hedgehog-activated HCAs, and unclassified HCAs. In children, there is a lack of literature on the characteristics and distribution of HCA subtypes. In this review, we summarized different HCA subtypes and the clinicopathologic spectrum of HCAs in the paediatric population.
Collapse
Affiliation(s)
- Elan Hahn
- Division of Pathology, Department of Paediatric Laboratory Medicine, the Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Juan Putra
- Division of Pathology, Department of Paediatric Laboratory Medicine, the Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, ON, Canada
| |
Collapse
|
7
|
Sekiyama K, Ushiro Y, Kurisaki A, Funaba M, Hashimoto O. Activin E enhances insulin sensitivity and thermogenesis by activating brown/beige adipocytes. J Vet Med Sci 2019; 81:646-652. [PMID: 30880304 PMCID: PMC6541856 DOI: 10.1292/jvms.19-0036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activin E, a secreted peptide encoded by the inhibin/activin βE subunit gene, is a member of the transforming growth factor-β superfamily, which is predominantly expressed in the liver. Recent reports have suggested that activin E plays a role in energy homeostasis as a hepatokine. Here, using transgenic mice overexpressing activin E under the control of the β-actin promoter, we demonstrate that activin E controls energy metabolism through brown/beige adipocytes. The glucose tolerance test and insulin tolerance test showed that the insulin sensitivity was improved in the transgenic mice. Furthermore, the mice had a high body temperature compared with wild-type mice. The transgenic brown adipose tissue and mesenteric white adipose tissue showed upregulation of uncoupling protein 1, which enables energy dissipation as heat by uncoupling oxidative phosphorylation from ATP production. Present results indicate that activin E activates energy expenditure through brown/beige adipocyte activation, suggesting that activin E has high potential for obesity therapy.
Collapse
Affiliation(s)
- Kazunari Sekiyama
- Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine, Towada, Aomori 034-8628, Japan.,Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Yuuki Ushiro
- Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| | - Akira Kurisaki
- Division of Biomedical Sciences, Stem Cell Technology Laboratory, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| | - Osamu Hashimoto
- Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| |
Collapse
|
8
|
Hashimoto O, Funaba M, Sekiyama K, Doi S, Shindo D, Satoh R, Itoi H, Oiwa H, Morita M, Suzuki C, Sugiyama M, Yamakawa N, Takada H, Matsumura S, Inoue K, Oyadomari S, Sugino H, Kurisaki A. Activin E Controls Energy Homeostasis in Both Brown and White Adipose Tissues as a Hepatokine. Cell Rep 2018; 25:1193-1203. [DOI: 10.1016/j.celrep.2018.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/12/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023] Open
|
9
|
Sugiyama M, Kikuchi A, Misu H, Igawa H, Ashihara M, Kushima Y, Honda K, Suzuki Y, Kawabe Y, Kaneko S, Takamura T. Inhibin βE (INHBE) is a possible insulin resistance-associated hepatokine identified by comprehensive gene expression analysis in human liver biopsy samples. PLoS One 2018; 13:e0194798. [PMID: 29596463 PMCID: PMC5875797 DOI: 10.1371/journal.pone.0194798] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/11/2018] [Indexed: 12/15/2022] Open
Abstract
The liver plays a major role in whole-body energy homeostasis by releasing secretory factors, termed hepatokines. To identify novel target genes associated with insulin resistance, we performed a comprehensive analysis of gene expression profiles using a DNA chip method in liver biopsy samples from humans with varying degrees of insulin resistance. Inhibin βE (INHBE) was identified as a novel putative hepatokine with hepatic gene expression that positively correlated with insulin resistance and body mass index in humans. Quantitative real time-PCR analysis also showed an increase in INHBE gene expression in independent liver samples from insulin-resistant human subjects. Additionally, Inhbe gene expression increased in the livers of db/db mice, a rodent model of type 2 diabetes. To preliminarily screen the role of Inhbe in vivo in whole-body energy metabolic status, hepatic mRNA was knocked down with siRNA for Inhbe (siINHBE) in db/db mice. Treatment with siINHBE suppressed body weight gain during the two-week experimental period, which was attributable to diminished fat rather than lean mass. Additionally, treatment with siINHBE decreased the respiratory quotient and increased plasma total ketone bodies compared with treatment with non-targeting siRNA, both of which suggest enhanced whole-body fat utilization. Our study suggests that INHBE functions as a possible hepatokine to alter the whole-body metabolic status under obese insulin-resistant conditions.
Collapse
Affiliation(s)
- Masakazu Sugiyama
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Akihiro Kikuchi
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- * E-mail: (TT); (AK)
| | - Hirofumi Misu
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Hirobumi Igawa
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Motooki Ashihara
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Youichi Kushima
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Kiyofumi Honda
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yoshiyuki Suzuki
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yoshiki Kawabe
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- * E-mail: (TT); (AK)
| |
Collapse
|
10
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
11
|
Abstract
Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall’s and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during sustained periods of physical inactivity.
Collapse
|
12
|
Ansari D, Andersson R, Bauden MP, Andersson B, Connolly JB, Welinder C, Sasor A, Marko-Varga G. Protein deep sequencing applied to biobank samples from patients with pancreatic cancer. J Cancer Res Clin Oncol 2015; 141:369-380. [PMID: 25216700 DOI: 10.1007/s00432-014-1817-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE Pancreatic cancer is commonly detected at advanced stages when the tumor is no longer amenable to surgical resection. Therefore, finding biomarkers for early stage disease is urgent. Here, we show that high-definition mass spectrometry (HDMS(E)) can be used to identify serum protein alterations associated with early stage pancreatic cancer. METHODS We analyzed serum samples from patients with resectable pancreatic cancer, benign pancreatic disease, and healthy controls. The SYNAPT G2-Si platform was used in a data-independent manner coupled with ion mobility. The dilution of the samples with yeast alcohol dehydrogenase tryptic digest of known concentration allowed the estimated amounts of each identified protein to be calculated (Silva et al. in Anal Chem 77:2187-2200, 2005; Silva et al. in Mol Cell Proteomics 5:144-156, 2006). A global protein expression comparison of the three study groups was made using label-free quantification and bioinformatic analyses. RESULTS Two-way unsupervised hierarchical clustering revealed 134 proteins that successfully classified pancreatic cancer patients from the controls, and identified 40 proteins that showed a significant up-regulation in the pancreatic cancer group. This discrimination reliability was further confirmed by principal component analysis. The differentially expressed candidates were aligned with protein network analyses and linked to biological pathways related to pancreatic tumorigenesis. Pancreatic disease link associations could be made for BAZ2A, CDK13, DAPK1, DST, EXOSC3, INHBE, KAT2B, KIF20B, SMC1B, and SPAG5, by pathway network linkages to p53, the most frequently altered tumor suppressor in pancreatic cancer. CONCLUSION These pancreatic cancer study candidates may provide new avenues of research for a noninvasive blood-based diagnosis for pancreatic tumor stratification.
Collapse
Affiliation(s)
- Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, 221 85, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ng CF, Xu JY, Li MS, Tsui SKW. Identification of FHL2-regulated genes in liver by microarray and bioinformatics analysis. J Cell Biochem 2014; 115:744-53. [PMID: 24453047 DOI: 10.1002/jcb.24714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/07/2013] [Indexed: 01/18/2023]
Abstract
FHL2 is a LIM domain protein that is able to form various protein complexes and regulate gene transcription. Recent findings showed that FHL2 is a potential tumor suppressor gene that was down-regulated in hepatocellular carcinoma. In the present study, microarray profiling of gene expression was performed to identify the genes regulated by FHL2 in mouse livers. The differentially expressed genes were further analyzed by bioinformatics tools including DAVID, KEGG, and STRING. Our data illustrate that FHL2 affects genes involved in various functions including signal transduction, responses to external stimulus, cancer-related pathways, cardiovascular function and regulation of actin cytoskeleton. Moreover, a network of differentially expressed genes identified in this study and known FHL2-interacting proteins was constructed. Then, genes identified by bioinformatics tools and most functional relevant to FHL2 were selected for further validation. Finally, the differential expression of Ar, Id3, Inhbe, Alas1, Bcl6, Pparδ, Angptl4, and Erbb4 were confirmed by quantitative real-time PCR. In summary, we have established a database of genes that are potentially regulated by FHL2 and these genes should be future targets for the elucidation of functional roles of FHL2.
Collapse
Affiliation(s)
- Chor-Fung Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | |
Collapse
|
14
|
Constantinescu S, Hecht K, Sobotzki N, Erzinger MM, Bovet C, Shay JW, Wollscheid B, Sturla SJ, Marra G, Beerenwinkel N. Transcriptomic Responses of Cancerous and Noncancerous Human Colon Cells to Sulforaphane and Selenium. Chem Res Toxicol 2014; 27:377-86. [DOI: 10.1021/tx400427t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simona Constantinescu
- Department
of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel 4058, Switzerland
| | - Katrin Hecht
- Department of Health Science and Technology, Institute of Food, Nutrition & Health, ETH Zurich, Zurich 8092, Switzerland
| | - Nadine Sobotzki
- Institute
of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Melanie M. Erzinger
- Department of Health Science and Technology, Institute of Food, Nutrition & Health, ETH Zurich, Zurich 8092, Switzerland
| | - Cédric Bovet
- Department of Health Science and Technology, Institute of Food, Nutrition & Health, ETH Zurich, Zurich 8092, Switzerland
| | - Jerry W. Shay
- Department
of Cell Biology, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bernd Wollscheid
- Institute
of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Shana J. Sturla
- Department of Health Science and Technology, Institute of Food, Nutrition & Health, ETH Zurich, Zurich 8092, Switzerland
| | - Giancarlo Marra
- Institute
of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Niko Beerenwinkel
- Department
of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel 4058, Switzerland
| |
Collapse
|
15
|
Cavelti-Weder C, Shtessel M, Reuss JE, Jermendy A, Yamada T, Caballero F, Bonner-Weir S, Weir GC. Pancreatic duct ligation after almost complete β-cell loss: exocrine regeneration but no evidence of β-cell regeneration. Endocrinology 2013; 154:4493-502. [PMID: 24029238 PMCID: PMC3836076 DOI: 10.1210/en.2013-1463] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been great interest in the extent of β-cell regeneration after pancreatic duct ligation (PDL) and whether α- to β-cell conversion might account for β-cell regeneration after near-complete β-cell loss. To assess these questions, we established a PDL-model in adult male rats after almost complete beta-cell depletion achieved by giving a single high dose of streptozocin (STZ) in the fasted state. Because of the resultant severe diabetes, rats were given islet cell transplants to allow long-term follow-up. Although animals were followed up to 10 months, there was no meaningful β-cell regeneration, be it through replication, neogenesis, or α- to β-cell conversion. In contrast, the acinar cell compartment underwent massive changes with first severe acinar degeneration upon PDL injury followed by the appearance of pancreatic adipocytes, and finally near-complete reappearance of acini. We conclude that β-cells and acinar cells, although originating from the same precursors during development, have very distinct regenerative potentials in our PDL model in adult rats.
Collapse
Affiliation(s)
- Claudia Cavelti-Weder
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, Massachusetts 02215.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Umeda-Yano S, Hashimoto R, Yamamori H, Okada T, Yasuda Y, Ohi K, Fukumoto M, Ito A, Takeda M. The regulation of gene expression involved in TGF-β signaling by ZNF804A, a risk gene for schizophrenia. Schizophr Res 2013; 146:273-8. [PMID: 23434502 DOI: 10.1016/j.schres.2013.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/13/2013] [Accepted: 01/30/2013] [Indexed: 12/23/2022]
Abstract
ZNF804A has been implicated in susceptibility to schizophrenia by several genome-wide association studies (GWAS), follow-up association studies and meta-analyses. However, the biological functions of ZNF804A are not entirely understood. To identify the genes that are affected by ZNF804A, we manipulated the expression of the ZNF804A protein in HEK293 human embryonic kidney cell lines and performed a cDNA microarray analysis followed by qPCR. We found that ZNF804A-overexpression up-regulated four genes (ANKRD1, INHBE, PIK3AP1, and DDIT3) and down-regulated three genes (CLIC2, MGAM, and BIRC3). Furthermore, we confirmed that the expression of ANKRD1, PIK3AP1, INHBE and DDIT3 at the protein level was significantly increased by ZNF804A-overexpression. This is the first report to identify genes whose protein expressions are regulated by ZNF804A. ANKRD1, PIK3AP1, INHBE and DDIT3 are related to transforming growth factor-β (TGF-β) signaling, which plays a crucial role in cell growth and differentiation. On the other hand, recent studies have reported that TGF-β signaling is associated with schizophrenia. These results provide basis for a more progressive investigation of ZNF804A contributions to the susceptibility or pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Satomi Umeda-Yano
- Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hedger MP, de Kretser DM. The activins and their binding protein, follistatin-Diagnostic and therapeutic targets in inflammatory disease and fibrosis. Cytokine Growth Factor Rev 2013; 24:285-95. [PMID: 23541927 DOI: 10.1016/j.cytogfr.2013.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/05/2013] [Indexed: 02/05/2023]
Abstract
The activins, as members of the transforming growth factor-β superfamily, are pleiotrophic regulators of cell development and function, including cells of the myeloid and lymphoid lineages. Clinical and animal studies have shown that activin levels increase in both acute and chronic inflammation, and are frequently indicators of disease severity. Moreover, inhibition of activin action can reduce inflammation, damage, fibrosis and morbidity/mortality in various disease models. Consequently, activin A and, more recently, activin B are emerging as important diagnostic tools and therapeutic targets in inflammatory and fibrotic diseases. Activin antagonists such as follistatin, an endogenous activin-binding protein, offer considerable promise as therapies in conditions as diverse as sepsis, liver fibrosis, acute lung injury, asthma, wound healing and ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- M P Hedger
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
18
|
Brüning A, Matsingou C, Brem GJ, Rahmeh M, Mylonas I. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4. Toxicol Appl Pharmacol 2012; 264:300-4. [PMID: 22935518 DOI: 10.1016/j.taap.2012.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 01/13/2023]
Abstract
Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir. Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ansgar Brüning
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
19
|
Wiater E, Vale W. Roles of activin family in pancreatic development and homeostasis. Mol Cell Endocrinol 2012; 359:23-9. [PMID: 22406274 DOI: 10.1016/j.mce.2012.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 01/15/2023]
Abstract
The transforming growth factor-beta (TGF-β) superfamily of ligands have been recognized as important signals in vertebrate embryonic development from the blastula stage to adulthood. In addition to roles in early development, TGF-β superfamily ligands, and particularly activin family ligands, are involved in specification, differentiation, and proliferation of multiple organ systems, including the pancreas. More recently, research has suggested that activin family ligands, binding proteins, receptors, and Smad signal transducers and modulators are involved in regulating adult pancreatic function and maintaining pancreatic islet homeostasis in the adult. This article will focus on outlining common themes in activin family regulation of embryonic pancreatic development and adult pancreatic homeostasis, particularly in activin family involvement in setting and maintaining populations of islet cells such as β-cells.
Collapse
Affiliation(s)
- Ezra Wiater
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute of Biological Studies, La Jolla, CA 92037, USA.
| | | |
Collapse
|
20
|
Hashimoto O, Takagi R, Yanuma F, Doi S, Shindo J, Endo H, Hasegawa Y, Shimasaki S. Identification and characterization of canine growth differentiation factor-9 and its splicing variant. Gene 2012; 499:266-72. [PMID: 22446043 DOI: 10.1016/j.gene.2012.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/17/2012] [Accepted: 03/02/2012] [Indexed: 11/15/2022]
Abstract
Growth differentiation factor-9 (GDF-9), a member of the transforming growth factor-β (TGF-β) superfamily, is expressed exclusively in the oocyte within the ovary and plays essential roles in the ovarian function in mammals. However, a possible involvement of GDF-9 in canine ovarian physiology that has a unique ovulation process among mammals has not been studied. Interestingly, we have isolated two types of cDNA clones generated by an alternative splicing from a canine ovarian total RNA. The predominant long form cDNA shares a common precursor structure with GDF-9s in other species whereas the minor short form cDNA has a 172 amino acid truncation in the proregion. Using a transient expression system, we found that the long form cDNA has a defect in mature protein production whereas the short form cDNA readily produces mature protein. However, mutations at one or two N-glycosylation sites in the mature domain of the short form GDF-9 caused a loss in mature protein production. These results suggest that the prodomain and N-linked glycosylation of the mature domain regulate proper processing and secretion of canine GDF-9. Based on the biological functions of GDF-9, these characteristics of canine GDF-9 could be causatively linked to the unique ovulation process in the Canidae.
Collapse
Affiliation(s)
- Osamu Hashimoto
- Laboratory of Experimental Animal Science, Kitasato University, School of Veterinary Medicine, Towada, Aomori 034-8628, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hedger MP, Winnall WR, Phillips DJ, de Kretser DM. The regulation and functions of activin and follistatin in inflammation and immunity. VITAMINS AND HORMONES 2011; 85:255-97. [PMID: 21353885 DOI: 10.1016/b978-0-12-385961-7.00013-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The activins are members of the transforming growth factor β superfamily with broad and complex effects on cell growth and differentiation. Activin A has long been known to be a critical regulator of inflammation and immunity, and similar roles are now emerging for activin B, with which it shares 65% sequence homology. These molecules and their binding protein, follistatin, are widely expressed, and their production is increased in many acute and chronic inflammatory conditions. Synthesis and release of the activins are stimulated by inflammatory cytokines, Toll-like receptor ligands, and oxidative stress. The activins interact with heterodimeric serine/threonine kinase receptor complexes to activate SMAD transcription factors and the MAP kinase signaling pathways, which mediate inflammation, stress, and immunity. Follistatin binds to the activins with high affinity, thereby obstructing the activin receptor binding site, and targets them to cell surface proteoglycans and lysosomal degradation. Studies on transgenic mice and those with gene knockouts, together with blocking studies using exogenous follistatin, have established that activin A plays critical roles in the onset of cachexia, acute and chronic inflammatory responses such as septicemia, colitis and asthma, and fibrosis. However, activin A also directs the development of monocyte/macrophages, myeloid dendritic cells, and T cell subsets to promote type 2 and regulatory immune responses. The ability of both endogenous and exogenous follistatin to block the proinflammatory and profibrotic actions of activin A has led to interest in this binding protein as a potential therapeutic for limiting the severity of disease and to improve subsequent damage associated with inflammation and fibrosis. However, the ability of activin A to sculpt the subsequent immune response as well means that the full range of effects that might arise from blocking activin bioactivity will need to be considered in any therapeutic applications.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
22
|
Hashimoto O, Yonezawa T, Sugiyama Y, Kawaminami M, Hasegawa Y. Molecular cloning and expression of canine prolactin gene. Exp Anim 2011; 59:643-6. [PMID: 21030793 DOI: 10.1538/expanim.59.643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We isolated canine prolactin cDNA from a dog pituitary cDNA library. The 930-bp nucleotide sequence covered the entire open reading frame encoding the putative 229 amino acids. It was located in chromosome 35, and had five exons. The amino acid sequence was highly homologous to the feline and porcine sequences. To generate recombinant canine prolactin, plasmids for full-length canine prolactin were constructed and transfected into the mammalian HEK293 cell line. The recombinant prolactin was secreted into the medium as an N-linked glycosylated (31 kDa) or non-glycosylated (27 kDa) protein. Western blotting revealed both of these bands were canine pituitary protein extracts.
Collapse
Affiliation(s)
- Osamu Hashimoto
- Laboratory of Experimental Animal Science, Kitasato University, School of Veterinary Medicine, Aomori, Japan
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, Marchetti P, Weir GC. Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 2010; 5:e11499. [PMID: 20644627 PMCID: PMC2903480 DOI: 10.1371/journal.pone.0011499] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/06/2010] [Indexed: 12/26/2022] Open
Abstract
Background Changes in gene expression in pancreatic beta-cells from type 2 diabetes (T2D) should provide insights into their abnormal insulin secretion and turnover. Methodology/Principal Findings Frozen sections were obtained from cadaver pancreases of 10 control and 10 T2D human subjects. Beta-cell enriched samples were obtained by laser capture microdissection (LCM). RNA was extracted, amplified and subjected to microarray analysis. Further analysis was performed with DNA-Chip Analyzer (dChip) and Gene Set Enrichment Analysis (GSEA) software. There were changes in expression of genes linked to glucotoxicity. Evidence of oxidative stress was provided by upregulation of several metallothionein genes. There were few changes in the major genes associated with cell cycle, apoptosis or endoplasmic reticulum stress. There was differential expression of genes associated with pancreatic regeneration, most notably upregulation of members of the regenerating islet gene (REG) family and metalloproteinase 7 (MMP7). Some of the genes found in GWAS studies to be related to T2D were also found to be differentially expressed. IGF2BP2, TSPAN8, and HNF1B (TCF2) were upregulated while JAZF1 and SLC30A8 were downregulated. Conclusions/Significance This study made possible by LCM has identified many novel changes in gene expression that enhance understanding of the pathogenesis of T2D.
Collapse
Affiliation(s)
- Lorella Marselli
- Section on Islet Transplantation and Cell Biology, Research Division, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeffrey Thorne
- Section on Islet Transplantation and Cell Biology, Research Division, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sonika Dahiya
- Molecular Pathology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dennis C. Sgroi
- Molecular Pathology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arun Sharma
- Section on Islet Transplantation and Cell Biology, Research Division, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susan Bonner-Weir
- Section on Islet Transplantation and Cell Biology, Research Division, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Piero Marchetti
- Section of Endocrinology and Metabolism of Organ Transplantation, Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Gordon C. Weir
- Section on Islet Transplantation and Cell Biology, Research Division, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kreidl E, Oztürk D, Metzner T, Berger W, Grusch M. Activins and follistatins: Emerging roles in liver physiology and cancer. World J Hepatol 2009; 1:17-27. [PMID: 21160961 PMCID: PMC2999257 DOI: 10.4254/wjh.v1.i1.17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/10/2009] [Accepted: 09/17/2009] [Indexed: 02/06/2023] Open
Abstract
Activins are secreted proteins belonging to the TGF-β family of signaling molecules. Activin signals are crucial for differentiation and regulation of cell proliferation and apoptosis in multiple tissues. Signal transduction by activins relies mainly on the Smad pathway, although the importance of crosstalk with additional pathways is increasingly being recognized. Activin signals are kept in balance by antagonists at multiple levels of the signaling cascade. Among these, follistatin and FLRG, two members of the emerging family of follistatin-like proteins, can bind secreted activins with high affinity, thereby blocking their access to cell surface-anchored activin receptors. In the liver, activin A is a major negative regulator of hepatocyte proliferation and can induce apoptosis. The functions of other activins expressed by hepatocytes have yet to be more clearly defined. Deregulated expression of activins and follistatin has been implicated in hepatic diseases including inflammation, fibrosis, liver failure and primary cancer. In particular, increased follistatin levels have been found in the circulation and in the tumor tissue of patients suffering from hepatocellular carcinoma as well as in animal models of liver cancer. It has been argued that up-regulation of follistatin protects neoplastic hepatocytes from activin-mediated growth inhibition and apoptosis. The use of follistatin as biomarker for liver tumor development is impeded, however, due to the presence of elevated follistatin levels already during preceding stages of liver disease. The current article summarizes our evolving understanding of the multi-faceted activities of activins and follistatins in liver physiology and cancer.
Collapse
Affiliation(s)
- Emanuel Kreidl
- Emanuel Kreidl, Deniz Öztürk, Thomas Metzner, Walter Berger, Michael Grusch, Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, Vienna A-1090, Austria
| | | | | | | | | |
Collapse
|
26
|
Implication of activin E in glucose metabolism: Transcriptional regulation of the inhibin/activin βE subunit gene in the liver. Life Sci 2009; 85:534-40. [DOI: 10.1016/j.lfs.2009.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/08/2009] [Accepted: 08/11/2009] [Indexed: 11/21/2022]
|
27
|
Nishino Y, Ooishi R, Kurokawa S, Fujino K, Murakami M, Madarame H, Hashimoto O, Sugiyama K, Funaba M. Gene expression of the TGF-β family in rat brain infected with Borna disease virus. Microbes Infect 2009; 11:737-43. [DOI: 10.1016/j.micinf.2009.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/02/2009] [Accepted: 04/07/2009] [Indexed: 11/17/2022]
|
28
|
Abnormalities in aggression and anxiety in transgenic mice overexpressing activin E. Biochem Biophys Res Commun 2009; 385:319-23. [PMID: 19463785 DOI: 10.1016/j.bbrc.2009.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 05/13/2009] [Indexed: 01/17/2023]
Abstract
To study the function of activin E, a TGF-beta superfamily member, in the regulation of affective behavior, we investigated the behavior of transgenic mice overexpressing activin E (TgActbetaE mice). Male TgActbetaE mice showed aggressive behavior in resident-intruder tests. In elevated plus-maze tests, the percentage of open arm entries was significantly increased in female TgActbetaE mice compared with that in wild-type mice. Furthermore, female TgActbetaE mice stayed in the central area for a significantly longer time than wild-type mice in open field tests. These results indicated that TgActbetaE mice had less anxiety-like behavior. The number of restraint-stress-evoked c-Fos-positive cells in the hypothalamic paraventricular nucleus in TgActbetaE mice was significantly decreased compared with that in wild-type mice. This suggests that synthesis of corticotrophin-releasing hormone induced by stress was decreased in TgActbetaE mice. Taking these results together, activin E may act as a regulator of the hypothalamic-pituitary-adrenal axis.
Collapse
|
29
|
Bonal C, Thorel F, Ait-Lounis A, Reith W, Trumpp A, Herrera PL. Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 2009; 136:309-319.e9. [PMID: 19022256 DOI: 10.1053/j.gastro.2008.10.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 09/29/2008] [Accepted: 10/02/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The pancreatic mass is determined by the coordinated expansion and differentiation of progenitor cells and is maintained via tight control of cell replacement rates. The basic helix-loop-helix transcription factor c-Myc is one of the main regulators of these processes in many organs. We studied the requirement of c-Myc in controlling the generation and maintenance of pancreatic mass. METHODS We conditionally inactivated c-Myc in Pdx1+ pancreatic progenitor cells. Pancreata of mice lacking c-Myc (c-Myc(P-/-) mice) were analyzed during development and ageing. RESULTS Pancreatic growth in c-Myc(P-/-) mice was impaired starting on E12.5, in early primordia, because of decreased proliferation and altered differentiation of exocrine progenitors; islet progenitors were spared. Acinar cell maturation was defective in the adult hypotrophic pancreas, which hampered exocrine mass maintenance in aged animals. From 2 to 10 months of age, the c-Myc(P-/-) pancreas was progressively remodeled without inflammatory injury. Loss of acinar cells increased with time, concomitantly with adipose tissue accumulation. Using a genetic cell lineage tracing analysis, we demonstrated that pancreatic adipose cells were derived directly from transdifferentiating acinar cells. This epithelial-to-mesenchyme transition was also observed in normal aged specimens and in pancreatitis. CONCLUSIONS These results provide evidence indicating that c-Myc activity is required for growth and maturation of the exocrine pancreas, and sheds new light on the ontogeny of pancreatic adipose cells in processes of organ degenerescence and tissue involution.
Collapse
Affiliation(s)
- Claire Bonal
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Sompallae R, Stavropoulou V, Houde M, Masucci MG. The MAPK signaling cascade is a central hub in the regulation of cell cycle, apoptosis and cytoskeleton remodeling by tripeptidyl-peptidase II. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:253-65. [PMID: 19787088 PMCID: PMC2733081 DOI: 10.4137/grsb.s882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tripeptidyl-peptidase II (TPPII) is a serine peptidase highly expressed in malignant Burkitt's lymphoma cells (BL). We have previously shown that overexpression of TPPII correlates with chromosomal instability, centrosomal and mitotic spindle abnormalities and resistance to apoptosis induced by spindle poisons. Furthermore, TPPII knockdown by RNAi was associated with endoreplication and the accumulation of polynucleated cells that failed to complete cell division, indicating a role of TPPII in the cell cycle. Here we have applied a global approach of gene expression analysis to gain insights on the mechanism by which TPPII regulates this phenotype. mRNA profiling of control and TPPII knockdown BL cells identified one hundred and eighty five differentially expressed genes. Functional categorization of these genes highlighted major physiological functions such as apoptosis, cell cycle progression, cytoskeleton remodeling, proteolysis, and signal transduction. Pathways and protein interactome analysis revealed a significant enrichment in components of MAP kinases signaling. These findings suggest that TPPII influences a wide network of signaling pathways that are regulated by MAPKs and exerts thereby a pleiotropic effect on biological processes associated with cell survival, proliferation and genomic instability.
Collapse
|
31
|
Yang YG, Liu XJ, Zhang JH. Advances in research of activins C and E. Shijie Huaren Xiaohua Zazhi 2008; 16:1559-1567. [DOI: 10.11569/wcjd.v16.i14.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activins, which consist of two disulfide-linked β subunits, are members of the transforming growth factor β (TGF-β) superfamily of growth factors. Four mammalian activin β subunits, termed as βA, βB, βC, and βE respectively, have been identified. Activin A, the homodimer of two βA subunits, is a pleiotropic cytokine and is expressed in many tissues and cells. There has been compelling evidence that activin A is involved in the regulation of reproductive biology, embryonic development, erythroid differentiation, systemic inflammation, induced apoptosis, tissue repair, fibrogenesis and so on, through classic activin signaling pathway. βC and βE subunits, which are almost exclusively expressed in the liver, are still quite incompletely understood. In this review, we summarize and discuss the function of βC and βE subunits in liver. Further research should be made to understand the biological role of the βC and βE subunits.
Collapse
|
32
|
Deli A, Kreidl E, Santifaller S, Trotter B, Seir K, Berger W, Schulte-Hermann R, Rodgarkia-Dara C, Grusch M. Activins and activin antagonists in hepatocellular carcinoma. World J Gastroenterol 2008; 14:1699-709. [PMID: 18350601 PMCID: PMC2695910 DOI: 10.3748/wjg.14.1699] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In many parts of the world hepatocellular carcinoma (HCC) is among the leading causes of cancer-related mortality but the underlying molecular pathology is still insufficiently understood. There is increasing evidence that activins, which are members of the transforming growth factor β (TGFβ) superfamily of growth and differentiation factors, could play important roles in liver carcinogenesis. Activins are disulphide-linked homo- or heterodimers formed from four different β subunits termed βA, βB, βC, and βE, respectively. Activin A, the dimer of two βA subunits, is critically involved in the regulation of cell growth, apoptosis, and tissue architecture in the liver, while the hepatic function of other activins is largely unexplored so far. Negative regulators of activin signals include antagonists in the extracellular space like the binding proteins follistatin and FLRG, and at the cell membrane antagonistic co-receptors like Cripto or BAMBI. Additionally, in the intracellular space inhibitory Smads can modulate and control activin activity. Accumulating data suggest that deregulation of activin signals contributes to pathologic conditions such as chronic inflammation, fibrosis and development of cancer. The current article reviews the alterations in components of the activin signaling pathway that have been observed in HCC and discusses their potential significance for liver tumorigenesis.
Collapse
|
33
|
Rodgarkia-Dara C, Vejda S, Erlach N, Losert A, Bursch W, Berger W, Schulte-Hermann R, Grusch M. The activin axis in liver biology and disease. Mutat Res 2006; 613:123-37. [PMID: 16997617 DOI: 10.1016/j.mrrev.2006.07.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 12/22/2022]
Abstract
Activins are a closely related subgroup within the TGFbeta superfamily of growth and differentiation factors. They consist of two disulfide-linked beta subunits. Four mammalian activin beta subunits termed beta(A), beta(B), beta(C), and beta(E), respectively, have been identified. Activin A, the homodimer of two beta(A) subunits, has important regulatory functions in reproductive biology, embryonic development, inflammation, and tissue repair. Several intra- and extracellular antagonists, including the activin-binding proteins follistatin and follistatin-related protein, serve to fine-tune activin A activity. In the liver there is compelling evidence that activin A is involved in the regulation of cell number by inhibition of hepatocyte replication and induction of apoptosis. In addition, activin A stimulates extracellular matrix production in hepatic stellate cells and tubulogenesis of sinusoidal endothelial cells, and thus contributes to restoration of tissue architecture during liver regeneration. Accumulating evidence from animal models and from patient data suggests that deregulation of activin A signaling contributes to pathologic conditions such as hepatic inflammation and fibrosis, acute liver failure, and development of liver cancer. Increased production of activin A was suggested to be a contributing factor to impaired hepatocyte regeneration in acute liver failure and to overproduction of extracellular matrix in liver fibrosis. Recent evidence suggests that escape of (pre)neoplastic hepatocytes from growth control by activin A through overexpression of follistatin and reduced activin production contributes to hepatocarcinogenesis. The role of the activin subunits beta(C) and beta(E), which are both highly expressed in hepatocytes, is still quite incompletely understood. Down-regulation in liver tumors and a growth inhibitory function similar to that of beta(A) has been shown for beta(E). Contradictory results with regard to cell proliferation have been reported for beta(C). The profound involvement of the activin axis in liver biology and in the pathogenesis of severe hepatic diseases suggests activin as potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Chantal Rodgarkia-Dara
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|