1
|
Rodrigues CS, Gaifem J, Pereira MS, Alves MF, Silva M, Padrão N, Cavadas B, Moreira-Barbosa C, Alves I, Marcos-Pinto R, Torres J, Lavelle A, Colombel JF, Sokol H, Pinho SS. Alterations in mucosa branched N-glycans lead to dysbiosis and downregulation of ILC3: a key driver of intestinal inflammation. Gut Microbes 2025; 17:2461210. [PMID: 39918275 PMCID: PMC11810091 DOI: 10.1080/19490976.2025.2461210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 01/13/2025] [Indexed: 02/12/2025] Open
Abstract
The perturbation of the symbiotic relationship between microbes and intestinal immune system contributes to gut inflammation and Inflammatory Bowel Disease (IBD) development. The host mucosa glycans (glycocalyx) creates a major biological interface between gut microorganisms and host immunity that remains ill-defined. Glycans are essential players in IBD immunopathogenesis, even years before disease onset. However, how changes in mucosa glycosylation shape microbiome and how this impact gut immune response and inflammation remains to be clarified. Here, we revealed that alterations in the expression of complex branched N-glycans at gut mucosa surface, modeled in glycoengineered mice, resulted in dysbiosis, with a deficiency in Firmicutes bacteria. Concomitantly, this mucosa N-glycan switch was associated with a downregulation of type 3 innate lymphoid cells (ILC3)-mediated immune response, leading to the transition of ILC3 toward an ILC1 proinflammatory phenotype and increased TNFα production. In addition, we demonstrated that the mucosa glycosylation remodeling through prophylactic supplementation with glycans at steady state was able to restore microbial-derived short-chain fatty acids and microbial sensing (by NOD2 expression) alongside the rescue of the expression of ILC3 module, suppressing intestinal inflammation and controlling disease onset. In a complementary approach, we further showed that IBD patients, often displaying dysbiosis, exhibited a tendency of decreased MGAT5 expression at epithelial cells that was accompanied by reduced ILC3 expression in gut mucosa. Altogether, these results unlock the effects of alterations in mucosa glycome composition in the regulation of the bidirectional crosstalk between microbiota and gut immune response, revealing host branched N-glycans/microbiota/ILC3 axis as an essential pathway in gut homeostasis and in preventing health to intestinal inflammation transition.
Collapse
Affiliation(s)
- Cláudia S. Rodrigues
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Joana Gaifem
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | - Márcia S. Pereira
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Maria Francisca Alves
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Mariana Silva
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Nuno Padrão
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Bruno Cavadas
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | | | - Inês Alves
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Department of Gastroenterology, Centro Hospitalar do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde, University of Porto, Porto, Portugal
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Division of Gastroenterology, Hospital da Luz, Lisbon, Portugal
| | - Aonghus Lavelle
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, Sorbonne Université, INSERM, Paris, France
| | - Jean-Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harry Sokol
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, Sorbonne Université, INSERM, Paris, France
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Salomé S. Pinho
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Ghyselinck J, Verstrepen L, Rakebrandt M, Marynissen S, Daminet S, Marzorati M. In vitro fermentation of yeast cell walls (mannan-oligosaccharide) and purified β-glucans modulates the colonic microbiota of dogs with inflammatory bowel disease and demonstrates protective effects on barrier integrity and anti-inflammatory properties. PLoS One 2025; 20:e0322877. [PMID: 40359204 DOI: 10.1371/journal.pone.0322877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by a disruption of intestinal homeostasis, chronic inflammation, and dysbiosis. Prebiotic supplementation may be useful for managing IBD in dogs. The aim of the study is to investigate the effects of two prebiotics, Biolex MB40 or Leiber Beta-S, on the gut microbiota isolated from three dogs with IBD, using the Colon-on-a-plate technology. Biolex MB40 and Leiber Beta-S contain concentrated 1,3-1,6- β-D-glucan isolated from the Saccharomyces cerevisiae cell walls. Biolex MB40 also contains mannan-oligosaccharide (MOS). Wells of the Colon-on-a-plate set up were inoculated with fecal suspensions and supplemented with either Biolex MB40 and Leiber Beta-S, or no test product (blank). Following 48h incubation, bacterial metabolites were measured and 16S rRNA targeted gene sequencing was performed. Colonic supernatants were added to a Caco-2/THP1 co-culture model to evaluate their effects on barrier integrity upon inflammation-induced barrier disruption and interleukin (IL)-10 production. Acetate and propionate concentrations were significantly increased versus blank with Biolex MB40, and biologically relevant numerical increases were observed with Leiber Beta-S supplementation. A donor-dependent, biologically relevant increase in butyrate was observed with both test products versus blank. Alpha diversity and microbiota biomass were increased, as well as the abundance of the five predominant phyla with both test products relative to blank. The greatest increases in abundance were observed for the Bacteroidetes and Firmicutes phyla. Fermentation of both test products had a protective effect on the gut epithelial barrier (measured by transepithelial electrical resistance) that was donor dependent. IL-10 production was significantly increased with Biolex MB40 supplementation for all donors, and with Leiber Beta-S supplementation for one donor. These in vitro findings confirm a prebiotic effect for both products and suggest that supplementation with either Biolex MB40 or Leiber Beta-S may have beneficial effects on the gut microbiota of dogs with IBD.
Collapse
Affiliation(s)
| | | | | | - Sofie Marynissen
- Small Animal Department, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - Massimo Marzorati
- ProDigest, Zwijnaarde, Belgium
- Center of Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Inokuma K, Sasaki D, Shintani T, Inoue J, Oyama K, Noda Y, Maeda T, Yamada R, Matsuki Y, Kodama Y, Kondo A. Combination of probiotics enhancing butyrogenesis in colonic microbiota model of patients with ulcerative colitis. Appl Microbiol Biotechnol 2025; 109:117. [PMID: 40347262 PMCID: PMC12065738 DOI: 10.1007/s00253-025-13424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 05/12/2025]
Abstract
Administering beneficial bacteria as probiotics to restore the intestinal microbiota and its metabolic functions, such as butyrogenesis, is a promising treatment strategy in ulcerative colitis (UC). This study aimed to investigate the effect of a combination of probiotics, consisting of the lactic acid bacterium Weizmannia coagulans SANK70258 and the lactate-utilizing butyrate-producing bacteria Anaerostipes caccae or Clostridium butyricum, on the colonic environment using an in vitro colonic microbiota culture model with fecal inoculums from seven patients with UC. Co-inoculated W. coagulans and A. caccae neither inhibited each other's growth nor significantly affected the relative abundance of other bacterial species; however, the growth of W. coagulans was significantly inhibited when co-inoculated with C. butyricum. The relative abundance of pro-inflammatory bacteria (Escherichia sp. and unclassified Enterobacteriaceae) and Bifidobacterium spp. significantly decreased in W. coagulans-C. butyricum co-inoculated cultures. Inoculation with any of the probiotics alone did not increase butyrate production, whereas co-inoculation of W. coagulans with A. caccae or C. butyricum significantly increased the butyrate levels. Overall, the results suggested that W. coagulans and lactate-utilizing butyrate-producing bacteria in combination have synergistic effects through cross-feeding and can effectively restore butyrogenesis in the colonic environment of patients with UC. KEY POINTS: • Effects of probiotics were evaluated using in vitro microbiota model of UC colon. • W. coagulans and lactate-utilizing butyrate producers have synergistic effects. • Co-inoculation of W. coagulans with A. caccae or C. butyricum enhanced butyrogenesis.
Collapse
Affiliation(s)
- Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Tomoya Shintani
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Jun Inoue
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Katsuaki Oyama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yuta Noda
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, Kanagawa, 227-8502, Japan
| | - Takayuki Maeda
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, Kanagawa, 227-8502, Japan
| | - Ryouichi Yamada
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, Kanagawa, 227-8502, Japan
| | - Yasushi Matsuki
- Strategic Planning Office, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
4
|
Ayari A, Jedidi S, Dakhli N, Sammari H, Dhawefi N, Sebai H. Fresh Beetroot Juice Alleviates Combined Ulcerative Colitis and Constipation by Restoring Physiological and Biochemical Balances in a Murine Model. Neurogastroenterol Motil 2025:e70064. [PMID: 40317625 DOI: 10.1111/nmo.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/12/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Beetroot (Beta vulgaris L.) is well known for its medicinal uses, particularly in managing gastrointestinal disorders. This study investigates the protective effects of fresh red beet juice (FBRJ) on gastrointestinal complications caused by co-administration of dextran sulfate sodium (DSS) and loperamide (LOP), which induce ulcerative colitis and constipation, respectively. METHODS Adult rats were divided into groups and subjected to a 7-day treatment with 5% DSS to induce ulcerative colitis, followed by LOP (3 mg/kg, body weight [b.w.]) for 7 days to cause constipation. FBRJ (5 and 10 mL/kg, b.w.) or yohimbine (YOH) (2 mg/kg, b.w.) was administered 1 h after LOP each day for 7 days. Therapeutic outcomes were evaluated based on macroscopic and histological changes in the gastrointestinal tract, gastric emptying, gastrointestinal transit, oxidative stress parameters, and inflammatory markers. KEY RESULTS FBRJ significantly alleviated gastrointestinal dysfunctions caused by DSS and/or LOP, improving both gastric emptying and gastrointestinal transit in a dose-dependent manner (p < 0.05). Specifically, compared with the ulcerative/constipated group, the animals treated with the FBRJ showed a significant increase (52.43% ± 4.65% to 66.23% ± 6.78%) of gastric emptying (GE) andgastrointestinal transit (GIT: 48.08% ± 3.32% to 62.46% ± 4.98%) in a dose-dependent manner. It also modulated antioxidant defense systems by inducing enzyme activities and reducing lipid peroxidation, which had been significantly disrupted by the combined effects of DSS and LOP. Furthermore, inflammatory markers, including C-reactive protein (CRP), pro-inflammatory cytokines, and white blood cell counts, were significantly reduced in both plasma and colonic mucosa. CONCLUSIONS AND INTERFERENCES We suggest that FBRJ significantly protects against DSS-induced colitis and LOP-induced constipation, involving several mechanisms such as increasing secretion and peristaltic activity, reducing inflammation, and preserving the antioxidant properties.
Collapse
Affiliation(s)
- Ala Ayari
- Laboratory of Functional Physiology and Valorization of Bio-Resources (LR23ES08), Higher Institute of Biotechnology of Béja, University of Jendouba, Beja, Tunisia
| | - Saber Jedidi
- Laboratory of Functional Physiology and Valorization of Bio-Resources (LR23ES08), Higher Institute of Biotechnology of Béja, University of Jendouba, Beja, Tunisia
- National Institute of Technologies and Sciences of Kef (INTeK), University of Jendouba, El Kef, Tunisia
| | - Nouha Dakhli
- Laboratory of Functional Physiology and Valorization of Bio-Resources (LR23ES08), Higher Institute of Biotechnology of Béja, University of Jendouba, Beja, Tunisia
| | - Houcem Sammari
- Laboratory of Functional Physiology and Valorization of Bio-Resources (LR23ES08), Higher Institute of Biotechnology of Béja, University of Jendouba, Beja, Tunisia
| | - Nourhène Dhawefi
- Laboratory of Functional Physiology and Valorization of Bio-Resources (LR23ES08), Higher Institute of Biotechnology of Béja, University of Jendouba, Beja, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Resources (LR23ES08), Higher Institute of Biotechnology of Béja, University of Jendouba, Beja, Tunisia
| |
Collapse
|
5
|
Nie P, Hu L, Feng X, Xu H. Gut Microbiota Disorders and Metabolic Syndrome: Tales of a Crosstalk Process. Nutr Rev 2025; 83:908-924. [PMID: 39504479 DOI: 10.1093/nutrit/nuae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The microbiota in humans consists of trillions of microorganisms that are involved in the regulation of the gastrointestinal tract and immune and metabolic homeostasis. The gut microbiota (GM) has a prominent impact on the pathogenesis of metabolic syndrome (MetS). This process is reciprocal, constituting a crosstalk process between the GM and MetS. In this review, GM directly or indirectly inducing MetS via the host-microbial metabolic axis has been systematically reviewed. Additionally, the specifically altered GM in MetS are detailed in this review. Moreover, short-chain fatty acids (SCFAs), as unique gut microbial metabolites, have a remarkable effect on MetS, and the role of SCFAs in MetS-related diseases is highlighted to supplement the gaps in this area. Finally, the existing therapeutics are outlined, and the superiority and shortcomings of different therapeutic approaches are discussed, in hopes that this review can contribute to the development of potential treatment strategies.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation Co., Ltd, Nanchang University, Nanchang 330200, China
| |
Collapse
|
6
|
Yu S, Zhu X, Zhao X, Li Y, Niu X, Chen Y, Ying J. Improvement of chronic metabolic inflammation and regulation of gut homeostasis: Tea as a potential therapy. Pharmacol Ther 2025; 269:108828. [PMID: 40020787 DOI: 10.1016/j.pharmthera.2025.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/27/2024] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Chronic metabolic inflammation is a common mechanism linked to the development of metabolic disorders such as obesity, diabetes, and cardiovascular disease (CVD). Chronic metabolic inflammation often related to alterations in gut homeostasis, and pathological processes involve the activation of endotoxin receptors, metabolic reprogramming, mitochondrial dysfunction, and disruption of intestinal nuclear receptor activity. Recent investigations into homeostasis and chronic metabolic inflammation have revealed a novel mechanism which is characterized by a timing interaction involving multiple components and targets. This article explores the positive impact of tea consumption on metabolic health of populations, with a special focus on the improvement of inflammatory indicators and the regulation of gut microbiota. Studies showed that tea consumption is related to the enrichment of gut microbiota. The relative proportion of Firmicutes/Bacteroidetes (F/B) is altered, while the abundance of Lactobacillus, Bifidobacterium, and A. muciniphila increased significantly in most of the studies. Thus, tea consumption could provide potential protection from the development of chronic diseases by improving gut homeostasis and reducing chronic metabolic inflammation. The direct impact of tea on intestinal homeostasis primarily targets lipopolysaccharide (LPS)-related pathways. This includes reducing the synthesis of intestinal LPS, inhibiting LPS translocation, and preventing the binding of LPS to TLR4 receptors to block downstream inflammatory pathways. The TLR4/MyD88/NF-κB p65 pathway is crucial for anti-metaflammatory responses. The antioxidant properties of tea are linked to enhancing mitochondrial function and mitigating mitochondria-related inflammation by eliminating free radicals, inhibiting NLRP3 inflammasomes, and modulating Nrf2/ARE activity. Tea also contributes to safeguarding the intestinal barrier through various mechanisms, such as promoting the synthesis of short-chain fatty acids in the intestine, activating intestinal aryl hydrocarbon receptor (AhR) and farnesoid X receptor (FXR), and improving enteritis. Functional components that improve chronic metabolic inflammation include tea polyphenols, tea pigments, TPS, etc. Tea metabolites such as 4-Hydroxyphenylacetic acid and 3,4-Dihydroxyflavan derivatives, etc., also contribute to anti-chronic metabolic inflammation effects of tea consumption. The raw materials and processing technologies affect the functional component compositions of tea; therefore, consuming different types of tea may result in varying action characteristics and mechanisms. However, there is currently limited elaboration on this aspect. Future research should conduct in-depth studies on the mechanism of tea and its functional components in improving chronic metabolic inflammation. Researchers should pay attention to whether there are interactions between tea and other foods or drugs, explore safe and effective usage and dosage, and investigate whether there are individual differences in the tea-drinking population leading to different effects of tea intervention. Ultimately, the application of tea drinking could be a universal therapy for regulating intestinal homeostasis, anti-chronic metabolic inflammatory responses, and promoting metabolic health.
Collapse
Affiliation(s)
- Shiyi Yu
- Nutrition and Health Research Institute, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiayu Zhao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yan Li
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xinghe Niu
- Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Yinghua Chen
- Nutrition and Health Research Institute, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China
| | - Jian Ying
- Nutrition and Health Research Institute, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China.
| |
Collapse
|
7
|
DeClercq V, Wright RJ, van Limbergen J, Langille MGI. Characterization of the salivary microbiome of adults with inflammatory bowel disease. J Oral Microbiol 2025; 17:2499923. [PMID: 40322049 PMCID: PMC12046613 DOI: 10.1080/20002297.2025.2499923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
Background Perturbations of the gut microbiota in patients with inflammatory bowel disease (IBD) have been extensively characterised, but changes to the oral microbiome remain understudied. This study aimed to evaluate the oral microbiome of adults with IBD and of matched controls. Methods Saliva samples and data were obtained from a Canadian population cohort (n = 320). The salivary microbiome was characterised using 16S rRNA gene sequencing and examined for differences between control participants and those with IBD, as well as disease subcategories (Crohn's Disease and Ulcerative Colitis). Results Alpha diversity was significantly lower in participants with IBD than controls in unadjusted models and many remained significant after adjusting for covariates. Significant differences in some beta diversity metrics between participants with IBD and controls were found, although these did not remain significant when adjusted for covariates. Ten genera were significantly differentially abundant between cases and controls. Veillonella and Streptococcus were both increased in abundance in IBD cases vs controls (25% vs 22% and 14% vs 12%, respectively). Conclusion These results showcase changes in oral microbial diversity and composition in those living with IBD and highlight the potential of using the salivary microbiome as a biomarker for screening or monitoring IBD.
Collapse
Affiliation(s)
- Vanessa DeClercq
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Robyn J. Wright
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Johan van Limbergen
- Department of Paediatric Gastroenterology and Nutrition, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Tang H, Fan Q, Lu Y, Lin X, Lan R, Hu D, Zhang S, Wang R, Zhao R, Liu L, Xu J. Weissella confusa alleviates experimental colitis in mice by regulating inflammatory pathways and gut microbiota. Front Microbiol 2025; 16:1574548. [PMID: 40356657 PMCID: PMC12068860 DOI: 10.3389/fmicb.2025.1574548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic condition with no cure. Probiotics may offer a new strategy for the treatment of IBD. Weissella confusa has been shown to have antibacterial, anti-inflammatory, and antioxidant beneficial effects in animal models. However, the anti-inflammatory effect of W. confusa at host cellular level and their effect on the gut microbiota are unclear. This study aimed to investigate the effects of W. confusa Wc1982 on inflammation and gut microbiota alterations in a dextran sulfate sodium (DSS) induced colitis mouse model. Method Female C57BL/6J mice were randomly divided into control, DSS, and Wc1982 groups (n = 6/group). The Wc1982 group was given continuous gavage of W. confusa Wc1982 for 14 days with the last 7 days also treated with 3% DSS. Disease phenotypes including daily body weight, disease activity index (DAI), colon length and histological changes were evaluated. The composition of colon flora, α-diversity and β-diversity were analyzed by 16S rRNA sequencing. The colonic gene expression profile was analyzed by RNA-seq, and serum and colonic proinflammatory cytokines were assessed by enzyme-linked immunosorbent assay. Analysis of variance (ANOVA) was used to analyze the differences among groups, and Spearman rank test was used to calculate the correlation between species relative abundance and pro-inflammatory markers. Results Compared with DSS group, W. confusa Wc1982 significantly improved the disease phenotypes of colitis mice including decreased DAI and pathological score and reduced colon shortening, decreased colonic IL-17, IL-6, and TNF-α levels and serum lipopolysaccharide (p < 0.05), and downregulated the expression of key genes of IL-17 pathway (Lcn2, Mmp3, Mmp13, Ptgs2; p < 0.05). W. confusa Wc1982 modified the gut microbiota community of colitis mice, with increased α-diversity, increased abundance of W. confusa and Akkermansia muciniphila, and decreased abundance of Enterococcus faecalis and Escherichia coli (all p < 0.05). Conclusion Supplementation with W. confusa Wc1982 offers a promising strategy for alleviating colitis.
Collapse
Affiliation(s)
- Huijing Tang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qianhua Fan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yao Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoying Lin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Shuwei Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruoshi Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiqing Zhao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liyun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, China
| | - Jianguo Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Huang L, Lin Z, Zhu X, Guo L, Cui L, Dong J, Liu K, Li J, Wang H. Microbiome and metabolome alterations in calves with enterohemorrhagic Escherichia coli and dyspeptic diarrhea. Vet Microbiol 2025; 305:110523. [PMID: 40279722 DOI: 10.1016/j.vetmic.2025.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/21/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) and dyspeptic diarrhea are significant health concerns in calves, leading to substantial economic losses in the livestock industry. This study investigated the impact of EHEC infection and dyspeptic diarrhea on calf health, focusing on blood parameters, fecal microbiota, and metabolite profiles. Thirty-two holstein calves were divided into three groups: healthy group (C Group), EHEC-infected group (E Group), and indigestion-induced diarrhea group (I Group). Significant alterations in diarrheic calves were noted in peripheral blood parameters, including hematological, biochemical, and blood gas indices. And then fecal microbiota analysis revealed decreased diversity, with reduced Actinobacteria and increased Proteobacteria and Fusobacteriota in E and I group. Metabolomic profiling showed significant reductions in organic acids and lipids in diarrheic calves. The study concludes that microbial and metabolic alterations play critical roles in the pathogenesis of EHEC- and indigestion-induced diarrhea, with Scorzoside identified as a potential biomarker for differentiating healthy calves from those with diarrhea. These findings provide insights for designing targeted interventions to enhance gut health and reduce disease burden in the livestock.
Collapse
Affiliation(s)
- Lantian Huang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, PR China
| | - Zhengyu Lin
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, PR China
| | - Xinyi Zhu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, PR China
| | - Long Guo
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, PR China
| | - Luying Cui
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, PR China
| | - Junsheng Dong
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, PR China
| | - Kangjun Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, PR China
| | - Jianji Li
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, PR China
| | - Heng Wang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, PR China.
| |
Collapse
|
10
|
Gefen R, Dourado J, Emile SH, Wignakumar A, Rogers P, Aeschbacher P, Garoufalia Z, Horesh N, Wexner SD. Fecal microbiota transplantation for patients with ulcerative colitis: a systematic review and meta-analysis of randomized control trials. Tech Coloproctol 2025; 29:103. [PMID: 40246750 PMCID: PMC12006273 DOI: 10.1007/s10151-025-03113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/30/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) has been shown to restore gut microbiome composition with an acceptable safety profile. FMT in inflammatory bowel disease, specifically ulcerative colitis (UC), has been investigated. We aimed to assess the efficacy of FMT in inducing UC remission. METHODS PubMed, Scopus, Google Scholar, and clinicaltrials.gov were searched for randomized control trials that assessed FMT in inducing UC remission. The primary outcome was combined clinical and endoscopic remission. Secondary outcomes were clinical remission, endoscopic remission, post-treatment overall adverse events, and colitis. Sensitivity analyses, meta-regression, bias assessment, and grading of certainty of evidence were performed. RESULTS A total of 14 studies including 600 patients (55.8% male; median age 40.7 years) were assessed. FMT was used in 299 patients and associated with significantly higher odds of combined clinical and endoscopic remission (OR 2.25, 95% CI 1.54, 3.3; p < 0.0001), clinical remission (OR 2.02, 95% CI 1.4, 2.93; p = 0.0002), and endoscopic remission (OR 1.95, 95% CI 1.17, 3.28; p = 0.011). The odds of post-treatment overall adverse events (OR 1.24, 95% CI 0.79, 1.95; p = 0.34) and colitis (OR 0.85, 95% CI 0.52, 1.93; p = 0.512) were similar between groups. Compared with baseline, FMT was more effective when biologics (OR 2.71), steroids (OR 2.27), or methotrexate (OR 3.07) were used as pre-FMT treatment. Oral delivery of FMT (OR 3.15) and pooled donors (OR 3.32) led to higher odds of remission. On meta-regression, pooled donors and methotrexate pre-treatment were associated with an increased likelihood of remission. CONCLUSIONS FMT is promising in inducing UC remission. Administration of medical treatments before FMT may help achieve higher remission rates. Current evidence shows that oral delivery of FMT and multidonor FMT may confer better results.
Collapse
Affiliation(s)
- R Gefen
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
- Department of General Surgery Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - J Dourado
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - S H Emile
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
- Colorectal Surgery Unit, Mansoura University Hospital, Mansoura University, Mansoura, Egypt
| | - A Wignakumar
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - P Rogers
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - P Aeschbacher
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Z Garoufalia
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
| | - N Horesh
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA
- Department of Surgery and Transplantations, Sheba Medical Center, Ramat Gan, Israel
| | - S D Wexner
- Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL, 33331, USA.
| |
Collapse
|
11
|
Rahaman MM, Wangchuk P, Sarker S. A systematic review on the role of gut microbiome in inflammatory bowel disease: Spotlight on virome and plant metabolites. Microb Pathog 2025; 205:107608. [PMID: 40250496 DOI: 10.1016/j.micpath.2025.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn's disease, arise from various factors such as dietary, genetic, immunological, and microbiological influences. The gut microbiota plays a crucial role in the development and treatment of IBD, though the exact mechanisms remain uncertain. Current research has yet to definitively establish the beneficial effects of the microbiome on IBD. Bacteria and viruses (both prokaryotic and eukaryotic) are key components of the microbiome uniquely related to IBD. Numerous studies suggest that dysbiosis of the microbiota, including bacteria, viruses, and bacteriophages, contributes to IBD pathogenesis. Conversely, some research indicates that bacteria and bacteriophages may positively impact IBD outcomes. Additionally, plant metabolites play a crucial role in alleviating IBD due to their anti-inflammatory and microbiome-modulating properties. This systematic review discusses the role of the microbiome in IBD pathogenesis and evaluates the potential connection between plant metabolites and the microbiome in the context of IBD pathophysiology.
Collapse
Affiliation(s)
- Md Mizanur Rahaman
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Phurpa Wangchuk
- College of Science and Engineering, James Cook University, Nguma Bada campus, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Nguma Bada campus, McGregor Rd, Smithfield, Cairns, QLD, 4878, Australia
| | - Subir Sarker
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
12
|
Aljabri A, Soliman GM, Ramadan YN, Medhat MA, Hetta HF. Biosimilars versus biological therapy in inflammatory bowel disease: challenges and targeting strategies using drug delivery systems. Clin Exp Med 2025; 25:107. [PMID: 40186719 PMCID: PMC11972199 DOI: 10.1007/s10238-025-01558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/03/2025] [Indexed: 04/07/2025]
Abstract
Inflammatory bowel disease (IBD) is a multifactorial illness with a climbing prevalence worldwide. While biologics are commonly prescribed especially for severe cases, they may worsen patients' outcomes due to financial burden. Consequently, there has been an increased focus on biosimilars to improve overall disease outcomes by maintaining similar efficacy and safety while minimizing the cost of therapy. Infliximab-dyyb was the first biosimilar approved by US-FDA for IBD. Since that, the US-FDA approved 14 biosimilars with different mechanisms of action and different routes of administration for IBD patients (four infliximab biosimilars, nine adalimumab biosimilars, and most recently one ustekinumab biosimilar). It should be noted that more biologics are in the pipeline as golimumab and natalizumab patents are set to expire in the near future, and biosimilars are now in pre-clinical to phase 3 trials. Different studies have evaluated biologics' effectiveness and safety and concluded that the majority of available biosimilars are efficacious and have similar adverse effect profiles compared to their reference biologics. It is worth mentioningthat post-marketing surveillance reports revealed some risks associated with biosimilars which should be taken into consideration in future research and clinical trials to avoid health hazards. Most biologics and biosimilars are administered parenterally which results in several drawbacks such as raised risk of infections, hypersensitivity, autoimmunity, development of malignancies, liver toxicity as well as worsening of heart failure. Several drug delivery systems based on passive and active targeting mechanisms are under active investigation to overcome these limitations. This review sheds light on the emergence of biologics and biosimilars as alternatives in IBD management, the differences between them, challenges and risks, and future perspectives in IBD therapy and new trends in drug delivery systems.
Collapse
Affiliation(s)
- Ahmed Aljabri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yasmin N Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt.
| | - Mohammed A Medhat
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
13
|
Kaden T, Alonso‐Román R, Stallhofer J, Gresnigt MS, Hube B, Mosig AS. Leveraging Organ-on-Chip Models to Investigate Host-Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv Healthc Mater 2025; 14:e2402756. [PMID: 39491534 PMCID: PMC12004439 DOI: 10.1002/adhm.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Indexed: 11/05/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic gastrointestinal disease with drastically increasing incidence rates. Due to its multifactorial etiology, a precise investigation of the pathogenesis is extremely difficult. Although reductionist cell culture models and more complex disease models in animals have clarified the understanding of individual disease mechanisms and contributing factors of IBD in the past, it remains challenging to bridge research and clinical practice. Conventional 2D cell culture models cannot replicate complex host-microbiota interactions and stable long-term microbial culture. Further, extrapolating data from animal models to patients remains challenging due to genetic and environmental diversity leading to differences in immune responses. Human intestine organ-on-chip (OoC) models have emerged as an alternative in vitro model approach to investigate IBD. OoC models not only recapitulate the human intestinal microenvironment more accurately than 2D cultures yet may also be advantageous for the identification of important disease-driving factors and pharmacological interventions targets due to the possibility of emulating different complexities. The predispositions and biological hallmarks of IBD focusing on host-microbiota interactions at the intestinal mucosal barrier are elucidated here. Additionally, the potential of OoCs to explore microbiota-related therapies and personalized medicine for IBD treatment is discussed.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH07745JenaGermany
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
| | - Raquel Alonso‐Román
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Junior Research Group Adaptive Pathogenicity StrategiesLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
| | | | - Mark S. Gresnigt
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Junior Research Group Adaptive Pathogenicity StrategiesLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
| | - Bernhard Hube
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Institute of MicrobiologyFaculty of Biological SciencesFriedrich Schiller University07743JenaGermany
| | - Alexander S. Mosig
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
| |
Collapse
|
14
|
Soufan F, Ghosson A, Jaber R, Ghandour A, Uwishema O. The Gut-Brain Axis in Irritable Bowel Syndrome: Implementing the Role of Microbiota and Neuroimmune Interaction in Personalized Prevention-A Narrative Review. Health Sci Rep 2025; 8:e70660. [PMID: 40256131 PMCID: PMC12006843 DOI: 10.1002/hsr2.70660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/15/2025] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Background and Purpose Irritable bowel syndrome (IBS) is a disorder characterized by microbiota-neuroimmune interaction resulting in disturbance to the gut-brain axis (GBA). The purpose of this review is to garner an overview of the different pathophysiological mechanisms indicated in the development of IBS and the associated sequalae on gut microbiota alongside its role in the GBA. Moreover, we aim to provide an insight into the possibility of utilizing personalized medicine when managing said affected populations. Methods A comprehensive review was performed of the relevant literature pertaining to the current state of GBA alteration implicated in IBS, comprising microbiota-neuroimmune interaction alongside disturbance and activation, respectively. Different search databases were utilized, including PubMed/MEDLINE and ScienceDirect. Results The review demonstrated the most evident etiologies of IBS being the imbalance of microbiota and the alteration to the GBA. Furthermore, the interrelation between microbiota and neuroimmunity was discussed. Promising avenues for IBS prevention and management are offered through emerging research on the pathophysiological mechanisms indicated in IBS-associated GBA alteration. This entails a role for the involved interactions between microbiota modification and neuroimmunity activation. Conclusion Promising prospects for symptom prevention and management are signaled by the possibility of personalized therapy specifically designed to address the GBA dysfunction indicated in IBS. Policymakers and developers should encourage further study and allocate available resources to aid researchers in the implementation and identification of novel preventive therapeutics. Furthermore, physicians should advocate and integrate the use of personalized medical approaches of IBS to help ensure a better quality of life.
Collapse
Affiliation(s)
- Fatima Soufan
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Abir Ghosson
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Rayyan Jaber
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Adel Ghandour
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Olivier Uwishema
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
| |
Collapse
|
15
|
Muro P, Jing C, Zhao Z, Jin T, Mao F. The emerging role of honeysuckle flower in inflammatory bowel disease. Front Nutr 2025; 12:1525675. [PMID: 40225345 PMCID: PMC11985448 DOI: 10.3389/fnut.2025.1525675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC), referred to as inflammatory bowel disease (IBD), pose considerable challenges in treatment because they are chronic conditions that easily relapse. The occurrence of IBD continues to rise in developing countries. Nonetheless, the existing therapies for IBD have limitations and fail to address the needs of the patients thoroughly. There is an increasing need for new, safe, and highly effective alternative medications for IBD patients. Traditional Chinese Medicine (TCM) is employed in drug development and disease management due to its wide-range of biological activities, minimal toxicity, and limited side effects. Extensive research has shown that certain TCM exhibits significant therapeutic benefits for IBD treatments. Honeysuckle (Lonicera japonica) was used in TCM research and clinical settings for the treatment of IBD. Bioactive metabolites in L. japonica, such as luteolin, quercetin, cyanidin, chlorogenic acid (CGA), caffeic acid (CA), and saponin, exhibit significant therapeutic benefits for managing IBD. The honeysuckle flower is a potential candidate in the treatment of IBD due to its anti-inflammatory, immune system-regulating, and antioxidant qualities. This paper reviews the metabolites of the honeysuckle flower as a candidate for the treatment of IBD. It discusses the fundamental mechanism of L. japonica and the potential of its bioactive metabolites in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Peter Muro
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Caihong Jing
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Zhihan Zhao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Fei Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
16
|
Shi Y, Zhang H, Miao C. Metabolic reprogram and T cell differentiation in inflammation: current evidence and future perspectives. Cell Death Discov 2025; 11:123. [PMID: 40155378 PMCID: PMC11953409 DOI: 10.1038/s41420-025-02403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
T cell metabolism and differentiation significantly shape the initiation, progression, and resolution of inflammatory responses. Upon activation, T cells undergo extensive metabolic shifts to meet distinct functional demands across various inflammatory stages. These metabolic alterations are not only critical for defining different T cell subsets, but also for sustaining their activity in inflammatory environments. Key signaling pathways-including mTOR, HIF-1α, and AMPK regulate these metabolic adaptions, linking cellular energy states with T cell fate decisions. Insights into the metabolic regulation of T cells offer potential therapeutic strategies to manipulate T cell function, with implications for treating autoimmune diseases, chronic inflammation, and cancer by targeting specific metabolic pathways.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Katkeviciute E, Bircher A, Sanchez R, Schwill M, Dorst A, Morsy Y, Conde J, Zamboni N, Gademann K, Scharl M, Montalban-Arques A. Bacteria-derived 3-hydroxydodecanoic acid induces a potent anti-tumor immune response via the GPR84 receptor. Cell Rep 2025; 44:115357. [PMID: 40014452 DOI: 10.1016/j.celrep.2025.115357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/03/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Despite advances in cancer treatment, the development of effective therapies remains an urgent unmet need. Here, we investigate the potential of bacteria-derived metabolites as a therapeutic alternative for the treatment of cancer. We detect 3-hydroxydodecanedioic acid in the serum of tumor-bearing mice treated with serum from mice previously supplemented with a mix of Clostridiales bacteria. Further, 3-hydroxydodecanoic acid, an intermediate derivative between dodecanoic and 3-hydroxydodecanedioic acids, exhibits a strong anti-tumor response via GPR84 receptor signaling and enhances CD8+ T cell infiltration and cytotoxicity within tumor tissue in multiple cancer models. Metabolomics analysis of colorectal cancer patient serum reveals an inverse correlation between the abundance of these metabolites and advanced disease stages. Our findings provide a strong rationale for 3-hydroxydodecanoic acid and the GPR84 receptor to be considered as promising therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Egle Katkeviciute
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; Recolony AG, 8092 Zurich, Switzerland
| | - Anna Bircher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Rocio Sanchez
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | | | - Andrea Dorst
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Javier Conde
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; Department of Molecular and Cellular Gastroenterology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Ana Montalban-Arques
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; Recolony AG, 8092 Zurich, Switzerland
| |
Collapse
|
18
|
Alzahrani AJ, Al-Hebshi BM, Yahia ZA, Al-Judaibi EA, Alsaadi KH, Al-Judaibi AA. Impact of Microbiota Diversity on Inflammatory Bowel Disease. Microorganisms 2025; 13:710. [PMID: 40284547 PMCID: PMC12029714 DOI: 10.3390/microorganisms13040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition that includes two main types, Crohn's disease (CD) and ulcerative colitis (UC), involving inflammation of the gastrointestinal (GI) tract. The exact cause of IBD is unknown but could be a combination of genetic, environmental, and immune system factors. This study investigated the impact of IBD on microbiota diversity by evaluating the differences in microbial composition and the microbiota of a control group (A) of healthy individuals and a group (B) of IBD patients. Sixty biopsies were collected from participants recruited from hospitals in Makkah, Saudi Arabia. Biopsy specimens were taken during colonoscopy examination, and bacterial identification was performed by extracting ribosomal DNA from sigmoid colon biopsies using a DNeasy Blood & Tissue Kit. Metagenomics and bioinformatics analyses were then conducted to analyze and compare the microbiota in the two groups. The results showed that the varieties of core microbiome species were 3.81% greater in the IBD patients than in the members of the control group. Furthermore, the differences between the groups were significantly greater than the variations within each group. Differences between the two groups were detected in the relative abundance of Clostridium nexile, Ruminococcus gnavus, Ruminococcus faecis, and Escherichia coli. These results indicate that microbiota could play a role in the pathogenesis of IBD and suggest that microbial diversity can serve as a biomarker for diagnosing the disease and monitoring its progression.
Collapse
Affiliation(s)
- Ashwag J. Alzahrani
- Department of Biological Sciences, Microbiology Section, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.J.A.); (B.M.A.-H.); (E.A.A.-J.); (K.H.A.)
| | - Basma M. Al-Hebshi
- Department of Biological Sciences, Microbiology Section, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.J.A.); (B.M.A.-H.); (E.A.A.-J.); (K.H.A.)
| | - Zolfekar A. Yahia
- Department of Internal Medicine, Al Noor Specialist Hospital, Ministry of Health, Makkah 24242, Saudi Arabia;
| | - Effat A. Al-Judaibi
- Department of Biological Sciences, Microbiology Section, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.J.A.); (B.M.A.-H.); (E.A.A.-J.); (K.H.A.)
| | - Khloud H. Alsaadi
- Department of Biological Sciences, Microbiology Section, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.J.A.); (B.M.A.-H.); (E.A.A.-J.); (K.H.A.)
| | - Awatif A. Al-Judaibi
- Department of Biological Sciences, Microbiology Section, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.J.A.); (B.M.A.-H.); (E.A.A.-J.); (K.H.A.)
| |
Collapse
|
19
|
Díez-Madueño K, Montero I, Fernández-Gosende M, Martínez-Álvarez N, Hidalgo-Cantabrana C, de la Cueva Dobao P, Coto-Segura P. Compositional and Functional Profile of Gut Microbiota in a Cohort of Adult Spanish Patients with Atopic Dermatitis Using Metagenomics: A Cross-Sectional Study. Dermatitis 2025. [PMID: 40111891 DOI: 10.1089/derm.2024.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Background: The role of gut dysbiosis in the pathophysiology of atopic dermatitis (AD) through immune system (IS) imbalance is a novel line of investigation currently under discussion. This study aimed to characterize compare the composition and functional profile of the gut microbiota (GM) between adults with AD and healthy individuals. Methods: Observational cross-sectional study, where fecal samples from 70 adults (38 patients and 32 controls) were analyzed using metagenomics and bioinformatics. Results: Differences between the GM of patients with AD and healthy individuals were demonstrated. Reduced microbial diversity was found in subjects with AD. Bacterial species with lower abundance primarily belonged to the families Ruminococcaceae, Akkermansiaceae, and Methanobacteriaceae. Several microbial metabolic pathways were found to be decreased in patients with AD, including amino acid biosynthesis, vitamin biosynthesis, fatty acids and lipids biosynthesis, and energy metabolism. Conclusion: Adults with AD exhibited a distinct GM compared to healthy individuals. Changes were demonstrated both compositionally and functionally. Further investigation is mandatory to elucidate the potential link and causal relationship between gut dysbiosis and AD, which may be crucial for a deeper understanding of the disease's pathophysiology and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Kevin Díez-Madueño
- From the Dermatology Department, Hospital Universitario Infanta Leonor, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | - Pablo de la Cueva Dobao
- From the Dermatology Department, Hospital Universitario Infanta Leonor, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | - Pablo Coto-Segura
- Dermatology Department, Hospital Vital Álvarez Buylla, Mieres, Spain
| |
Collapse
|
20
|
Gabryel M, Zakerska-Banaszak O, Ladziak K, Hubert KA, Baturo A, Suszynska-Zajczyk J, Hryhorowicz M, Dobrowolska A, Skrzypczak-Zielinska M. Is a rare CXCL8 gene variant a new possible cause or curse factor of inflammatory bowel disease? Front Immunol 2025; 16:1562618. [PMID: 40176809 PMCID: PMC11961448 DOI: 10.3389/fimmu.2025.1562618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
Introduction The pathogenesis of inflammatory bowel diseases (IBD) involves genetic, environmental, immunological, and microbial factors; however, it remains unclear. Pro-inflammatory interleukin 8 (IL-8), encoded by the CXCL8 gene, assumes a crucial chemotactic role in leukocyte migration. Methods This study aimed to investigate whether an association exists between IBD and two CXCL8 variants, namely, c.-251A>T (rs4073) and c.91G>T (rs188378669), and IL-8 concentration. We analyzed the distribution of both variants among 353 Polish IBD patients and 200 population subjects using pyrosequencing, competitive allele-specific PCR and Sanger sequencing. Results The c.91T stop-gained allele was significantly more frequent in IBD patients (2.12%) than in controls (0.25%) (p = 0.0121), while the c.-251T allele frequencies were similar (54% vs. 51.5%, p = 0.4955). Serum IL-8 concentrations, measured using ELISA, were higher in IBD patients with the c.91 GG genotype compared to healthy controls (mean, 70.02 vs. 51.5 pg/ml, p<0.01) and patients with c.91 GT (mean, 61.73 pg/ml). Moreover, clinical data indicated that carriers of the c.91T variant need more often corticosteroids and surgical treatment of the disease than GG homozygous IBD patients. Conclusion This suggest that the CXCL8 c.91T allele may influence IBD manifestation and the course of the disorders in Polish patients, potentially serving as a novel target for future studies and therapeutic approaches.
Collapse
Affiliation(s)
- Marcin Gabryel
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Karolina Ladziak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Alina Baturo
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Suszynska-Zajczyk
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| | - Magdalena Hryhorowicz
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
21
|
Zhao X, Xu J, Wu D, Chen N, Liu Y. Gut Microbiota in Different Treatment Response Types of Crohn's Disease Patients Treated with Biologics over a Long Disease Course. Biomedicines 2025; 13:708. [PMID: 40149684 PMCID: PMC11940770 DOI: 10.3390/biomedicines13030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background and Aims: Crohn's disease (CD) is a chronic inflammatory bowel disease (IBD) with a globally increasing prevalence, partially driven by alterations in gut microbiota. Although biological therapy is the first-line treatment for CD, a significant proportion of patients experience a primary non-response or secondary loss of response over time. This study aimed to explore the differences in gut microbiota among CD patients with divergent long-term responses to biological therapy, focusing on a long disease course. Methods: Sixteen CD patients who applied the biological agents for a while were enrolled in this study and were followed for one year, during which fecal specimens were collected monthly. Metagenomic analysis was used to determine the microbiota profiles in fecal samples. The response to biological therapy was evaluated both endoscopically and clinically. Patients were categorized into three groups based on their response: R (long-term remission), mA (mild active), and R2A group (remission to active). The differences in the gut microbiota among the groups were analyzed. Results: Significant differences in fecal bacterial composition were observed between the groups. The R2A group exhibited a notable decline in gut microbial diversity compared to the other two groups (p < 0.05). Patients in the R group had higher abundances of Akkermansia muciniphila, Bifidobacterium adolescentis, and Megasphaera elsdenii. In contrast, Veillonella parvula, Veillonella atypica, and Klebsiella pneumoniae were higher in the R2A group. Conclusions: Gut microbial diversity and specific bacterial significantly differed among groups, reflecting distinct characteristics between responders and non-responders.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing 100730, China;
| | - Ning Chen
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
22
|
Liu MC, Shu YA, Wang YC, Tseng HY, Li MJ, Yu YT, Cheng HC, Tsai PJ, Yang YJ. Faecalibacterium prausnitzii Colonization Attenuates Gut Inflammation and Epithelial Damage in a DSS-Induced Colitis Mice Model. Mediators Inflamm 2025; 2025:7280675. [PMID: 40224484 PMCID: PMC11986197 DOI: 10.1155/mi/7280675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/04/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Reduction of Faecalibacterium prausnitzii abundance is related to inflammatory bowel diseases (IBDs), and supplement of it exists protective effects. Aim: This study aimed to establish a F. prausnitzii-colonized mouse model and investigate that the presence of F. prausnitzii in the gut can ameliorate the severity of dextran sulfate sodium (DSS)-induced colitis. Methods: A F. prausnitzii (ATCC 27768) strain was maintained on the PS-BHI agar plates and manipulated in a strictly anaerobic chamber. A F. prausnitzii-colonized C57BL/6 mice model was tested by a rectal enema with 1 × 109 bacteria/day for 3 days. The 5% DSS was added to drinking water for 3 days to induce colitis and diarrhea in experimental mice. The clinical, cytological, and histological severities were compared between groups. Results: The F. prausnitzii-colonized mice model was successfully established via rectal enema with the property of transfer to offspring. DSS treatment altered gut microbiota and significantly attenuated the abundance of F. prausnitzii in colonized mice. Mice with F. prausnitzii colonization had significantly improved weight loss, anal bleeding, stool consistency, cecum weight, colon length, and serum amyloid A (SAA) level than those without after DSS treatment. Furthermore, the F. prausnitzii-colonized mice significantly reduced the transcription levels of TNF-α, INF-γ and IL-18, and epithelial damage and PMN infiltration in the lamina propria and had better preservation of goblet cells than the control group. Conclusion: We have successfully established a mouse model colonized with F. prausnitzii via rectal enema administration and showed colonization of F. prausnitzii in the gut has a protective effect against DSS-induced colitis.
Collapse
Affiliation(s)
- Meng-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-An Shu
- Department of Medical Laboratory Science and Biotechnology and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chin Wang
- Department of Medical Laboratory Science and Biotechnology and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Ying Tseng
- Department of Medical Laboratory Science and Biotechnology and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Jia Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ting Yu
- Department of Pathology, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiu-Chi Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Jong Yang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
23
|
Wang L, Li A, Zhang X, Iqbal M, Aabdin ZU, Xu M, Mo Q, Li J. Effect of Bacillus subtilis isolated from yaks on D-galactose-induced oxidative stress and hepatic damage in mice. Front Microbiol 2025; 16:1550556. [PMID: 40109966 PMCID: PMC11920168 DOI: 10.3389/fmicb.2025.1550556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Acute hepatic injury is a severe condition that is always accompanied by oxidative stress and inflammation, seriously threatening the health of the host. Probiotics have been shown to be involved in the regulation of antioxidant system and gut microbiota activity, but studies on the effects of yak derived Bacillus subtilis (B. subtilis) on acute liver injury and oxidative stress remain scarce. Here, we aim to explore the ameliorative effects of B. subtilis isolated from yaks on oxidative stress and hepatic injury caused by D-galactose, as well as the underlying processes. Results indicated that B. subtilis administration, particularly the BS3, significantly mitigated hepatic damage induced by D-galactose in mice as evidenced by ameliorating liver tissue damage as well as decreasing ALT (p < 0.05) and AST (p < 0.05) levels. Additionally, the B. subtilis intervention was demonstrated to enhance the antioxidant system in D-galactose-exposed mice, as manifested by increased T-AOC and SOD, alongside a decrease in MDA levels (p < 0.05). Meanwhile, B. subtilis intervention could effectively mitigate oxidative damage via modulating the Keap1/Nrf2 signaling pathway. Importantly, B. subtilis exhibited a pronounced protective effect against D-galactose-induced intestinal barrier dysfunction through improving tight junction proteins. The gut microbiota results suggest that BS3 alters the abundance of some gut flora such as Firmicutes phylum and Oscillibacter and Lachnospiraceae_NK4A136 genera, which affects the composition of the gut microbiota and reverses the decrease in the microbial richness index in mice. In summary, these findings demonstrated that B. subtilis isolated from yaks serve as a promising candidate to ameliorate oxidative damage and hepatic injury. Meanwhile, the positive regulation effect of B. subtilis on gut microbiota and intestinal mucosal barrier may be one of its underlying mechanisms to alleviate oxidative stress and hepatic injury.
Collapse
Affiliation(s)
- Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaohu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zain Ul Aabdin
- Department of Preventive Veterinary Medicine and Public Health, Faculty of Veterinary and Animal Sciences, Ziauddin University, Karachi, Pakistan
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi, China
| |
Collapse
|
24
|
Dubian S, Yzet C, Brazier F, Yzet T, Hautefeuille V, Decrombecque C, Bocquillon Q, Richard N, Buisson A, Meynier J, Fumery M. Fecal calprotectin, intestinal ultrasound, and their combination for the diagnosis of inflammatory bowel disease. Clin Res Hepatol Gastroenterol 2025; 49:102549. [PMID: 39909306 DOI: 10.1016/j.clinre.2025.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND We aimed to evaluate the diagnostic accuracy of fecal calprotectin (FC) and intestinal ultrasound (IUS), independently and in combination, as screening tools for adults with suspected IBD to reduce the number of unnecessary endoscopic procedures. METHODS We conducted a retrospective monocentric study that included consecutive adult patients with (i) ileocolonoscopy for suspected IBD between January 2021 and June 2023 who had either (ii) IUS and/or (iii) a FC test within 6 weeks. Bowel wall thickness (BWT) and the color Doppler signal (CDS) were evaluated for all segments. The presence of lymphadenopathy, loss of stratification, stricture, and fistula were also recorded. RESULTS In total, 119 patients with a median age of 32 years (IQR, 24.0-41.0) were included. The most common symptoms were abdominal pain (n = 88, 75 %) and chronic diarrhea (n = 89, 75 %). Among the 119 patients, 74 (62 %) had IUS, 101 (82 %) had a FC test, and 56 (47 %) had both. Forty patients (34 %) had a diagnosis of IBD, including 31 (26 %) with CD and 9 (8 %) with UC. By ROC curve analysis, the best threshold of FC to diagnose IBD was 117 ug/g (Se 97 %, Sp 73 %, PPV 67 %, NPV 98 %, AUC 0.88, 95 %CI [0.81; 0.94], p = 0.006). Using this threshold, only 3 % of patients were misclassified as non-IBD. Screening by measuring FC levels would result in a 48 % reduction in the number of adults requiring endoscopy. Abnomal IUS was significantly associated with a diagnosis of IBD (OR 5.6, 95 %IC [2.1;16.2], P = 0.0008). The association of a BWT>3 mm and a positive CDS was associated with a Se, Sp, PPV, and NPV of 48 %, 100 %, 100 %, and 75 %, respectively, but 52 % of patients were misclassified as non-IBD. The combination of a BWT>3 mm, CDS, and FC>117 ug/g had a Se, Sp, PPV, and NPV of 44 %, 100 %, 100 %, and 69 %, respectively. For patients with a normal IUS and FC<117 ug/g, 4 % were misclassified as non-IBD. CONCLUSIONS The combination of FC and IUS is a useful screening strategy to identify patients who truly require endoscopy for suspected IBD. Calprotectin is a highly effective test for ruling out IBD. Conversely, relying solely on IUS lacks the discriminative power to safely rule out IBD. However, it shows a high PPV and is a potent tool for diagnosing IBD.
Collapse
Affiliation(s)
- Serge Dubian
- Department of Gastroenterology, Amiens University hospital, and Université de Picardie, France
| | - Clara Yzet
- Department of Gastroenterology, Amiens University hospital, and Université de Picardie, France
| | - Franck Brazier
- Department of Gastroenterology, Amiens University hospital, and Université de Picardie, France
| | - Thierry Yzet
- Department of Radiology, Amiens University hospital, and Université de Picardie, France
| | - Vincent Hautefeuille
- Department of Gastroenterology, Amiens University hospital, and Université de Picardie, France
| | - Catherine Decrombecque
- Department of Gastroenterology, Amiens University hospital, and Université de Picardie, France
| | - Quentin Bocquillon
- Department of Gastroenterology, Amiens University hospital, and Université de Picardie, France
| | - Nicolas Richard
- Department of Gastroenterology, Amiens University hospital, and Université de Picardie, France
| | - Anthony Buisson
- Université Clermont Auvergne, Inserm, 3iHP, CHU Clermont-Ferrand, Service d'Hépato-Gastroentérologie, Clermont-Ferrand, France
| | | | - Mathurin Fumery
- Department of Gastroenterology, Amiens University hospital, and Université de Picardie, France.
| |
Collapse
|
25
|
Du X, Yu W, Chen F, Jin X, Xue L, Zhang Y, Wu Q, Tong H. HDAC inhibitors and IBD: Charting new approaches in disease management. Int Immunopharmacol 2025; 148:114193. [PMID: 39892171 DOI: 10.1016/j.intimp.2025.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/14/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Inflammatory bowel disease (IBD) represents a group of chronic inflammatory disorders of the gastrointestinal tract. Despite substantial advances in our understanding of IBD pathogenesis, the currently available therapeutic options remain limited in their efficacy and often come with significant side effects. Therefore, there is an urgent need to explore novel approaches for the management of IBD. One promising avenue of investigation revolves around the use of histone deacetylase (HDAC) inhibitors, which have garnered considerable attention for their potential in modulating gene expression and curbing inflammatory responses. This review emphasizes the pressing need for innovative drugs in the treatment of IBD, and drawing from a wealth of preclinical studies and clinical trials, we underscore the multifaceted roles and the therapeutic effects of HDAC inhibitors in IBD models and patients. This review aims to contribute significantly to the understanding of HDAC inhibitors' importance and prospects in the management of IBD, ultimately paving the way for improved therapeutic strategies in this challenging clinical landscape.
Collapse
Affiliation(s)
- Xueting Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Weilai Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Fangyu Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liwei Xue
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| |
Collapse
|
26
|
Khosravany Z, Khodavaisy S, Olyaiee A, Sadeghi A, Nemati S, Shahrokh S, Mohammad Ali Gol S, Shojaei S, Mohammad Rahimi H, Mirjalali H. A preliminary study of the association between Blastocystis and quantification of selected yeasts in IBD and IBS patients. Front Med (Lausanne) 2025; 12:1514587. [PMID: 40018349 PMCID: PMC11865192 DOI: 10.3389/fmed.2025.1514587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/17/2025] [Indexed: 03/01/2025] Open
Abstract
Objective Irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) are gastrointestinal disorders, which can be triggered by gut microbiota dysbiosis. The development of IBS-like symptoms has been linked to the overgrowth of Candida spp. In addition, the critical role of fungi has been highlighted in the pathogenesis of IBD. This study investigated the association between Blastocystis and selected yeasts in IBS and IBD patients. Methods This investigation is a cross-sectional study from 2022 to 2024, performed on 91 participants, including 20 healthy individuals, 27 patients with IBS, and 44 IBD patients [39 with ulcerative colitis (UC; 88.63%) and 5 (11.37%) Crohn's disease (CD)], who were also categorized based on the presence of Blastocystis. Total DNA was extracted from stool samples, and the presence and quantity of yeasts including C. albicans, C. tropicalis, C. glabrata, C. parapsilosis, C. krusei, Geotrichum candidum, Rhodotorula spp., Cryptococcus neoformans, and Saccharomyces cerevisiae were evaluated by real-time PCR. Statistical tests were used to assess significant associations between variables. Results Saccharomyces cerevisiae and C. albicans were the most prevalent yeasts in all groups. Candida tropicalis and C. neoformans were identified in neither patients nor healthy subjects. The presence/absence of C. albicans was not significantly different between patients with IBD, IBS, and the control groups. This was similar for G. candidum. However, there was a difference in the presence of S. cerevisiae among patients, although it was insignificant (p-value = 0.077). There was a significant difference in the quantity of C. albicans between IBD (880.421 ± 2140.504), IBS (10.307 ± 15.206), and controls (2875.888 ± 8383.889) (p-value = 0.020). Specifically, the source of difference was seen between IBD patients and the control group (p-value = 0.005). In addition, considering the presence of Blastocystis, a statistically significant association was seen between the number of C. albicans and the sample groups (p-value = 0.013). The quantity of C. albicans was significantly different between IBS and IBD patients. Conclusion Regarding the presence of Blastocystis, the quantity of C. albicans and S. cerevisiae was increased and decreased in the studied groups, respectively. This is a preliminary study, and eukaryote-eukaryote association in IBS and IBD patients should be considered in further studies.
Collapse
Affiliation(s)
- Zohre Khosravany
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Olyaiee
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Mohammad Ali Gol
- Basic and Molecular Epidemiology of Gastrointestinal Disorder Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Shojaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Gong S, Sun L, Sun Y, Ju W, Wang G, Zhang J, Fu X, Lu C, Zhang Y, Song W, Li M, Sun L. Integrated Macrogenomics and Metabolomics Analysis of the Effect of Sea Cucumber Ovum Hydrolysates on Dextran Sodium Sulfate-Induced Colitis. Mar Drugs 2025; 23:73. [PMID: 39997197 PMCID: PMC11857712 DOI: 10.3390/md23020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Inflammatory bowel disease remains a significant challenge in clinical settings. This study investigated the therapeutic potential of sea cucumber ovum hydrolysates (SCH) in a dextran sulfate sodium (DSS)-induced colitis mouse model. SCH, defined by its elevated stability and solubility, with a molecular weight below 1000 Da, significantly alleviated DSS-induced colitis, as evidenced by enhanced splenic index, reduced colonic damage, and diminished serum pro-inflammatory cytokines. Furthermore, macrogenomic analysis demonstrated that SCH increased beneficial gut microbes and decreased pro-inflammatory bacteria. Furthermore, metabolomic analysis of colonic tissues identified elevated levels of anti-inflammatory metabolites, such as Phenyllactate, 2-Hydroxyglutarate, and L-Aspartic acid, in colitis mice after oral administration of SCH. In conclusion, SCH represents a promising candidate for the treatment of colitis.
Collapse
Affiliation(s)
- Shunmin Gong
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Liqin Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Yongjun Sun
- Homey Group Co., Ltd., Rongcheng 264300, China; (Y.S.); (W.J.)
| | - Wenming Ju
- Homey Group Co., Ltd., Rongcheng 264300, China; (Y.S.); (W.J.)
| | - Gongming Wang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.); (J.Z.)
| | - Jian Zhang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.); (J.Z.)
| | - Xuejun Fu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Chang Lu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Yu Zhang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Wenkui Song
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mingbo Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Leilei Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| |
Collapse
|
28
|
Johnson SD, Pino M, Acharya A, Clain JA, Bose D, Nguyen K, Harper J, Villinger F, Paiardini M, Byrareddy SN. IL-21 and anti-α4β7 dual therapy during ART promotes immunological and microbiome responses in SIV-infected macaques. JCI Insight 2025; 10:e184491. [PMID: 39903521 PMCID: PMC11949015 DOI: 10.1172/jci.insight.184491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Despite combination antiretroviral therapy (ART), HIV causes persistent gut barrier dysfunction, immune depletion, and dysbiosis. Furthermore, ART interruption results in reservoir reactivation and rebound viremia. Both IL-21 and anti-α4β7 improve gut barrier functions, and we hypothesized that combining them would synergize as a dual therapy to improve immunological outcomes in SIV-infected rhesus macaques (RMs). We found no significant differences in CD4+ T cell reservoir size by intact proviral DNA assay. SIV rebounded in both dual-treated and control RMs following analytical therapy interruption (ATI), with time to rebound and initial rebound viremia comparable between groups; however, dual-treated RMs showed slightly better control of viral replication at the latest time points after ATI. Additionally, following ATI, dual-treated RMs showed immunological benefits, including T cell preservation and lower PD-1+ central memory T cell (TCM) frequency. Notably, PD-1+ TCMs were associated with reservoir size, which predicted viral loads (VLs) after ATI. Finally, 16S rRNA-Seq revealed better recovery from dysbiosis in treated animals, and the butyrate-producing Firmicute Roseburia predicted PD-1-expressing TCMs and VLs after ATI. PD-1+ TCMs and gut dysbiosis represent mechanisms of HIV persistence and pathogenesis, respectively. Therefore, combining IL-21 and anti-α4β7 may be an effective therapeutic strategy to improve immunological outcomes for people with HIV.
Collapse
Affiliation(s)
- Samuel D. Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Julien A. Clain
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Deepanwita Bose
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, and
- Department of Biochemistry and Molecular Biology, UNMC, Omaha, Nebraska, USA
| |
Collapse
|
29
|
Zarei P, Sedeh PA, Vaez A, Keshteli AH. Using metabolomics to investigate the relationship between the metabolomic profile of the intestinal microbiota derivatives and mental disorders in inflammatory bowel diseases: a narrative review. Res Pharm Sci 2025; 20:1-24. [PMID: 40190827 PMCID: PMC11972020 DOI: 10.4103/rps.rps_273_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 04/09/2025] Open
Abstract
Individuals with inflammatory bowel disease (IBD) are at a higher risk of developing mental disorders, such as anxiety and depression. The imbalance between the intestinal microbiota and its host, known as dysbiosis, is one of the factors, disrupting the balance of metabolite production and their signaling pathways, leading to disease progression. A metabolomics approach can help identify the role of gut microbiota in mental disorders associated with IBD by evaluating metabolites and their signaling comprehensively. This narrative review focuses on metabolomics studies that have comprehensively elucidated the altered gut microbial metabolites and their signaling pathways underlying mental disorders in IBD patients. The information was compiled by searching PubMed, Web of Science, Scopus, and Google Scholar from 2005 to 2023. The findings indicated that intestinal microbial dysbiosis in IBD patients leads to mental disorders such as anxiety and depression through disturbances in the metabolism of carbohydrates, sphingolipids, bile acids, neurotransmitters, neuroprotective, inflammatory factors, and amino acids. Furthermore, the reduction in the production of neuroprotective factors and the increase in inflammation observed in these patients can also contribute to the worsening of psychological symptoms. Analyzing the metabolite profile of the patients and comparing it with that of healthy individuals using advanced technologies like metabolomics, aids in the early diagnosis and prevention of mental disorders. This approach allows for the more precise identification of the microbes responsible for metabolite production, enabling the development of tailored dietary and pharmaceutical interventions or targeted manipulation of microbiota.
Collapse
Affiliation(s)
- Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi Sedeh
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Vaez
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
30
|
Ismail EN, Zakuan N, Othman Z, Vidyadaran S, Mohammad H, Ishak R. Polyphenols mitigating inflammatory mechanisms in inflammatory bowel disease (IBD): focus on the NF-ƙB and JAK/STAT pathways. Inflammopharmacology 2025; 33:759-765. [PMID: 39636381 PMCID: PMC11842400 DOI: 10.1007/s10787-024-01607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
The term "inflammatory bowel disease" (IBD) refers to a group of chronic inflammatory gastrointestinal disorders, which include ulcerative colitis and Crohn's disease. The necessity for alternative therapeutic approaches is underscored by the fact that although present medicines are successful, they frequently result in considerable adverse effects. Naturally occurring substances included in fruits and vegetables called polyphenols have been shown to have the capacity to control important inflammatory pathways including NF-κB and JAK/STAT, which are essential for the pathophysiology of IBD. The processes by which polyphenols, such as curcumin, EGCG, resveratrol, and quercetin, reduce inflammation are examined in this article. Polyphenols may have therapeutic advantages by blocking the synthesis of cytokines and the activation of immune cells by targeting these pathways. Preclinical study indicates a reduction in intestinal inflammation, which is encouraging. However, more clinical research is needed to determine the clinical relevance of polyphenols in the therapy of IBD, especially with regard to their long-term safety and bioavailability.
Collapse
Affiliation(s)
- Elysha Nur Ismail
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Noraina Zakuan
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zulkefley Othman
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hussin Mohammad
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| | - Reezal Ishak
- Universiti Kuala Lumpur - Institute of Medical Science Technology (UniKL MESTECH), Kajang, Selangor, Malaysia.
| |
Collapse
|
31
|
Yi C, Huang S, Zhang W, Guo L, Xia T, Huang F, Yan Y, Li H, Yu B. Synergistic interactions between gut microbiota and short chain fatty acids: Pioneering therapeutic frontiers in chronic disease management. Microb Pathog 2025; 199:107231. [PMID: 39681288 DOI: 10.1016/j.micpath.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Microorganisms in the gut play a pivotal role in human health, influencing various pathophysiological processes. Certain microorganisms are particularly essential for maintaining intestinal homeostasis, reducing inflammation, supporting nervous system function, and regulating metabolic processes. Short-chain fatty acids (SCFAs) are a subset of fatty acids produced by the gut microbiota (GM) during the fermentation of indigestible polysaccharides. The interaction between GM and SCFAs is inherently bidirectional: the GM not only shapes SCFAs composition and metabolism but SCFAs also modulate microbiota's diversity, stability, growth, proliferation, and metabolism. Recent research has shown that GM and SCFAs communicate through various pathways, mainly involving mechanisms related to inflammation and immune responses, intestinal barrier function, the gut-brain axis, and metabolic regulation. An imbalance in GM and SCFA homeostasis can lead to the development of several chronic diseases, including inflammatory bowel disease, colorectal cancer, systemic lupus erythematosus, Alzheimer's disease, and type 2 diabetes mellitus. This review explores the synergistic interactions between GM and SCFAs, and how these interactions directly or indirectly influence the onset and progression of various diseases through the regulation of the mechanisms mentioned above.
Collapse
Affiliation(s)
- Chunmei Yi
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shanshan Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenlan Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tong Xia
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fayin Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
32
|
Tsai YC, Tai WC, Liang CM, Wu CK, Tsai MC, Hu WH, Huang PY, Chen CH, Kuo YH, Yao CC, Chuah SK. Alternations of the gut microbiota and the Firmicutes/Bacteroidetes ratio after biologic treatment in inflammatory bowel disease. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:62-69. [PMID: 39393964 DOI: 10.1016/j.jmii.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND The inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC) is a complex disease with multifactorial etiology. The intestinal dysbiosis have been investigated to play an important role in IBD pathogenesis and disease activity. The aim of our study was to analyze the intestinal microbiota composition in IBD across different severity levels and the impact of biologic therapy on microbiota modulation. METHODS In this study, 27 IBD patients were recruited, including 14 patients undergoing biologic therapy for moderate to severe disease activity and 13 controls with inactive disease. The gut microbial composition was determined by 16 S ribosomal RNA gene sequencing of stool samples. RESULTS Biologic therapy led to significant clinical improvement in IBD disease activity after 48 weeks. About species richness, community alpha diversity was significant lower in active CD patients and enriched gradually after biologic therapy. The beta-diversity regard to the difference of bacterial community composition showed significant difference between patients in biologic and control group. A decrease in Firmicutes and increase in Bacteroidetes abundance were observed in patients with active disease, both in CD and UC. Biologic treatment induced shifts in gut microbiota, with increased Firmicutes and decreased Bacteroidetes, as well as improved F/B ratio gradually after treatment, correlating with disease activity. CONCLUSIONS Our study suggested that gut microbiota differences changed after biologic therapies among IBD with different disease activity, and a rising Firmicutes/Bacteroidetes ratio could be a potential predictor for disease activity and treatment response monitoring.
Collapse
Affiliation(s)
- Yu-Chieh Tsai
- Diversion of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Wei-Chen Tai
- Diversion of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan City, Taiwan.
| | - Chih-Ming Liang
- Diversion of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan City, Taiwan.
| | - Cheng-Kun Wu
- Diversion of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan City, Taiwan.
| | - Ming-Chao Tsai
- Diversion of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan City, Taiwan.
| | - Wan-Hsiang Hu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan City, Taiwan.
| | - Pao-Yuan Huang
- Diversion of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Chien-Hung Chen
- Diversion of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan City, Taiwan.
| | - Yuan-Hung Kuo
- Diversion of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan City, Taiwan.
| | - Chih-Chien Yao
- Diversion of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan City, Taiwan.
| | - Seng-Kee Chuah
- Diversion of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan City, Taiwan.
| |
Collapse
|
33
|
Rocha CS, Alexander KL, Herrera C, Weber MG, Grishina I, Hirao LA, Kramer DJ, Arredondo J, Mende A, Crakes KR, Fenton AN, Marco ML, Mills DA, Kappes JC, Smythies LE, Ziprin P, Sankaran-Walters S, Smith PD, Dandekar S. Microbial remodeling of gut tryptophan metabolism and indole-3-lactate production regulate epithelial barrier repair and viral suppression in human and simian immunodeficiency virus infections. Mucosal Immunol 2025:S1933-0219(25)00011-X. [PMID: 39894082 DOI: 10.1016/j.mucimm.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/02/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Gut inflammatory diseases cause microbial dysbiosis. Human immunodeficiency virus-1 (HIV) infection disrupts intestinal integrity, subverts repair/renewal pathways, impairs mucosal immunity and propels microbial dysbiosis. However, microbial metabolic mechanisms driving repair mechanisms in virally inflamed gut are not well understood. We investigated the capability and mechanisms of gut microbes to restore epithelial barriers and mucosal immunity in virally inflamed gut by using a multipronged approach: an in vivo simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV/AIDS, ex vivo HIV-exposed human colorectal explants and primary human intestinal epithelial cells. SIV infection reprogrammed tryptophan (TRP) metabolism, increasing kynurenine catabolite levels that are associated with mucosal barrier disruption and immune suppression. Administration of Lactiplantibacillus plantarum or Bifidobacterium longum subsp. infantis into the SIV-inflamed gut lumen in vivo resulted in rapid reprogramming of microbial TRP metabolism towards indole-3-lactic acid (ILA) production. This shift accelerated epithelial repair and enhanced anti-viral defenses through induction of IL-22 signaling in mucosal T cells and aryl hydrocarbon receptor activation. Additionally, ILA treatment of human colorectal tissue explants ex vivo inhibited HIV replication by reducing mucosal inflammatory cytokine production and cell activation. Our findings underscore the therapeutic potential of microbial metabolic reprogramming of TRP-to-ILA and mechanisms in mitigating viral pathogenic effects and bolstering mucosal defenses for HIV eradication.
Collapse
Affiliation(s)
- Clarissa Santos Rocha
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, UK
| | - Carolina Herrera
- Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, United States
| | - Mariana G Weber
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Irina Grishina
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Lauren A Hirao
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Dylan J Kramer
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Juan Arredondo
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Abigail Mende
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Katti R Crakes
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Anne N Fenton
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Maria L Marco
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, United States
| | - David A Mills
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, United States
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, UK
| | - Lesley E Smythies
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, UK; Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, UK
| | - Paul Ziprin
- Department of Surgery and Cancer, St. Mary's Hospital, Imperial College London, London, UK
| | - Sumathi Sankaran-Walters
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States
| | - Phillip D Smith
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, UK
| | - Satya Dandekar
- Department of Medical Microbiology & Immunology, University of California Davis, Davis, CA, 95616, United States.
| |
Collapse
|
34
|
Zhang L, Wang J, Xu Y, Wei K, Lin W, Hu H, Liu Y. Akkermansia muciniphila relieves inflammatory response in DSS-induced ulcerative colitis in mice through regulating macrophage polarization via SCFAs-SLC52A2/FFAR2 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03787-8. [PMID: 39841217 DOI: 10.1007/s00210-025-03787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
Ulcerative colitis (UC) remains an intractable and relapsing disease featured by intestinal inflammation. The anti-UC activity of Akkermansia muciniphila (AKK), an intestinal microorganism, has been widely investigated. The current work is to explore the impacts of AKK on UC and its possible reaction mechanism. In vivo UC model was induced by dextran sulfate sodium (DSS) and phorbol-12-myristate-13-acetate (PMA)-induced THP-1-M0 and raw264.7 macrophages were treated by lipopolysaccharide (LPS). H&E staining evaluated tissue damage. Inflammatory and oxidative stress levels were assessed by relevant kits. The high-throughput analysis of fatty acids was performed by the LC/MS method. RT-qPCR and Western blot detected related gene expression. Flow cytometry measured cell apoptosis and macrophage polarization. Energy metabolism was detected by ELISA, related assay kits, JC-1 staining, and Western blot. AKK reduced the pathological damage of mice colon tissues, alleviated oxidative stress and inflammatory response, upregulated the expression of Occludin-1 and SCFAs receptors, and stimulated M1 to M2 macrophage polarization in vivo. After FFAR2 was silenced, the promoting role of AKK in the viability and M1 to M2 macrophage polarization and the inhibitory role in oxidative stress, inflammation, apoptosis, energy metabolism disorder, necroptosis, and pyroptosis were both reverted. Conclusively, AKK might mediate SCFAs-SLC52A2/FFAR2 pathways to exert protective activities against intestinal inflammatory response in UC, suggesting that AKK might represent a novel and promising candidate for UC therapy.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China
| | - Junxi Wang
- Endoscope Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ye Xu
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Kaiyan Wei
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Wei Lin
- Endoscope Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Huixiang Hu
- The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China
| | - Yijuan Liu
- The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China.
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China.
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
35
|
Wang Y, Jiang Y, Li M, Xiao Y, Zhao Q, Zeng J, Wei S, Chen S, Zhao Y, Du F, Chen Y, Deng S, Shen J, Li X, Li W, Wang F, Sun Y, Gu L, Xiao Z, Wang S, Wu X. Rosavin derived from Rhodiola alleviates colitis in mice through modulation of Th17 differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156318. [PMID: 39647466 DOI: 10.1016/j.phymed.2024.156318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 09/25/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Rosavin (RSV) is a naturally occurring compound isolated from Rhodiola species. While RSV has been reported with pharmacological activities of anti-oxidation, anti-inflammation, anti-stress and immunomodulation, its effect on colitis and the underlying mechanisms remain unclear. PURPOSE This study aims to investigate whether and how RSV alleviated colitis in mice. STUDY DESIGN AND METHODS The protective effect of RSV (50, 100, 200 mg/kg, p.o.) was investigated in dextran sulfate sodium (DSS) mediated mouse models of acute and chronic colitis. Alterations in fecal microbiota were evaluated by 16S rRNA sequencing. Pseudo germ-free mice achieved by antibiotics treatment were applied to assess the RSV-mediated functional role of gut microbiota in colitis. RNA sequencing was performed to determine RSV-induced colonic response. Primary T cell culture was conducted to examine the effect of RSV on Th17 and Treg differentiation. Whole blood assay, dual luciferase reporter assay, and molecular docking methods were applied to investigate the mechanisms and targets of RSV in Th17 regulation. RESULTS Oral RSV significantly relieved DSS-mediated acute and chronic colitis in mice, which recovered body weight loss, reduced disease activity index, alleviated colon injury, inhibited inflammation, suppressed the apoptosis of intestinal epithelia, and maintained intestinal barrier function. Moreover, RSV specifically regulated intestinal microbiota by recovering DSS-mediated microbial changes and elevating beneficial microbes such as Lactobacillus and Akkermansia. Antibiotics treatment experiment showed that the protective role of RSV was at least partially dependent on gut microbiota; however, in vitro incubation showed that RSV did not directly promote the growth of Lactobacillus and Akkermansia strains. Further analysis showed that RSV-mediated genetic alterations in colon were enriched in pathways related to lymphocyte regulation. Additionally, RSV regulated the balance of Th17/Treg in colitis mice. Importantly, RSV inhibited the differentiation of Th17 cell in vitro, suppressed the production of IL-17 by Th17 cells, and downregulated Rorc encoding RORγt and its downstream Il17. RSV significantly inhibited the RORγt transcription activity and bound to its ligand binding domain. CONCLUSION RSV alleviates murine colitis through regulating intestinal immunity. Notably, RSV is identified as a novel regulator of Th17 cells that inhibits RORγt-mediated Th17 differentiation. These findings potentiate the Rhodiola-derived natural chemicals as novel anti-colitis agents.
Collapse
Affiliation(s)
- Yi Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; Sichuan Fifth People's Hospital, Chengdu, Sichuan 610015, China
| | - Yu Jiang
- Department of Gerontology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646100, China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Yaqin Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Qianyun Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Jiuping Zeng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | | | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Fang Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China; Gulin County Hospital of Traditional Chinese Medicine, Luzhou 646500, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; Department of Paediatric Care, Luzhou People's Hospital, Luzhou, Sichuan 646000, China.
| |
Collapse
|
36
|
Zhao Y, Simpson A, Nakatsu C, Cross TW, Jones-Hall Y, Jiang Q. Combining vitamin E metabolite 13'-carboxychromanol and a lactic acid bacterium synergistically mitigates colitis and colitis-associated dysbiosis in mice. Free Radic Biol Med 2025; 226:397-407. [PMID: 39547524 PMCID: PMC11972688 DOI: 10.1016/j.freeradbiomed.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Synbiotics may be useful to mitigate intestinal diseases such as ulcerative colitis. Here we show that combining 13'-carboxychromanol (δT3-13'), a metabolite of vitamin E δ-tocotrienol (δT3) via omega-oxidation, and Lactococcus lactis subsp. cremori (L. cremoris), but neither agent alone, significantly attenuated dextran sulfate sodium (DSS)-induced fecal bleeding and diarrhea, histologic colitis and interleukin 1β in mice. The combination of δT3-13'+L. cremoris also synergistically prevented DSS-caused compositional changes in gut microbiota and enriched beneficial bacteria including Lactococcus and Butyricicoccus. Interestingly, the anti-colitis effect correlated with the concentrations of δT3-13'-hydrogenated metabolite that contains 2 double bonds on the side chain (δT2-13'), instead of δT3-13' itself. Moreover, in contrast to δT3-13', combining δT3 and L. cremoris showed modest anti-colitis effects and did not prevent colitis-associated dysbiosis. In addition, ex vivo anaerobic incubation studies revealed that gut microbes selected by δT3-13' in the animal study could metabolize this compound to δT2-13' via hydrogenation, which appeared to be enhanced by L. cremoris. Overall, our study demonstrates that combining δT3-13' and L. cremoris can synergically prevent dysbiosis, and may be a novel synbiotic against colitis potentially via promoting δT3-13' metabolizers, which in turn contributes to superior beneficial effects of the combination.
Collapse
Affiliation(s)
- Yiying Zhao
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Abigayle Simpson
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Cindy Nakatsu
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Tzu-Wen Cross
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Qing Jiang
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
37
|
Rezaei S, Ghorbani E, Al-Asady AM, Avan A, Soleimanpour S, Khazaei M, Hassanian SM. Evaluating the Therapeutic Efficacy of Lactobacillus Strains in the Management of Ulcerative Colitis: An Overview of Recent Advances. Curr Pharm Des 2025; 31:413-421. [PMID: 39385420 DOI: 10.2174/0113816128322653240925115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Ulcerative Colitis (UC) known as a sub-category of Inflammatory Bowel Diseases (IBD) is a longterm condition that causes inflammation, irritation, and ulcers in the colon and rectum. Though the precise pathogenesis of UC is not fully understood yet, impaired immune responses and imbalanced intestinal microbiome composition have been regarded as two main key players in colitis pathobiology. As conventional treatments are challenged with limitations and side effects, finding a new therapeutic approach has gained increasing attention. Probiotic bacteria with multifunctional health-promoting properties have been considered novel therapeutic options. There is strong evidence indicating that probiotics exert their therapeutic effects mostly by regulating immune system responses and restoring gut microbiome homeostasis. These results validate the rationale behind the clinical application of probiotics in UC management whether prescribed alone or in combination with conventional therapy. This article explores the pathogenesis of UC, concentrating on the influence of immune dysregulation and intestinal microbiome imbalances. Also, it reviews recent in vitro, in vivo, and clinical studies that have demonstrated the efficacy of Lactobacillus species in decreasing UC symptoms by modifying immune responses, restoring gut microbiota balance, and promoting intestinal barrier function.
Collapse
Affiliation(s)
- Shaghayegh Rezaei
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, Warith Al-Anbiyaa University, Karbala, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Karbala, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Patnaik S, Durairajan SSK, Singh AK, Krishnamoorthi S, Iyaswamy A, Mandavi SP, Jeewon R, Williams LL. Role of Candida species in pathogenesis, immune regulation, and prognostic tools for managing ulcerative colitis and Crohn's disease. World J Gastroenterol 2024; 30:5212-5220. [PMID: 39735273 PMCID: PMC11612695 DOI: 10.3748/wjg.v30.i48.5212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The gut microbiome plays a key role in the pathogenesis and disease activity of inflammatory bowel disease (IBD). While research has focused on the bacterial microbiome, recent studies have shifted towards host genetics and host-fungal interactions. The mycobiota is a vital component of the gastrointestinal microbial community and plays a significant role in immune regulation. Among fungi, Candida species, particularly Candida albicans (C. albicans), have been extensively studied due to their dual role as gut commensals and invasive pathogens. Recent findings indicate that various strains of C. albicans exhibit considerable differences in virulence factors, impacting IBD's pathophysiology. Intestinal fungal dysbiosis and antifungal mucosal immunity may be associated to IBD, especially Crohn's disease (CD). This article discusses intestinal fungal dysbiosis and antifungal immunity in healthy individuals and CD patients. It discusses factors influencing the mycobiome's role in IBD pathogenesis and highlights significant contributions from the scientific community aimed at enhancing understanding of the mycobiome and encouraging further research and targeted intervention studies on specific fungal populations. Our article also provided insights into a recent study by Wu et al in the World Journal of Gastroenterology regarding the role of the gut microbiota in the pathogenesis of CD.
Collapse
Affiliation(s)
- Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610005, India
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Senthilkumar Krishnamoorthi
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ashok Iyaswamy
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Shiva Prasad Mandavi
- Department of Chemistry, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Leonard L Williams
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC 28081, United States
| |
Collapse
|
39
|
Díez-Madueño K, de la Cueva Dobao P, Torres-Rojas I, Fernández-Gosende M, Hidalgo-Cantabrana C, Coto-Segura P. Gut Dysbiosis and Adult Atopic Dermatitis: A Systematic Review. J Clin Med 2024; 14:19. [PMID: 39797102 PMCID: PMC11721037 DOI: 10.3390/jcm14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Research on the relationship between gut microbiota (GM) and atopic dermatitis (AD) has seen a growing interest in recent years. The aim of this systematic review was to determine whether differences exist between the GM of adults with AD and that of healthy adults (gut dysbiosis). Methods: We conducted a systematic review based on the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The search was performed using PubMed, EMBASE, and Web of Science. Observational and interventional studies were analyzed. Results: Although the studies showed heterogeneous results, some distinguishing characteristics were found in the intestinal microbial composition of adults with dermatitis. Even though no significant differences in diversity were found between healthy and affected adults, certain microorganisms, such as Bacteroidales, Enterobacteriaceae, and Clostridium (perfringens), were more characteristic of the fecal microbiota in adults with AD. Healthy individuals exhibited lower abundances of aerobic bacteria and higher abundances of short-chain fatty acid-producing species and polyamines. Clinical trials showed that the consumption of probiotics (Bifidobacterium and/or Lactobacillus), fecal microbiota transplants, and balneotherapy modified the fecal microbiota composition of participants and were associated with significant improvements in disease management. Conclusions: In anticipation of forthcoming clinical trials, it is essential to conduct meta-analyses that comprehensively evaluate the effectiveness and safety of interventions designed to modify intestinal flora in the context of AD. Preliminary evidence suggests that certain interventions may enhance adult AD management.
Collapse
Affiliation(s)
- Kevin Díez-Madueño
- Dermatology Department, Hospital Universitario Infanta Leonor, Complutense University of Madrid, 28040 Madrid, Spain;
- School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pablo de la Cueva Dobao
- Dermatology Department, Hospital Universitario Infanta Leonor, Complutense University of Madrid, 28040 Madrid, Spain;
- School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Isabel Torres-Rojas
- Allergy Department, Hospital Universitario Infanta Sofía, 28702 Alcobendas, Spain;
| | | | | | - Pablo Coto-Segura
- Dermatology Department, Hospital Vital Álvarez Buylla, 33611 Mieres, Spain;
| |
Collapse
|
40
|
Stachelska MA, Karpiński P, Kruszewski B. Health-Promoting and Functional Properties of Fermented Milk Beverages with Probiotic Bacteria in the Prevention of Civilization Diseases. Nutrients 2024; 17:9. [PMID: 39796443 PMCID: PMC11722897 DOI: 10.3390/nu17010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES There is scattered information in the scientific literature regarding the characterization of probiotic bacteria found in fermented milk beverages and the beneficial effects of probiotic bacteria on human health. Our objective was to gather the available information on the use of probiotic bacteria in the prevention of civilization diseases, with a special focus on the prevention of obesity, diabetes, and cancer. METHODS We carried out a literature review including the following keywords, either individually or collectively: lactic acid bacteria; probiotic bacteria; obesity; lactose intolerance; diabetes; cancer protection; civilization diseases; intestinal microbiota; intestinal pathogens. RESULTS This review summarizes the current state of knowledge on the use of probiotic bacteria in the prevention of civilization diseases. Probiotic bacteria are a set of living microorganisms that, when administered in adequate amounts, exert a beneficial effect on the health of the host and allow for the renewal of the correct quantitative and qualitative composition of the microbiota. Probiotic bacteria favorably modify the composition of the intestinal microbiota, inhibit the development of intestinal pathogens, prevent constipation, strengthen the immune system, and reduce symptoms of lactose intolerance. As fermented milk beverages are an excellent source of probiotic bacteria, their regular consumption can be a strong point in the prevention of various types of civilization diseases. CONCLUSIONS The presence of lactic acid bacteria, including probiotic bacteria in fermented milk beverages, reduces the incidence of obesity and diabetes and serves as a tool in the prevention of cancer diseases.
Collapse
Affiliation(s)
| | - Piotr Karpiński
- Faculty of Health Sciences, University of Lomza, Akademicka 14, 18-400 Łomża, Poland;
| | - Bartosz Kruszewski
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| |
Collapse
|
41
|
Al-Abbas NS, Shaer NA. Gut microbiome synthesizes important core metabolites to prevent cognitive decline and mitigate onset and progression of Alzheimer's disease. J Alzheimers Dis Rep 2024; 8:1705-1721. [PMID: 40034366 PMCID: PMC11863740 DOI: 10.1177/25424823241309024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/24/2024] [Indexed: 03/05/2025] Open
Abstract
Background This study explores how gut metabolites, produced through bacterial metabolism in the gut, influence neurological conditions like Alzheimer's disease (AD). Key metabolites such as succinate and short-chain fatty acids signal through the autonomic nervous system and can cross the blood-brain barrier, impacting central nervous system functions. Objective The aim is to examine the role of the gut microbiota in compensating for metabolic deficiencies in AD. By analyzing wild-type (WT) and APP/PS1 mice, the study investigates how the microbiome affects key metabolic processes and whether it can slow AD progression. Methods High-throughput sequencing data from the gut microbiomes of APP/PS1 transgenic AD model mice and age-matched WT C57BL/6 male mice were analyzed for microbial and metabolite profiles. Results Alpha and beta diversity analyses showed differences in microbial composition between groups. Partial least squares discriminant analysis and Anosim confirmed distinct microbiome profiles in WT and APP/PS1 mice. At the genus level, Vescimonas was more abundant in WT mice, while Odoribacter, Lacrimispora, Helicobacter, Bacteroides, and Alloprevotella were more prevalent in APP/PS1 mice. Conclusions While taxonomic differences did not directly link specific microorganisms to AD, functional analysis identified key metabolites-acetyl-CoA, glucose, succinate, lipids, choline, and acetylcholine-that may alleviate energy deficits and synaptic dysfunction. This study suggests that the microbiome may help compensate for AD-related impairments, opening avenues for microbiome-based therapies.
Collapse
Affiliation(s)
- Nouf S Al-Abbas
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nehad A Shaer
- Department of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
42
|
Carreras J, Roncador G, Hamoudi R. Ulcerative Colitis, LAIR1 and TOX2 Expression, and Colorectal Cancer Deep Learning Image Classification Using Convolutional Neural Networks. Cancers (Basel) 2024; 16:4230. [PMID: 39766129 PMCID: PMC11674594 DOI: 10.3390/cancers16244230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Ulcerative colitis is a chronic inflammatory bowel disease of the colon mucosa associated with a higher risk of colorectal cancer. OBJECTIVE This study classified hematoxylin and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer using artificial intelligence (deep learning). METHODS A convolutional neural network (CNN) was designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis (n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%) to test the performance on the new data. The CNNs included transfer learning from ResNet-18, and a comparison with other CNN models was performed. Explainable artificial intelligence for computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 immunohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment. RESULTS Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05) compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap confirmed which regions of the images were the most important. The CNNs also differentiated between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were correctly classified. CONCLUSIONS CNNs are especially suited for image classification in conditions such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology markers in ulcerative colitis.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain;
| | - Rifat Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Biomedically Informed Artificial Intelligence Laboratory (BIMAI-Lab), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
43
|
Hasnaoui A, Trigui R, Giuffrida M. Gut microbiota and mesenteric adipose tissue interactions in shaping phenotypes and treatment strategies for Crohn's disease. World J Gastroenterol 2024; 30:4969-4976. [PMID: 39679306 PMCID: PMC11612712 DOI: 10.3748/wjg.v30.i46.4969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
In this letter, we commented on the article by Wu et al. We examined the interactions between mesenteric adipose tissue, creeping fat, and gut microbiota in Crohn's disease (CD), a condition marked by chronic gastrointestinal inflammation with a rising global incidence. The pathogenesis of CD involves complex genetic, environmental, and microbial factors. Dysbiosis, which is an imbalance in gut microbial communities, is frequently observed in CD patients, highlighting the pivotal role of the gut microbiota in disease progression and the inflammatory response. Recent studies have shown that mesenteric adipose tissue and creeping fat actively contribute to inflammation by producing proinflammatory cytokines. The relationship between creeping fat and altered microbiota can shift from a potentially protective role to one that encourages bacterial translocation, further complicating disease management. Recent research has suggested that fecal microbiota transplantation could help restore microbial balance, offering a promising therapeutic strategy to improve clinical disease response.
Collapse
Affiliation(s)
- Anis Hasnaoui
- Faculty of Medicine of Tunis, Tunis El Manar University, Bab Saadoun Tunis 1007, Tunisia
- Department of General Surgery, Menzel Bourguiba Hospital, Menzel Bourguiba 7050, Bizerte, Tunisia
| | - Racem Trigui
- Department of General Surgery, Menzel Bourguiba Hospital, Menzel Bourguiba 7050, Bizerte, Tunisia
| | - Mario Giuffrida
- Department of General Surgery, Guglielmo da Saliceto Hospital, Piacenza 29100, Italy
| |
Collapse
|
44
|
Carlsen K, Thingholm LB, Dempfle A, Malham M, Bang C, Franke A, Wewer V. Gut microbiota diversity repeatedly diminishes over time following maintenance infliximab infusions in paediatric IBD patients. PLoS One 2024; 19:e0311604. [PMID: 39666667 PMCID: PMC11637414 DOI: 10.1371/journal.pone.0311604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND The gut microbiome plays a crucial role in the pathogenesis and progression of inflammatory bowel disease (IBD). Understanding the dynamics of the gut microbiome in relation to treatment can provide valuable insights into disease management and therapy strategies. The aim of this study is to investigate if diversity and composition of the gut microbiome correlate with time since treatment and disease activity during maintenance infliximab (IFX) therapy among children with IBD. METHODS Data was collected from IBD patients aged 10-17 participating in an IFX-eHealth study. IFX infusions were administered in 4-12-week intervals based on weekly faecal calprotectin (FC) combined with symptom scores. Excess stool samples underwent microbiome profiling using 16S rRNA gene sequencing. Microbiome features, including alpha diversity and single taxa, were analysed for three key variables: 1) weeks-since-treatment, 2) FC, and 3) symptom score. RESULTS From 25 patients (median age 14.4 years) diagnosed with Crohn´s Disease (n = 16) or ulcerative colitis (n = 9), microbiota were analysed in 671 faecal samples collected across 15 treatment intervals. A significant decrease over time in Shannon diversity, following the initial increase within four weeks of treatment, was found across patients. FC levels showed no association with alpha diversity (p>0.1), while symptom scores showed a negative association with Shannon and observed diversity in patients with UC. At the genus level, a lower abundance of the genera Anaerostipes and Fusicatenibacter (Firmicutes), and a greater abundance of the genus Parasutterella (Proteobacteria), were associated (p.adj<0.05) with the time elapsed since last infusion in UC specifically, while only Parasutterella was associated across the full cohort (p.adj = 1e-10). CONCLUSIONS We found a recurring reduction over time in alpha diversity following the initial increase in diversity after an IFX infusion. Changes in an individual's microbiome may be an early sign of increasing disease activity that precedes clinical symptoms and increased FC.
Collapse
Affiliation(s)
- Katrine Carlsen
- Department of Paediatrics and Adolescence, Copenhagen University Hospital–Amager Hvidovre Hospital, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescent and Adults, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Louise B. Thingholm
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Astrid Dempfle
- Institut für Medizinische Informatik und Statistik, Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Mikkel Malham
- Department of Paediatrics and Adolescence, Copenhagen University Hospital–Amager Hvidovre Hospital, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescent and Adults, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vibeke Wewer
- Department of Paediatrics and Adolescence, Copenhagen University Hospital–Amager Hvidovre Hospital, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescent and Adults, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| |
Collapse
|
45
|
Subramanian A, J A, T T, Kumarasamy V, Begum MY, Sekar M, Subramaniyan V, Wong LS, Al Fatease A. Exploring the Connections: Autophagy, Gut Microbiota, and Inflammatory Bowel Disease Pathogenesis. J Inflamm Res 2024; 17:10453-10470. [PMID: 39654856 PMCID: PMC11626960 DOI: 10.2147/jir.s483958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 12/12/2024] Open
Abstract
Inflammatory Bowel Disease (IBD), which includes Crohn's disease and ulcerative colitis, represents a complex and growing global health issue with a multifaceted origin. This review delves into the intricate relationship between gut microbiota, autophagy, and the development of IBD. The gut microbiota, a diverse community of microorganisms, plays a vital role in maintaining gut health, while imbalances in this microbial community, known as dysbiosis, are linked to IBD. Autophagy, a process by which cells recycle their components, is essential for gut homeostasis and the regulation of immune responses. When autophagy is impaired and dysbiosis occurs, they individually contribute to IBD, with their combined impact intensifying inflammation. The interconnectedness of gut microbiota, autophagy, and the host's immune system is central to the onset of IBD. The review also examines how diet influences gut microbiota and its subsequent effects on IBD. It highlights the therapeutic potential of targeting the microbiota and modulating autophagic pathways as treatment strategies for IBD. Understanding these interactions could lead to personalized therapies within the rapidly advancing fields of microbiome research and immunology.
Collapse
Affiliation(s)
- Arunkumar Subramanian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Afrarahamed J
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Tamilanban T
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
46
|
Tews HC, Schmelter F, Kandulski A, Büchler C, Schmid S, Schlosser S, Elger T, Loibl J, Sommersberger S, Fererberger T, Gunawan S, Kunst C, Gülow K, Bettenworth D, Föh B, Maaß C, Solbach P, Günther UL, Derer S, Marquardt JU, Sina C, Müller M. Unique Metabolomic and Lipidomic Profile in Serum From Patients With Crohn's Disease and Ulcerative Colitis Compared With Healthy Control Individuals. Inflamm Bowel Dis 2024; 30:2405-2417. [PMID: 38156773 PMCID: PMC11630276 DOI: 10.1093/ibd/izad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Accurate biomarkers for disease activity and progression in patients with inflammatory bowel disease (IBD) are a prerequisite for individual disease characterization and personalized therapy. We show that metabolic profiling of serum from IBD patients is a promising approach to establish biomarkers. The aim of this work was to characterize metabolomic and lipidomic serum profiles of IBD patients in order to identify metabolic fingerprints unique to the disease. METHODS Serum samples were obtained from 55 patients with Crohn's disease (CD), 34 patients with ulcerative colitis (UC), and 40 healthy control (HC) individuals and analyzed using proton nuclear magnetic resonance spectroscopy. Classification of patients and HC individuals was achieved by orthogonal partial least squares discriminant analysis and univariate analysis approaches. Disease activity was assessed using the Gastrointestinal Symptom Rating Scale. RESULTS Serum metabolome significantly differed between CD patients, UC patients, and HC individuals. The metabolomic differences of UC and CD patients compared with HC individuals were more pronounced than the differences between UC and CD patients. Differences in serum levels of pyruvic acid, histidine, and the branched-chain amino acids leucine and valine were detected. The size of low-density lipoprotein particles shifted from large to small dense particles in patients with CD. Of note, apolipoprotein A1 and A2 serum levels were decreased in CD and UC patients with higher fecal calprotectin levels. The Gastrointestinal Symptom Rating Scale is negatively associated with the concentration of apolipoprotein A2. CONCLUSIONS Metabolomic assessment of serum samples facilitated the differentiation of IBD patients and HC individuals. These differences were constituted by changes in amino acid and lipoprotein levels. Furthermore, disease activity in IBD patients was associated with decreased levels of the atheroprotective apolipoproteins A1 and A2.
Collapse
Affiliation(s)
- Hauke Christian Tews
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Franziska Schmelter
- Institute of Nutritional Medicine, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Arne Kandulski
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Christa Büchler
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Stephan Schmid
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Sophie Schlosser
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Tanja Elger
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Loibl
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Stefanie Sommersberger
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Tanja Fererberger
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Gunawan
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Kunst
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Karsten Gülow
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Dominik Bettenworth
- Department of Medicine B—Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
- Practice for Internal Medicine, Münster, Germany
| | - Bandik Föh
- Department of Medicine I, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Carlos Maaß
- Department of Medicine I, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Philipp Solbach
- Department of Medicine I, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Ulrich L Günther
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jens U Marquardt
- Department of Medicine I, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Medicine I, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany
| | - Martina Müller
- Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
47
|
Olotu T, Ferrell JM. Lactobacillus sp. for the Attenuation of Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice. Microorganisms 2024; 12:2488. [PMID: 39770690 PMCID: PMC11728176 DOI: 10.3390/microorganisms12122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/05/2025] Open
Abstract
Probiotics are studied for their therapeutic potential in the treatment of several diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). Part of the significant progress made in understanding the pathogenesis of steatosis has come from identifying the complex interplay between the gut microbiome and liver function. Recently, probiotics have shown beneficial effects for the treatment and prevention of steatosis and MASLD in rodent models and in clinical trials. Numerous studies have demonstrated the promising potential of lactic acid bacteria, especially the genus Lactobacillus. Lactobacillus is a prominent bile acid hydrolase bacterium that is involved in the biotransformation of bile acids. This genus' modulation of the gut microbiota also contributes to overall gut health; it controls gut microbial overgrowth, shapes the intestinal bile acid pool, and alleviates inflammation. This narrative review offers a comprehensive summary of the potential of Lactobacillus in the gut-liver axis to attenuate steatosis and MASLD. It also highlights the roles of Lactobacillus in hepatic lipid metabolism, insulin resistance, inflammation and fibrosis, and bile acid synthesis in attenuating MASLD.
Collapse
Affiliation(s)
- Titilayo Olotu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
48
|
Xu X, Gao Y, Xiao Y, Yu Y, Huang J, Su W, Li N, Xu C, Gao S, Wang X. Characteristics of the gut microbiota and the effect of Bifidobacterium in very early-onset inflammatory bowel disease patients with IL10RA mutations. Front Microbiol 2024; 15:1479779. [PMID: 39687875 PMCID: PMC11647010 DOI: 10.3389/fmicb.2024.1479779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Very early-onset inflammatory bowel disease (VEO-IBD) is a distinct subtype of inflammatory bowel disease (IBD) characterized by onset before the age of 6 years, and patients often exhibit more severe clinical features. Interleukin 10 receptor alpha (IL10RA) is a hotspot mutation in the Chinese population and is associated with a poor prognosis closely linked to the onset of IBD. However, limited knowledge exists regarding how the IL10RA mutation influences the host microbiota and its role in disease development. We employed 16S rRNA sequencing to conduct a comprehensive assessment of microbial changes in different types of IBD, employed database to thoroughly examine the influence of Bifidobacterium in IBD and to demonstrate a potential positive effect exerted by Bifidobacterium breve M16V (M16V) through a mouse model. The study demonstrated a significant reduction in the abundance and diversity of the gut microbiota among children with IL10RA mutations compared to those with late-onset pediatric IBD and nonmutated VEO-IBD. Furthermore, the analysis identified genera capable of distinguishing between various types of IBD, with the genus Bifidobacterium emerging as a potential standalone diagnostic indicator and Bifidobacterium may also be involved in related pathways that influence the progression of IBD, such as the biosynthesis of amino acids and inflammation-related pathways. This study corroborated the efficacy of Bifidobacterium in alleviating intestinal inflammation. The impact of IL10RA mutations on VEO-IBD may be mediated by alterations in microbes. M16V demonstrates efficacy in alleviating colitis and holds promise as a novel microbial therapy.
Collapse
Affiliation(s)
- Xu Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanqi Gao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Su
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenshen Gao
- Clinical Research and Development Center of Shanghai Municipal Hospitals, Shanghai Shenkang Hospital Development Center, Shanghai, China
| | - Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Liu L, Davidorf B, Dong P, Peng A, Song Q, He Z. Decoding the mosaic of inflammatory bowel disease: Illuminating insights with single-cell RNA technology. Comput Struct Biotechnol J 2024; 23:2911-2923. [PMID: 39421242 PMCID: PMC11485491 DOI: 10.1016/j.csbj.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammatory bowel diseases (IBD), comprising ulcerative colitis (UC) and Crohn's disease (CD), are complex chronic inflammatory intestinal conditions with a multifaceted pathology, influenced by immune dysregulation and genetic susceptibility. The challenges in understanding IBD mechanisms and implementing precision medicine include deciphering the contributions of individual immune and non-immune cell populations, pinpointing specific dysregulated genes and pathways, developing predictive models for treatment response, and advancing molecular technologies. Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool to address these challenges, offering comprehensive transcriptome profiles of various cell types at the individual cell level in IBD patients, overcoming limitations of bulk RNA sequencing. Additionally, single-cell proteomics analysis, T-cell receptor repertoire analysis, and epigenetic profiling provide a comprehensive view of IBD pathogenesis and personalized therapy. This review summarizes significant advancements in single-cell sequencing technologies for enhancing our understanding of IBD, covering pathogenesis, diagnosis, treatment, and prognosis. Furthermore, we discuss the challenges that persist in the context of IBD research, including the need for longitudinal studies, integration of multiple single-cell and spatial transcriptomics technologies, and the potential of microbial single-cell RNA-seq to shed light on the role of the gut microbiome in IBD.
Collapse
Affiliation(s)
- Liang Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Davidorf
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peixian Dong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alice Peng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zhiheng He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
50
|
Ferrer M, Buey B, Grasa L, Mesonero JE, Latorre E. Protective role of short-chain fatty acids on intestinal oxidative stress induced by TNF-α. Cell Stress Chaperones 2024; 29:769-776. [PMID: 39547594 DOI: 10.1016/j.cstres.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) are driven by an exaggerated inflammatory response, which leads to a marked increase in oxidative stress. This, in turn, exacerbates the inflammatory process and causes significant cellular and tissue damage. Intestinal dysbiosis, a common observation in IBD patients, alters the production of bacterial metabolites, including short-chain fatty acids (SCFAs), which are key by-products of dietary fiber fermentation. While the role of SCFAs in intestinal physiology is still being elucidated, this study aimed to investigate their effects on intestinal oxidative stress, particularly under inflammatory conditions induced by the proinflammatory mediator tumor necrosis factor alpha (TNF-α). The Caco-2/TC7 cell line was employed as an in vitro model of the intestinal epithelium, and the cells were treated with a range of SCFAs, including acetate, propionate, and butyrate. The levels of protein and lipid oxidation were quantified, as well as the activity of antioxidant enzymes. Our findings demonstrate that microbiota-derived SCFAs can effectively mitigate TNF-α-induced oxidative stress by modulating antioxidant enzyme activity. The proinflammatory mediator TNF-α induces lipid peroxidation by inhibiting catalase and glutathione peroxidase activities. SCFAs are able to upregulate antioxidant enzyme activity to restore lipid oxidative levels. These results underscore the critical role of the gut microbiota in maintaining intestinal homeostasis and highlight the therapeutic potential of SCFAs in managing oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Miguel Ferrer
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Jose Emilio Mesonero
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain.
| |
Collapse
|