1
|
Di Stasio M, Cordopatri C, Nardi C, Busoni S, Noferini L, Colagrande S, Calistri L. Liver Biliary Function Evaluation on a 1.5T Magnetic Resonance Imaging Scan by T1 Reduction Rate Assessment Using Variable-Flip-Angle Sequences. J Comput Assist Tomogr 2024; 48:354-360. [PMID: 38346811 PMCID: PMC11882171 DOI: 10.1097/rct.0000000000001582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/18/2023] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Magnetic resonance (MR) relaxometry is an absolute and reproducible quantitative method, compared with signal intensity for the evaluation of liver biliary function. This is obtainable by the T1 reduction rate (T1RR), as it carries a smaller systematic error than the pre/post contrast agent T1 measurement. We aimed to develop and test an MR T1 relaxometry tool tailored for the evaluation of liver T1RR after gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid administration on 1.5T MR. METHODS In vitro/vivo (liver) T1RR values with two 3D FLASH variable-flip-angle sequences were calculated by a MATLAB algorithm. In vitro measurements were done by 2 physicists, in consensus. The prospective in vivo study was approved by the local ethical committee and performed on 13 normal/26 cirrhotic livers. A supplemental test in 5 normal/5 cirrhotic livers, out of the studied series, was done to compare the results of our method (without B1 inhomogeneity correction) and those of a standardized commercial tool (with B1 inhomogeneity correction). All in vivo evaluations were performed by 2 radiologists with 7 years of experience in abdominal imaging. Open-source Java-based software ImageJ was used to draw the free-hand regions of interest on liver section and for the measurement of hepatic T1RR values. The T1RR values of each group of patients were compared to assess statistically significant differences. All statistical analyses were performed with IBM-SPSS Statistics. In vivo evaluations, the intrareader and interreader reliability was assessed by intraclass correlation coefficient. RESULTS Our method showed good accuracy in evaluating in vitro T1RR with a maximum percentage error of 9% (constant at various time points) with T1 values in the 200- to 1400-millisecond range. In vivo, a high concordance between the T1RR evaluated with the proposed method and that calculated from the standardized commercial software was verified ( P < 0.05). The median T1RRs were 74.8, 67.9, and 52.1 for the normal liver, Child-Pugh A, and Child-Pugh B cirrhotic groups, respectively. A very good agreement was found, both within intrareader and interreader reliability, with intraclass correlation coefficient values ranging from 0.88 to 0.95 and from 0.85 to 0.90, respectively. CONCLUSIONS The proposed method allowed accurate reliable in vitro/vivo T1RR assessment evaluation of the liver biliary function after gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid administration.
Collapse
Affiliation(s)
- Marco Di Stasio
- From the Department of Experimental and Clinical Biomedical Sciences, University of Florence–Azienda Ospedaliero-Universitaria Careggi
| | - Cesare Cordopatri
- From the Department of Experimental and Clinical Biomedical Sciences, University of Florence–Azienda Ospedaliero-Universitaria Careggi
| | - Cosimo Nardi
- From the Department of Experimental and Clinical Biomedical Sciences, University of Florence–Azienda Ospedaliero-Universitaria Careggi
| | - Simone Busoni
- Department of Health Physics, UOC Fisica Sanitaria, Azienda Ospedaliero–Universitaria Careggi, Florence, Italy
| | - Linhsia Noferini
- Department of Health Physics, UOC Fisica Sanitaria, Azienda Ospedaliero–Universitaria Careggi, Florence, Italy
| | - Stefano Colagrande
- From the Department of Experimental and Clinical Biomedical Sciences, University of Florence–Azienda Ospedaliero-Universitaria Careggi
| | - Linda Calistri
- From the Department of Experimental and Clinical Biomedical Sciences, University of Florence–Azienda Ospedaliero-Universitaria Careggi
| |
Collapse
|
2
|
Fellner C, Nickel MD, Kannengiesser S, Verloh N, Stroszczynski C, Haimerl M, Luerken L. Water-Fat Separated T1 Mapping in the Liver and Correlation to Hepatic Fat Fraction. Diagnostics (Basel) 2023; 13:diagnostics13020201. [PMID: 36673011 PMCID: PMC9858222 DOI: 10.3390/diagnostics13020201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
(1) Background: T1 mapping in magnetic resonance imaging (MRI) of the liver has been proposed to estimate liver function or to detect the stage of liver disease, among others. Thus far, the impact of intrahepatic fat on T1 quantification has only been sparsely discussed. Therefore, the aim of this study was to evaluate the potential of water-fat separated T1 mapping of the liver. (2) Methods: A total of 386 patients underwent MRI of the liver at 3 T. In addition to routine imaging techniques, a 3D variable flip angle (VFA) gradient echo technique combined with a two-point Dixon method was acquired to calculate T1 maps from an in-phase (T1_in) and water-only (T1_W) signal. The results were correlated with proton density fat fraction using multi-echo 3D gradient echo imaging (PDFF) and multi-echo single voxel spectroscopy (PDFF_MRS). Using T1_in and T1_W, a novel parameter FF_T1 was defined and compared with PDFF and PDFF_MRS. Furthermore, the value of retrospectively calculated T1_W (T1_W_calc) based on T1_in and PDFF was assessed. Wilcoxon test, Pearson correlation coefficient and Bland-Altman analysis were applied as statistical tools. (3) Results: T1_in was significantly shorter than T1_W and the difference of both T1 values was correlated with PDFF (R = 0.890). FF_T1 was significantly correlated with PDFF (R = 0.930) and PDFF_MRS (R = 0.922) and yielded only minor bias compared to both established PDFF methods (0.78 and 0.21). T1_W and T1_W_calc were also significantly correlated (R = 0.986). (4) Conclusion: T1_W acquired with a water-fat separated VFA technique allows to minimize the influence of fat on liver T1. Alternatively, T1_W can be estimated retrospectively from T1_in and PDFF, if a Dixon technique is not available for T1 mapping.
Collapse
Affiliation(s)
- Claudia Fellner
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | | | - Niklas Verloh
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | | | - Michael Haimerl
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence: (M.H.); (L.L.); Tel.: +49-941-944-7401 (M.H.)
| | - Lukas Luerken
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence: (M.H.); (L.L.); Tel.: +49-941-944-7401 (M.H.)
| |
Collapse
|
3
|
Meng L, Zhao X, Guo J, Lu L, Cheng M, Xing Q, Shang H, Wang K, Zhang B, Lei D, Zhang X. Evaluation of the differentiation of benign and malignant breast lesions using synthetic relaxometry and the Kaiser score. Front Oncol 2022; 12:964078. [PMID: 36303839 PMCID: PMC9595598 DOI: 10.3389/fonc.2022.964078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To investigate whether there is added value of quantitative parameters from synthetic magnetic resonance imaging (SyMRI) as a complement to the Kaiser score (KS) to differentiate benign and malignant breast lesions. Materials and methods In this single-institution study, 122 patients who underwent breast MRI from March 2020 to May 2021 were retrospectively analyzed. SyMRI and dynamic contrast-enhanced MRI were performed using a 3.0-T system. Two experienced radiologists independently assigned the KS and measured the quantitative values of T1 relaxation time (T1), T2 relaxation time (T2), and proton density (PD) from SyMRI. Pathology was regarded as the gold standard. The diagnostic values were compared using the appropriate statistical tests. Results There were 122 lesions (86 malignant and 36 benign) in 122 women. The T1 value was identified as the only independent factor for the differentiation of malignant and benign lesions. The diagnostic accuracy of incorporating the T1 into the KS protocol (T1+KS) was 95.1% and 92.1% for all lesions (ALL) and The American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) category 4 lesions, respectively, which was significantly higher than that of either T1 (ALL: 82.8%, P = 0.0001; BI-RADS 4: 78.9%, P = 0.002) or KS (ALL: 90.2%, P = 0.031; BI-RADS 4: 84.2%, P = 0.031) alone. The sensitivity and specificity of T1+KS were also higher than those of the T1 or KS alone. The combined diagnosis could have avoided another 15.6% biopsies compared with using KS alone. Conclusions Incorporating T1 into the KS protocol improved both the sensitivity and specificity to differentiate benign and malignant breast lesions, thus avoiding unnecessary invasive procedures.
Collapse
Affiliation(s)
- Lingsong Meng
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinxia Guo
- General Electric (GE) Healthcare, MR Research China, Beijing, China
| | - Lin Lu
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meiying Cheng
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingna Xing
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Honglei Shang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyu Wang
- General Electric (GE) Healthcare, MR Research China, Beijing, China
| | - Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongmei Lei
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaoan Zhang,
| |
Collapse
|
4
|
Portal hypertension may influence the registration of hypointensity of small hepatocellular carcinoma in the hepatobiliary phase in gadoxetic acid MR. Radiol Oncol 2022; 56:292-302. [PMID: 35776837 PMCID: PMC9400438 DOI: 10.2478/raon-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/24/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The aim of the study was to analyze the association between the liver uptake of Gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic acid (Gd-EOB-DTPA) in the hepatobiliary phase (HBP) in cirrhotic patients and the presence of clinically significant portal hypertension (CSPH), and how these features impact on hepatocellular carcinoma (HCC) detection in the HBP. PATIENTS AND METHODS Post-hoc analysis of a prospective cohort of 62 cirrhotic patients with newly US-detected nodule between 1-2 cm (study group). Twenty healthy subjects were used as control group. Qualitative and quantitative analysis of the liver contrast uptake in the HBP assessed by Relative Liver-Enhancement (RLE), Liver-Spleen (LSCR), Liver-Muscle (LMCR), and Liver-Kidney Contrast-Ratio (LKCR), Contrast Enhancement Index (CEI), and Hepatic Uptake (HUI), and biliary excretion, were registered. CSPH was confirmed invasively (HVPG > 10 mmHg) or by indirect parameters. The appearance of HCC at the HBP was analyzed. RESULTS Nineteen patients (30.6%) did not have CSPH. In 41 patients (66.1%) the final diagnosis was HCC. All indices were significantly higher in the control group, indicating a more intense HBP liver signal intensity compared to patients with cirrhosis, even if the comparison was restricted to patients with no CSPH. CSPH was associated to a lower rate of HCC hypointensity in the HBP (51.9% vs. 85.7% without CSPH, p = 0.004). CONCLUSIONS Liver uptake of Gd-EOB-DTPA at the HBP is decreased in cirrhosis even if the liver function is minimally impaired and it falls down significantly in patients with CSPH compromising the recognition of hypointense lesions. This fact may represent a limitation for the detection of small HCC in patients with cirrhosis and CSPH.
Collapse
|
5
|
MELIF, a Fully Automated Liver Function Score Calculated from Gd-EOB-DTPA-Enhanced MR Images: Diagnostic Performance vs. the MELD Score. Diagnostics (Basel) 2022; 12:diagnostics12071750. [PMID: 35885653 PMCID: PMC9318040 DOI: 10.3390/diagnostics12071750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022] Open
Abstract
In the management of patients with chronic liver disease, the assessment of liver function is essential for treatment planning. Gd-EOB-DTPA-enhanced MRI allows for both the acquisition of anatomical information and regional liver function quantification. The objective of this study was to demonstrate and evaluate the diagnostic performance of two fully automatically generated imaging-based liver function scores that take the whole liver into account. T1 images from the native and hepatobiliary phases and the corresponding T1 maps from 195 patients were analyzed. A novel artificial-intelligence-based software prototype performed image segmentation and registration, calculated the reduction rate of the T1 relaxation time for the whole liver (rrT1liver) and used it to calculate a personalized liver function score, then generated a unified score—the MELIF score—by combining the liver function score with a patient-specific factor that included weight, height and liver volume. Both scores correlated strongly with the MELD score, which is used as a reference for global liver function. However, MELIF showed a stronger correlation than the rrT1liver score. This study demonstrated that the fully automated determination of total liver function, regionally resolved, using MR liver imaging is feasible, providing the opportunity to use the MELIF score as a diagnostic marker in future prospective studies.
Collapse
|
6
|
Duan T, Jiang HY, Ling WW, Song B. Noninvasive imaging of hepatic dysfunction: A state-of-the-art review. World J Gastroenterol 2022; 28:1625-1640. [PMID: 35581963 PMCID: PMC9048786 DOI: 10.3748/wjg.v28.i16.1625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/17/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatic dysfunction represents a wide spectrum of pathological changes, which can be frequently found in hepatitis, cholestasis, metabolic diseases, and focal liver lesions. As hepatic dysfunction is often clinically silent until advanced stages, there remains an unmet need to identify affected patients at early stages to enable individualized intervention which can improve prognosis. Passive liver function tests include biochemical parameters and clinical grading systems (e.g., the Child-Pugh score and Model for End-Stage Liver Disease score). Despite widely used and readily available, these approaches provide indirect and limited information regarding hepatic function. Dynamic quantitative tests of liver function are based on clearance capacity tests such as the indocyanine green (ICG) clearance test. However, controversial results have been reported for the ICG clearance test in relation with clinical outcome and the accuracy is easily affected by various factors. Imaging techniques, including ultrasound, computed tomography, and magnetic resonance imaging, allow morphological and functional assessment of the entire hepatobiliary system, hence demonstrating great potential in evaluating hepatic dysfunction noninvasively. In this article, we provide a state-of-the-art summary of noninvasive imaging modalities for hepatic dysfunction assessment along the pathophysiological track, with special emphasis on the imaging modality comparison and selection for each clinical scenario.
Collapse
Affiliation(s)
- Ting Duan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Han-Yu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Wu Ling
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
7
|
Waterton JC. Survey of water proton longitudinal relaxation in liver in vivo. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:779-789. [PMID: 33978944 PMCID: PMC8578172 DOI: 10.1007/s10334-021-00928-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
Abstract
Objective To determine the variability, and preferred values, for normal liver longitudinal water proton relaxation rate R1 in the published literature. Methods Values of mean R1 and between-subject variance were obtained from literature searching. Weighted means were fitted to a heuristic and to a model. Results After exclusions, 116 publications (143 studies) remained, representing apparently normal liver in 3392 humans, 99 mice and 249 rats. Seventeen field strengths were included between 0.04 T and 9.4 T. Older studies tended to report higher between-subject coefficients of variation (CoV), but for studies published since 1992, the median between-subject CoV was 7.4%, and in half of those studies, measured R1 deviated from model by 8.0% or less. Discussion The within-study between-subject CoV incorporates repeatability error and true between-subject variation. Between-study variation also incorporates between-population variation, together with bias from interactions between methodology and physiology. While quantitative relaxometry ultimately requires validation with phantoms and analysis of propagation of errors, this survey allows investigators to compare their own R1 and variability values with the range of existing literature. Supplementary Information The online version contains supplementary material available at 10.1007/s10334-021-00928-x.
Collapse
Affiliation(s)
- John Charles Waterton
- Centre for Imaging Sciences, Division of Informatics Imaging and Data Sciences, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9PL, UK. .,Bioxydyn Ltd, Rutherford House, Manchester Science Park, Pencroft Way, Manchester, M15 6SZ, UK.
| |
Collapse
|
8
|
Meng T, He N, He H, Liu K, Ke L, Liu H, Zhong L, Huang C, Yang A, Zhou C, Qian L, Xie C. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI. Cancer Imaging 2020; 20:88. [PMID: 33317609 PMCID: PMC7737277 DOI: 10.1186/s40644-020-00365-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
Background Previous studies have indicated that quantitative MRI (qMR) is beneficial for diagnosis of breast cancer. As a novel qMR technology, synthetic MRI (syMRI) may be advantageous by offering simultaneous generation of T1 and T2 mapping in one scan within a few minutes and without concern to the deposition of the gadolinium contrast agent in cell nucleus. In this study, the potential of quantitative mapping derived from Synthetic MRI (SyMRI) to diagnose breast cancer was investigated. Methods From April 2018 to May 2019, a total of 87 patients with suspicious breast lesions underwent both conventional and SyMRI before treatment. The quantitative metrics derived from SyMRI, including T1 and T2 values, were measured in breast lesions. The diagnostic performance of SyMRI was evaluated with unpaired Student’s t-tests, receiver operating characteristic curve analysis and multivariate logistic regression analysis. The AUCs of quantitative values were compared using Delong test. Results Among 77 patients who met the inclusion criteria, 48 were diagnosed with histopathological confirmed breast cancers, and the rest had benign lesions. The breast cancers showed significantly higher T1 (1611.61 ± 215.88 ms) values and lower T2 (80.93 ± 7.51 ms) values than benign lesions. The area under the ROC curve (AUC) values were 0.931 (95% CI: 0.874–0.989) and 0.883 (95% CI: 0.810–0.956) for T1 and T2 maps, respectively, in diagnostic discrimination between breast cancers and benign lesions. A slightly increased AUC of 0.978 (95% CI: 0.915–0.993) was achieved by combining those two relaxation-based quantitative metrics. Conclusion In conclusion, our preliminary study showed that the quantitative T1 and T2 values obtained by SyMRI could distinguish effectively between benign and malignant breast lesions, and T1 relaxation time showed the highest diagnostic efficiency. Furthermore, combining the two quantitative relaxation metrics further improved their diagnostic performance.
Collapse
Affiliation(s)
- Tiebao Meng
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Ni He
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Haoqiang He
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Kuiyuan Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liangru Ke
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Huiming Liu
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Linchang Zhong
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Chenghui Huang
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Anli Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Chunyan Zhou
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Long Qian
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chuanmiao Xie
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Dreher C, Linde P, Boda-Heggemann J, Baessler B. Radiomics for liver tumours. Strahlenther Onkol 2020; 196:888-899. [PMID: 32296901 PMCID: PMC7498486 DOI: 10.1007/s00066-020-01615-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
Current research, especially in oncology, increasingly focuses on the integration of quantitative, multiparametric and functional imaging data. In this fast-growing field of research, radiomics may allow for a more sophisticated analysis of imaging data, far beyond the qualitative evaluation of visible tissue changes. Through use of quantitative imaging data, more tailored and tumour-specific diagnostic work-up and individualized treatment concepts may be applied for oncologic patients in the future. This is of special importance in cross-sectional disciplines such as radiology and radiation oncology, with already high and still further increasing use of imaging data in daily clinical practice. Liver targets are generally treated with stereotactic body radiotherapy (SBRT), allowing for local dose escalation while preserving surrounding normal tissue. With the introduction of online target surveillance with implanted markers, 3D-ultrasound on conventional linacs and hybrid magnetic resonance imaging (MRI)-linear accelerators, individualized adaptive radiotherapy is heading towards realization. The use of big data such as radiomics and the integration of artificial intelligence techniques have the potential to further improve image-based treatment planning and structured follow-up, with outcome/toxicity prediction and immediate detection of (oligo)progression. The scope of current research in this innovative field is to identify and critically discuss possible application forms of radiomics, which is why this review tries to summarize current knowledge about interdisciplinary integration of radiomics in oncologic patients, with a focus on investigations of radiotherapy in patients with liver cancer or oligometastases including multiparametric, quantitative data into (radio)-oncologic workflow from disease diagnosis, treatment planning, delivery and patient follow-up.
Collapse
Affiliation(s)
- Constantin Dreher
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1–3, 68167 Mannheim, Germany
| | - Philipp Linde
- Department of Radiation Oncology, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1–3, 68167 Mannheim, Germany
| | - Bettina Baessler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
10
|
Yang L, Ding Y, Rao S, Chen C, Zeng M. T 1 Mapping on Gd-EOB-DTPA-Enhanced MRI for the Prediction of Oxaliplatin-Induced Liver Injury in a Mouse Model. J Magn Reson Imaging 2020; 53:896-902. [PMID: 32979019 DOI: 10.1002/jmri.27377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Oxaliplatin-induced liver injury (OILI) not only impairs hepatic regeneration but also increases postoperative morbidity and mortality. Therefore, noninvasive, accurate, and early diagnosis of OILI is mandatory. PURPOSE To evaluate the potential of T1 mapping on gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI for assessing OILI in a mouse model. STUDY TYPE Case control, animal model. ANIMAL MODEL Thirty oxaliplatin-treated mice and 10 control mice were included. FIELD STRENGTH Volumetric interpolated breath-hold examination sequence: 3T scanner with a phased-array animal 8-channel coil. T1 mapping before and at hepatobiliary phase (HBP) after injection of Gd-EOB-DTPA were undertaken. ASSESSMENT T1 relaxation times of the liver parenchyma were measured and the reduction rate (ΔT1 %) was calculated. Histological findings were used as a standard reference. STATISTICAL TESTS The Kruskal-Wallis test with pairwise comparisons using the Mann-Whitney U-test were applied to compare the parameters across groups. Spearman's rank correlation test and receiver operating characteristics (ROC) analyses were performed. Areas under the curves (AUCs) were compared using the DeLong method. RESULTS Histologically, mice were classified as normal (n = 10), hepatocellular degeneration without fibrosis (n = 16), and hepatocellular degeneration with fibrosis (n = 14). HBP T1 relaxation time increased with the severity of OILI (rho = 0.60, P < 0.05), and ΔT1 % decreased with the severity of OILI (rho = -0.78, P < 0.05). AUC was 0.92 for ΔT1 % in differentiating hepatocellular degeneration without fibrosis from normal liver, but HBP T1 relaxation time could not distinguish them (P = 0.09). AUCs were 0.96 and 0.95 for HBP T1 relaxation time, and 0.90 and 0.84 for ΔT1 % in discriminating OILI with fibrosis from normal liver and OILI without fibrosis. DATA CONCLUSION HBP T1 relaxation time and ΔT1 % of Gd-EOB-DTPA enhanced MRI was useful for assessing OILI. ΔT1 % may be more sensitive than HBP T1 relaxation time in detecting early stage of liver injury. LEVEL OF EVIDENCE 2. TECHNICAL EFFICACY STAGE 5.
Collapse
Affiliation(s)
- Li Yang
- Department of Radiology, Zhongshan, Hospital of Fudan University, Shanghai, China
| | - Ying Ding
- Department of Radiology, Zhongshan, Hospital of Fudan University, Shanghai, China
| | - Shengxiang Rao
- Department of Radiology, Zhongshan, Hospital of Fudan University, Shanghai, China
| | - Caizhong Chen
- Department of Radiology, Zhongshan, Hospital of Fudan University, Shanghai, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan, Hospital of Fudan University, Shanghai, China
| |
Collapse
|
11
|
MR elastography, T1 and T2 relaxometry of liver: role in noninvasive assessment of liver function and portal hypertension. Abdom Radiol (NY) 2020; 45:2680-2687. [PMID: 32274552 DOI: 10.1007/s00261-020-02432-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate the correlation between liver stiffness as measured on MR elastography and T1 and T2 relaxation times from T1 and T2 mapping with clinical parameters of liver disease, including the MELD score, MELD-Na and ALBI grade, and endoscopically visible esophageal varices. MATERIALS AND METHODS 223 patients with known or suspected liver disease underwent MRI of the liver with T1 mapping (Look-Locker sequence) and 2D SE-EPI MR elastography (MRE) sequences. 139 of these patients also underwent T2 mapping with radial T2 FS sequence. Two readers measured liver stiffness, T1 relaxation times and T2 relaxation times, and assessed qualitative features such as presence or absence of cirrhosis, ascites, spleen length, and varices on conventional MRI images. A third reader collected the clinical data (MELD score, MELD-Na Score, ALBI grade, and results of endoscopy in 78 patients). RESULTS Significant moderate correlation was found between MELD score and all three imaging techniques for both readers (MRE, r = 0.35 and 0.28; T1 relaxometry, r = 0.30 and 0.29; T2 relaxometry, r = 0.45, and 0.37 for reader 1 and reader 2 respectively). Correlation with MELD-Na score was even higher (MRE, r = 0.49 and 0.40; T1, r = 0.45 and 0.41; T2, r = 0.47 and 0.35 for reader 1 and reader 2 respectively). Correlations between MRE and ALBI grade was significant and moderate for both readers: r = 0.39 and 0.37, higher than T1 relaxometry (r = 0.22 and 0.20) and T2 relaxometry (r = 0.17, and r = 0.24). Significant moderate correlations were found for both readers between MRE and the presence of varices on endoscopy (r = 0.28 and 0.30). MRE and T1 relaxometry were significant predictors of varices at endoscopy for both readers (MRE AUC 0.923 and 0.873; T1 relaxometry AUC = 0.711 and 0.675 for reader 1 and reader 2 respectively). Cirrhotic morphology (AUC = 0.654), spleen length (AUC = 0.610) and presence of varices in the upper abdomen on MRI (AUC of 0.693 and 0.595) were all significant predictors of endoscopic varices. Multivariable logistic regression model identified that spleen length and liver MRE were significant independent predictors of endoscopic varices for both readers. CONCLUSION MR elastography, T1 and T2 relaxometry demonstrated moderate positive correlation with the MELD score and MELD-Na Score. Correlation between MRE and ALBI grade was superior to T1 and T2 relaxometry methods. MRE performed better than T1 and T2 relaxometry to predict the presence of varices at endoscopy. On multivariate analyses, spleen length and MRE were the only two significant independent predictors of endoscopic varices.
Collapse
|
12
|
Chan WY, Hartono S, Thng CH, Koh DM. New Advances in Magnetic Resonance Techniques in Abdomen and Pelvis. Magn Reson Imaging Clin N Am 2020; 28:433-445. [PMID: 32624160 DOI: 10.1016/j.mric.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This article explores new acquisition methods in magnetic resonance (MR) imaging to provide high spatial and temporal resolution imaging for a wide spectrum of clinical applications in the abdomen and pelvis. We present an overview of some of these advanced MR techniques, such as non-cartesian image acquisition, fast sampling and compressed sensing, diffusion quantification and quantitative MR that can improve data sampling, enhance image quality, yield quantitative measurements, and/or optimize diagnostic performance in the body.
Collapse
Affiliation(s)
- Wan Ying Chan
- Division of Oncologic Imaging, National Cancer Centre, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Septian Hartono
- Department of Neurology, National Neuroscience Institute, Singapore, 11 Jln Tan Tock Seng, Singapore 308433, Singapore
| | - Choon Hua Thng
- Division of Oncologic Imaging, National Cancer Centre, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton SM2 5PT, UK.
| |
Collapse
|
13
|
Dillman JR, Serai SD, Miethke AG, Singh R, Tkach JA, Trout AT. Comparison of liver T1 relaxation times without and with iron correction in pediatric autoimmune liver disease. Pediatr Radiol 2020; 50:935-942. [PMID: 32409910 DOI: 10.1007/s00247-020-04663-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) T1 relaxometry (mapping) has been reported as a quantitative biomarker of liver injury due to inflammation and fibrosis. OBJECTIVE To assess the relationship between liver MRI T1 relaxometry measurements obtained using a modified Look-Locker inversion recovery (MOLLI) pulse sequence without and with iron (T2*) correction (cT1) in pediatric autoimmune liver disease. MATERIALS AND METHODS This cross-sectional study was institutional review board-approved, with informed consent obtained. MRI was acquired at 1.5 T in patients participating in an autoimmune liver disease registry. T1 relaxometry was performed using a MOLLI sequence with a 5(3)3-s acquisition strategy. A multi-echo gradient echo sequence was used to measure liver T2*. Non-iron-corrected native T1 (ms), calculated as the mean of four slices through the mid-liver, was measured using T1 parametric maps generated off-line. A proprietary T2* correction (Perspectum Diagnostics, Oxford, UK), blinded to native T1 values, calculated cT1 values. The relationship between native T1 and cT1 measurements was assessed using Spearman rank correlation and Bland-Altman analyses. RESULTS Forty-eight patients with a mean (standard deviation [SD]) age of 15.2 (4.1) years were included. Mean (SD) liver native T1 was 651.2 (123.9) ms and mean (SD) cT1 was 919.5 (86.8) ms, with excellent positive correlation between values (r=0.91 [95% confidence interval (CI): 0.85-0.95]; P<0.0001). Mean bias between native T1 and cT1 measurements was 268.3 ms (95% limits of agreement: 131.9-404.7 ms). CONCLUSION There is excellent positive correlation between liver native T1 and cT1 measurements in pediatric patients with autoimmune liver disease. This relationship brings into question the need to perform T1 iron correction in this patient population. T1 and cT1 measurements are not interchangeable, however, due to considerable systematic bias with cT1 values being considerably higher.
Collapse
Affiliation(s)
- Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA. .,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexander G Miethke
- Division of Hepatology, Gastroenterology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ruchi Singh
- Division of Hepatology, Gastroenterology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
14
|
Duan T, Jiang H, Xia C, Chen J, Cao L, Ye Z, Wei Y, Song B, Lee JM. Assessing Liver Function in Liver Tumors Patients: The Performance of T1 Mapping and Residual Liver Volume on Gd-EOBDTPA-Enhanced MRI. Front Med (Lausanne) 2020; 7:215. [PMID: 32549039 PMCID: PMC7270171 DOI: 10.3389/fmed.2020.00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/29/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose: To assess the performance of T1 mapping and residual liver volume (RLV) on Gd-EOBDTPA-enhanced MRI in pretreatment estimation of liver function in patients with liver tumors. Indocyanine green retention rate at 15 min (ICG R-15) was used as a reference standard. Methods: Ethical approval from the institutional review board and informed consent were obtained for this prospective study. We enrolled 155 patients with liver tumors who underwent pretreatment Gd-EOB-DTPA-enhanced MRI. T1 relaxation time before (T1-pre), 20 min after (T1-post) Gd-EOB-DTPA injection and RLV were measured. The absolute reduction (ΔT1) and reduction rate (ΔT1%) of T1 relaxation time, volume-assisted ΔT1 (ΔT1*RLV) and volume-assisted ΔT1% (ΔT1%*RLV) were calculated accordingly. The correlation of MR parameters with ICG R-15 was determined using Spearman's rank correlation analysis. Patients were classified into the normal liver function (NLF) group if their ICG R-15 levels were <10% or otherwise into the abnormal liver function (ALF) group. Receiver operating characteristic (ROC) analysis was conducted to evaluate the performances of the MR parameters in predicting ALF. Results: T1-post (r = 0.472, P < 0.001), ΔT1 (r = -0.355, P = 0.011), ΔT1% (r = -0.482, P < 0.001), RLV (r = -0.336, P < 0.001), volume-assisted ΔT1 (r = -0.458, P < 0.001) and volume-assisted ΔT1% (r = -0.522, P < 0.001) showed weak to moderate correlation with ICG R-15. The area under the ROC curves (AUROC) of volume-assisted ΔT1 in predicting ALF was 0.777, which was significantly higher than the other parameters (P < 0.05 for all). Conclusions: Combined T1 mapping and RLV on Gd-EOB-DTPA-enhanced MRI can help assess liver function with good diagnostic accuracy in patients with liver tumors before treatment.
Collapse
Affiliation(s)
- Ting Duan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Likunn Cao
- Department of Radiology, Peking Union Medical University Hospital, Peking, China
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jeong Min Lee
- Department of Radiology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Rao C, Wang X, Li M, Zhou G, Gu H. Value of T1 mapping on gadoxetic acid-enhanced MRI for microvascular invasion of hepatocellular carcinoma: a retrospective study. BMC Med Imaging 2020; 20:43. [PMID: 32345247 PMCID: PMC7189724 DOI: 10.1186/s12880-020-00433-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To evaluate the utility of non-invasive parameters derived from T1 mapping and diffusion-weighted imaging (DWI) on gadoxetic acid-enhanced MRI for predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC). METHODS A total of 94 patients with single HCC undergoing partial hepatectomy was analyzed in this retrospective study. Preoperative T1 mapping and DWI on gadoxetic acid-enhanced MRI was performed. The parameters including precontrast, postcontrast and reduction rate of T1 relaxation time and apparent diffusion coefficient (ADC) values were measured for differentiating MVI-positive HCCs (n = 38) from MVI-negative HCCs (n = 56). The receiver operating characteristic curve (ROC) was analyzed to compare the diagnostic performance of the calculated parameters. RESULTS MVI-positive HCCs demonstrated a significantly lower reduction rate of T1 relaxation time than that of MVI-negative HCCs (39.4% vs 49.9, P < 0.001). The areas under receiver operating characteristic curve (AUC) were 0.587, 0.728, 0.824, 0,690 and 0.862 for the precontrast, postcontrast, reduction rate of T1 relaxation time, ADC and the combination of reduction rate and ADC, respectively. The cut-off value of the reduction rate and ADC calculated through maximal Youden index in ROC analyses was 44.9% and 1553.5 s/mm2. To achieve a better diagnostic performance, the criteria of combining the reduction rate lower than 44.9% and the ADC value lower than 1553.5 s/mm2 was proposed with a high specificity of 91.8% and accuracy of 80.9%. CONCLUSIONS The proposed criteria of combining the reduction rate of T1 relaxation time lower than 44.9% and the ADC value lower than 1553.5 s/mm2 on gadoxetic acid-enhanced MRI holds promise for evaluating MVI status of HCC.
Collapse
Affiliation(s)
- Chenyi Rao
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Xinquan Wang
- Medical College, Nantong University, Nantong, Jiangsu, China.,Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Rd., Nantong, 226001, Jiangsu, China
| | - Minda Li
- Medical College, Nantong University, Nantong, Jiangsu, China.,Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Rd., Nantong, 226001, Jiangsu, China
| | - Guofeng Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongmei Gu
- Medical College, Nantong University, Nantong, Jiangsu, China. .,Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Rd., Nantong, 226001, Jiangsu, China.
| |
Collapse
|
16
|
|
17
|
Theilig D, Elkilany A, Schmelzle M, Müller T, Hamm B, Denecke T, Geisel D. Consistency of hepatocellular gadoxetic acid uptake in serial MRI examinations for evaluation of liver function. Abdom Radiol (NY) 2019; 44:2759-2768. [PMID: 31025071 DOI: 10.1007/s00261-019-02036-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE To assess the consistency of liver enhancement in gadoxetic acid-enhanced magnetic resonance imaging (MRI) over serial examinations. METHODS This retrospective study included 554 patients who underwent at least 2 serial gadoxetic acid-enhanced MRI scans at either 1.5 or 3.0 Tesla at our institution between 2014 and 2018. Signal intensities (SI) were measured on T1-weighted images before and approx. 20 min after intravenous injection of gadoxetic acid. Relative enhancement (RE) of the liver, liver-to-spleen SI ratio (LSR), and liver-to-muscle SI ratio (LMR) were calculated. Means were compared with the paired t test, Greenhouse-Geisser test, and linear mixed model analysis, accordingly. Multiple linear regression analysis was used to elucidate possible predictors of RE and bivariate correlation analysis of patient age with RE was performed. RESULTS No statistically significant difference in RE, LSR, and LMR between two consecutive MRI scans was found when tested with paired t test or Greenhouse-Geisser test (n = 554, 519, and 554, respectively), while the latter revealed a statistically significant difference between the first and fourth MRI scan which was not confirmed in the linear mixed model. Patient age correlated negatively with RE of the liver (p = 0.002), LSR (p < 0.001), and LMR (p = 0.006). CONCLUSIONS Relative enhancement of the liver in the hepatobiliary phase of gadoxetic acid-enhanced MRI is consistent over successive examinations, different scanner types, and field strengths while correlating negatively with age, which further underscores the validity of gadoxetic acid-enhanced MRI as an imaging-based liver function test.
Collapse
Affiliation(s)
- Dorothea Theilig
- Department of Diagnostic and Interventional Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Aboelyazid Elkilany
- Department of Diagnostic and Interventional Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Moritz Schmelzle
- Department of General, Visceral and Transplantation Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias Müller
- Division of Hepatology and Gastroenterology, Medical Department, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernd Hamm
- Department of Diagnostic and Interventional Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dominik Geisel
- Department of Diagnostic and Interventional Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
18
|
Sun XL, Jiang X, Kuang Y, Xing L, Bu LY, Yuan SH, Yu JM, Zheng SS. Potential of Gd-EOB-DTPA as an imaging biomarker for liver injury estimation after radiation therapy. Hepatobiliary Pancreat Dis Int 2019; 18:354-359. [PMID: 31221569 DOI: 10.1016/j.hbpd.2019.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatic radiation injury severely restricts irradiation treatment for liver carcinoma. The purpose of this study was to investigate the clinical application of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI (EOB-MRI) in the assessment of liver function after external radiation therapy and to determine the relationship between focal liver reaction (FLR) and liver function. METHODS A total of 47 patients with liver malignancies who underwent external beam radiation therapy were enrolled. EOB-MRI was performed on each patient at approximately one month post-radiotherapy. The hepatobiliary (HPB) phase images from EOB-MRI were fused with the planning CT images, and the isodose lines from the patients' treatment plans were overlaid onto the fused images. The correlation of the EOB-MR image intensity distribution with the isodose lines was studied. We also compared liver function in patients between pre-treatment and post-treatment. RESULTS Decreased uptake of Gd-EOB-DTPA, which was manifested by well-demarcated focal hypointensity of the liver parenchyma or FLR to high-dose radiation, was observed in the irradiated areas of 38 patients. The radiotherapy isodose line of decreased uptake area of Gd-EOB-DTPA was 30-46 Gy. The median corresponding dose curve of FLR was 34.4 Gy. Nine patients showed the absence of decreased uptake area of Gd-EOB-DTPA in the irradiated areas. Compared to the 38 patients with the presence of decreased uptake area of Gd-EOB-DTPA, 9 patients with the absence of decreased uptake area of Gd-EOB-DTPA showed significant higher levels of total bile acid, total bilirubin, direct bilirubin and alpha-fetoprotein (P < 0.05). There were no significant differences in alanine transaminase, aspartate aminotransferase, gamma-glutamyl transpeptidase or albumin levels between the two groups (P > 0.05). CONCLUSIONS Visible uptake of Gd-EOB-DTPA by the liver parenchyma was significantly associated with liver function parameters. EOB-MRI can be a valuable imaging biomarker for the assessment of liver parenchyma function outside of radiation area.
Collapse
Affiliation(s)
- Xiao-Li Sun
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yu Kuang
- Medical Physics Program, University of Nevada, Las Vegas, NV 89154, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lu-Yi Bu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuang-Hu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jin-Ming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Shu-Sen Zheng
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
19
|
T1 mapping for liver function evaluation in gadoxetic acid–enhanced MR imaging: comparison of look-locker inversion recovery and B1 inhomogeneity–corrected variable flip angle method. Eur Radiol 2019; 29:3584-3594. [DOI: 10.1007/s00330-018-5947-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/27/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
|
20
|
Rao SX, Wang J, Wang J, Jiang XQ, Long LL, Li ZP, Li ZL, Shen W, Zhao XM, Hu DY, Zhang HM, Zhang L, Huan Y, Liang CH, Song B, Zeng MS. Chinese consensus on the clinical application of hepatobiliary magnetic resonance imaging contrast agent: Gadoxetic acid disodium. J Dig Dis 2019; 20:54-61. [PMID: 30693659 DOI: 10.1111/1751-2980.12707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/27/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Sheng Xiang Rao
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jin Wang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Qing Jiang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, China
| | - Li Ling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zi Ping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhen Lin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Xin Ming Zhao
- Department of Diagnostic Imaging, Chinese Academy of Medical Sciences Cancer Hospital, Beijing, China
| | - Dao Yu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hui Mao Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lin Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yi Huan
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chang Hong Liang
- Department of Radiology, Guangdong Provincial People's Hospital, Guanggong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Meng Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
21
|
Li J, Wan B, Liu S. Advances in Assessing Preoperative Liver Function with Gd-EOB-DTPA Dynamic Contrast Enhanced MRI. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/ym.2019.31004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Evaluation of two-point Dixon water-fat separation for liver specific contrast-enhanced assessment of liver maximum capacity. Sci Rep 2018; 8:13863. [PMID: 30218001 PMCID: PMC6138716 DOI: 10.1038/s41598-018-32207-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
Gadoxetic acid-enhanced magnetic resonance imaging has become a useful tool for quantitative evaluation of liver capacity. We report on the importance of intrahepatic fat on gadoxetic acid-supported T1 mapping for estimation of liver maximum capacity, assessed by the realtime 13C-methacetin breathing test (13C-MBT). For T1 relaxometry, we used a respective T1-weighted sequence with two-point Dixon water-fat separation and various flip angles. Both T1 maps of the in-phase component without fat separation (T1_in) and T1 maps merely based on the water component (T1_W) were generated, and respective reduction rates of the T1 relaxation time (rrT1) were evaluated. A steady considerable decline in rrT1 with progressive reduction of liver function could be observed for both T1_in and T1_W (p < 0.001). When patients were subdivided into 3 different categories of 13C-MBT readouts, the groups could be significantly differentiated by their rrT1_in and rrT1_W values (p < 0.005). In a simple correlation model of 13C-MBT values with T1_inpost (r = 0.556; p < 0.001), T1_Wpost (r = 0.557; p < 0.001), rrT1_in (r = 0.711; p < 0.001) and rrT1_W (r = 0.751; p < 0.001), a log-linear correlation has been shown. Liver maximum capacity measured with 13C-MBT can be determined more precisely from gadoxetic acid-supported T1 mapping when intrahepatic fat is taken into account. Here, T1_W maps are shown to be significantly superior to T1_in maps without separation of fat.
Collapse
|
23
|
Iwanaga T, Fukukura Y, Saito T, Sasaki M, Kumagae Y, Takumi K, Hakamada H, Fujisaki T, Saigo Y, Yoshiura T. Conspicuity of Malignant Liver Tumors on Diffusion-Weighted Imaging With Short tau Inversion Recovery After Gadolinium Ethoxybenzyl Diethylenetriaminepentaacetic Acid Administration. J Magn Reson Imaging 2018; 49:565-573. [PMID: 30102432 DOI: 10.1002/jmri.26196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/30/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) has been used for the detection and characterization of liver tumors because it has excellent contrast resolution. DWI using short tau inversion recovery (STIR) can improve tumor-to-liver contrast after gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) administration that shortens the T1 relaxation of liver parenchyma. PURPOSE To quantitatively and qualitatively compare the conspicuity of malignant liver tumors on DWI after Gd-EOB-DTPA administration between STIR and chemical shift selective (CHESS) sequences. STUDY TYPE Single-institution retrospective study. SUBJECTS Fifty-seven patients with histologically confirmed malignant liver tumors were evaluated. FIELD STRENGTH/SEQUENCE Low b-value DWIs with STIR and CHESS sequences 18-20 minutes after Gd-EOB-DTPA administration were acquired at 1.5T. ASSESSMENT Tumor contrast-to-noise ratio (CNR) and visual grade of tumor conspicuity on DWI between STIR and CHESS sequences were compared. STATISTICAL TESTS Paired Student's t-test and the Wilcoxon signed rank-test were applied. P < 0.05 was considered statistically significant. RESULTS The mean tumor CNR and visual grade of tumor conspicuity on DWI were significantly higher for STIR than for CHESS (both P < 0.001). Regardless of the presence of chronic liver disease, the mean CNR (normal liver 33.5 ± 19.8 vs. 15.7 ± 12.2, P < 0.001; chronic liver disease 19.6 ± 11.0 vs. 9.2 ± 7.8, P < 0.001) and the visual conspicuity grade (normal liver 3.36 ± 0.64 vs. 2.56 ± 0.77, P < 0.001; chronic liver disease 2.94 ± 0.80 vs. 2.25 ± 0.84, P = 0.001) were significantly higher for STIR than for CHESS. Mean CNR and the visual conspicuity grade were also significantly higher for STIR than for CHESS in patients with hepatocellular carcinomas (CNR 18.1 ± 10.5 vs. 8.8 ± 7.2, P < 0.001; visual grade 2.88 ± 0.83 vs. 2.22 ± 0.87, P = 0.001) or metastases (CNR 35.0 ± 19.3 vs. 16.2 ± 13.1, P < 0.001; visual grade 3.45 ± 0.51 vs. 2.59 ± 0.73, P < 0.001). DATA CONCLUSION DWI using STIR may be more helpful for depicting malignant liver tumors after Gd-EOB-DTPA administration compared with DWI using CHESS. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:565-573.
Collapse
Affiliation(s)
- Takashi Iwanaga
- Department of Radiological Technology, Kagoshima University Hospital, Kagoshima City, Japan
| | - Yoshihiko Fukukura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima City, Japan
| | - Tomonori Saito
- Department of Radiological Technology, Kagoshima University Hospital, Kagoshima City, Japan
| | - Masashi Sasaki
- Department of Radiological Technology, Kagoshima University Hospital, Kagoshima City, Japan
| | - Yuichi Kumagae
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima City, Japan
| | - Koji Takumi
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima City, Japan
| | - Hiroto Hakamada
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima City, Japan
| | - Takuro Fujisaki
- Department of Radiological Technology, Kagoshima University Hospital, Kagoshima City, Japan
| | - Yasumasa Saigo
- Department of Radiological Technology, Kagoshima University Hospital, Kagoshima City, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima City, Japan
| |
Collapse
|
24
|
Dekkers IA, Lamb HJ. Clinical application and technical considerations of T 1 & T 2(*) mapping in cardiac, liver, and renal imaging. Br J Radiol 2018; 91:20170825. [PMID: 29975154 DOI: 10.1259/bjr.20170825] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pathological tissue alterations due to disease processes such as fibrosis, edema and infiltrative disease can be non-invasively visualized and quantified by MRI using T1 and T2 relaxation properties. Pixel-wise mapping of T1 and T2 image sequences enable direct quantification of T1, T2(*), and extracellular volume values of the target organ of interest. Tissue characterization based on T1 and T2(*) mapping is currently making the transition from a research tool to a clinical modality, as clinical usefulness has been established for several diseases such as myocarditis, amyloidosis, Anderson-Fabry and iron deposition. Other potential clinical applications besides the heart include, quantification of steatosis, cirrhosis, hepatic siderosis and renal fibrosis. Here, we provide an overview of potential clinical applications of T1 andT2(*) mapping for imaging of cardiac, liver and renal disease. Furthermore, we give an overview of important technical considerations necessary for clinical implementation of quantitative parametric imaging, involving data acquisition, data analysis, quality assessment, and interpretation. In order to achieve clinical implementation of these techniques, standardization of T1 and T2(*) mapping methodology and validation of impact on clinical decision making is needed.
Collapse
Affiliation(s)
- Ilona A Dekkers
- 1 Department of Radiology, Leiden University Medical Center , Leiden , The Netherlands
| | - Hildo J Lamb
- 1 Department of Radiology, Leiden University Medical Center , Leiden , The Netherlands
| |
Collapse
|
25
|
Wang WT, Zhu S, Ding Y, Yang L, Chen CZ, Ye QH, Ji Y, Zeng MS, Rao SX. T 1 mapping on gadoxetic acid-enhanced MR imaging predicts recurrence of hepatocellular carcinoma after hepatectomy. Eur J Radiol 2018; 103:25-31. [PMID: 29803381 DOI: 10.1016/j.ejrad.2018.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Our purpose was to demonstrate the prognostic significance of T1 mapping on gadoxetic acid-enhanced MR imaging in prediction of recurrence of single HCC after hepatectomy. MATERIALS AND METHODS One hundred and seven patients with single nodular HCC (≤3 cm) who underwent preoperative gadoxetic acid-enhanced MRI were included in the study. T1 mapping with syngo MapIt was obtained on a 1.5 T scanner. Radiological features and reduction rate of T1 relaxation time (Δ%) of tumors were assessed by two radiologists. Cumulative recurrence rates were compared between groups of low and high reduction rate of T1 relaxation time. A further classified cumulative recurrence rate of the overall cohort was based on the numbers of independent predictive factors. RESULTS Reduction rate of T1 relaxation time (P = 0.001) and non-hypervascular hypointense nodules (P = 0.042) in preoperative gadoxetic acid-enhanced MRI were independently related to recurrence of HCC after hepatectomy. Patients of lower reduction rates group had higher cumulative recurrence rates (P < 0.0001) than patients of higher reduction rates group. A combination of the two risk factors in patients with single HCC had significantly higher recurrence rates compared to those with either or none of the two risk factors. CONCLUSIONS Reduction rate of T1 relaxation time combined with non-hypervascular hypointense nodules can be reliable biomarkers in the preoperative prediction of recurrence of HCC after hepatectomy.
Collapse
Affiliation(s)
- Wen-Tao Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China
| | - Shuo Zhu
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China
| | - Ying Ding
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China
| | - Li Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China
| | - Cai-Zhong Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China
| | - Qing-Hai Ye
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China
| | - Sheng-Xiang Rao
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China.
| |
Collapse
|
26
|
How Do Different Indices of Hepatic Enhancement With Gadoxetic Acid Compare in Predicting Liver Failure and Other Major Complications After Hepatectomy? J Comput Assist Tomogr 2018; 42:380-386. [DOI: 10.1097/rct.0000000000000691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Zhou ZP, Long LL, Qiu WJ, Cheng G, Huang LJ, Yang TF, Huang ZK. Comparison of 10- and 20-min hepatobiliary phase images on Gd-EOB-DTPA-enhanced MRI T1 mapping for liver function assessment in clinic. Abdom Radiol (NY) 2017; 42:2272-2278. [PMID: 28396918 DOI: 10.1007/s00261-017-1143-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To compare hepatobiliary phase (HBP) images obtained 10 and 20 min after Gd-EOB-DTPA-enhanced MRI for liver function assessment in clinic on 3.0 T MR imaging. METHODS 103 patients were separated into four groups: 38 patients for the normal liver function (NLF) group, 33 patients for the liver cirrhosis with Child-Pugh A (LCA) group, 21 patients for the liver cirrhosis with Child-Pugh B group, and 11 patients for a liver cirrhosis with Child-Pugh C group. T1 relaxation times (T1rt) were measured on T1 mapping and reduction rates of T1rt (rrT1rt) were calculated. HBP images were obtained at the 10- and 20-min mark after Gd-EOB-DTPA enhancement. RESULTS T1rt on pre-enhancement imaging showed no significant difference (p > 0.05) among all four groups. T1rt for both the 10-min HBP and the 20-min HBP showed a significant difference (p < 0.05) among all groups, but showed no significant difference (p > 0.05) between the NLF group and the LCA group. T1rt and rrT1rt showed no significant difference (p > 0.05) between 10-min HBP and 20-min HBP among all groups. The ROC analysis on 10-min HBP and 20-min HBP showed a lower diagnostic performance between NLF group and LCA group (AUC from 0.532 to 0.582), but high diagnostic performance (AUC from 0.788 to 1.000) among others group. CONCLUSIONS In comparing 10-min HBP and 20-min HBP T1 mapping after Gd-EOB-DTPA enhancement, our results suggest that 10-min HBP T1 mapping is a feasible option for quantitatively assessing liver function.
Collapse
Affiliation(s)
- Zhi-Peng Zhou
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Li-Ling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Wei-Jia Qiu
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Ge Cheng
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Li-Juan Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Teng-Fei Yang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Zhong-Kui Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
28
|
Nakagawa M, Namimoto T, Shimizu K, Morita K, Sakamoto F, Oda S, Nakaura T, Utsunomiya D, Shiraishi S, Yamashita Y. Measuring hepatic functional reserve using T1 mapping of Gd-EOB-DTPA enhanced 3T MR imaging: A preliminary study comparing with 99mTc GSA scintigraphy and signal intensity based parameters. Eur J Radiol 2017. [PMID: 28624009 DOI: 10.1016/j.ejrad.2017.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To determine the utility of liver T1-mapping on gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) enhanced magnetic resonance (MR) imaging for the measurement of liver functional reserve compared with the signal intensity (SI) based parameters, technetium-99m-galactosyl serum albumin (99mTc-GSA) scintigraphy and indocyanine green (ICG) clearance. MATERIALS AND METHODS This retrospective study included 111 patients (Child-Pugh-A 90; -B 21) performed with both Gd-EOB-DTPA enhanced liver MR imaging and 99mTc-GSA (76 patients with ICG). Receiver operating characteristic (ROC) curve analysis was performed to compare diagnostic performances of T1-relaxation-time parameters [pre-(T1pre) and post-contrast (T1hb) Gd-EOB-DTPA], SI based parameters [relative enhancement (RE), liver-to-muscle-ratio (LMR), liver-to-spleen-ratio (LSR)] and 99mTc-GSA scintigraphy blood clearance index (HH15)] for Child-Pugh classification. Pearson's correlation was used for comparisons among T1-relaxation-time parameters, SI-based parameters, HH15 and ICG. RESULTS A significant difference was obtained for Child-Pugh classification with T1hb, ΔT1, all SI based parameters and HH15. T1hb had the highest AUC followed by RE, LMR, LSR, ΔT1, HH15 and T1pre. The correlation coefficients with HH15 were T1pre 0.22, T1hb 0.53, ΔT1 -0.38 of T1 relaxation parameters; RE -0.44, LMR -0.45, LSR -0.43 of SI-based parameters. T1hb was highest for correlation with HH15. The correlation coefficients with ICG were T1pre 0.29, T1hb 0.64, ΔT1 -0.42 of T1 relaxation parameters; RE -0.50, LMR -0.61, LSR -0.58 of SI-based parameters; 0.64 of HH15. Both T1hb and HH15 were highest for correlation with ICG. CONCLUSION T1 relaxation time at post-contrast of Gd-EOB-DTPA (T1hb) was strongly correlated with ICG clearance and moderately correlated HH15 with 99mTc-GSA. T1hb has the potential to provide robust parameter of liver functional reserve.
Collapse
Affiliation(s)
- Masataka Nakagawa
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Tomohiro Namimoto
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan.
| | - Kie Shimizu
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Kosuke Morita
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Fumi Sakamoto
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Shinya Shiraishi
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Yasuyuki Yamashita
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| |
Collapse
|
29
|
Zhou ZP, Long LL, Qiu WJ, Cheng G, Huang LJ, Yang TF, Huang ZK. Evaluating segmental liver function using T1 mapping on Gd-EOB-DTPA-enhanced MRI with a 3.0 Tesla. BMC Med Imaging 2017; 17:20. [PMID: 28249571 PMCID: PMC5333450 DOI: 10.1186/s12880-017-0192-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Background Assessing the liver function provides valuable information to evaluate surgical risk and plan accordingly. Current studies focus on whole liver function evaluation. However, assessment of segmental liver function is equally important in the clinical practice. The purpose of this study was to investigate whether Gd-EOB-DTPA-enhanced MRI can evaluate the liver function of each segment by using T1 mapping at 3 Tesla MRI. Methods One hundred three patients were classified into one of 4 groups: a normal liver function (NLF) group (n = 38), a liver cirrhosis with Child-Pugh A (LCA) group (n = 33), a liver cirrhosis with Child-Pugh B (LCB) group (n = 21), and a liver cirrhosis with Child-Pugh C (LCC) group (n = 11). All patients underwent Gd-EOB-DTPA-enhanced MRI scans. T1 relaxation times were measured on the liver superimposing T1 mapping images. Reduction rate (△%) of T1 relaxation time of the liver parenchyma were calculated. Results After 20 min of Gd-EOB-DTPA enhancement, the T1 relaxation time of all liver segments in the LCC group were different from those in all the other groups, and more liver segments from the LCB and LCA groups different from the NLF group (p < 0.05). For the LCB group, the areas under the receiver operating characteristic curves (AUCs) of different liver segments for hepatobiliary phase (HBP) were 0.654-0.904 on T1 relaxation time, and 0.709-0.905 on △%. For the LCC group, the AUCs of different liver segments for HBP were 0.842–0.997 on T1 relaxation time, and 0.887–0.990 on △%. Conclusions For LCB patients, segmental liver function evaluation is possible using Gd-EOB-DTPA-enhanced MRI T1 mapping. For LCC patients, all liver segments can be used to evaluate liver function and both T1 relaxation time and the △% of T1 relaxation time have good diagnostic performance. Electronic supplementary material The online version of this article (doi:10.1186/s12880-017-0192-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi-Peng Zhou
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| | - Li-Ling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Wei-Jia Qiu
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| | - Ge Cheng
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| | - Li-Juan Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Teng-Fei Yang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Zhong-Kui Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
30
|
Unal E, Idilman IS, Karçaaltıncaba M. Multiparametric or practical quantitative liver MRI: towards millisecond, fat fraction, kilopascal and function era. Expert Rev Gastroenterol Hepatol 2017; 11:167-182. [PMID: 27937040 DOI: 10.1080/17474124.2017.1271710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New advances in liver magnetic resonance imaging (MRI) may enable diagnosis of unseen pathologies by conventional techniques. Normal T1 (550-620 ms for 1.5 T and 700-850 ms for 3 T), T2, T2* (>20 ms), T1rho (40-50 ms) mapping, proton density fat fraction (PDFF) (≤5%) and stiffness (2-3kPa) values can enable differentiation of a normal liver from chronic liver and diffuse diseases. Gd-EOB-DTPA can enable assessment of liver function by using postcontrast hepatobiliary phase or T1 reduction rate (normally above 60%). T1 mapping can be important for the assessment of fibrosis, amyloidosis and copper overload. T1rho mapping is promising for the assessment of liver collagen deposition. PDFF can allow objective treatment assessment in NAFLD and NASH patients. T2 and T2* are used for iron overload determination. MR fingerprinting may enable single slice acquisition and easy implementation of multiparametric MRI and follow-up of patients. Areas covered: T1, T2, T2*, PDFF and stiffness, diffusion weighted imaging, intravoxel incoherent motion imaging (ADC, D, D* and f values) and function analysis are reviewed. Expert commentary: Multiparametric MRI can enable biopsyless diagnosis and more objective staging of diffuse liver disease, cirrhosis and predisposing diseases. A comprehensive approach is needed to understand and overcome the effects of iron, fat, fibrosis, edema, inflammation and copper on MR relaxometry values in diffuse liver disease.
Collapse
Affiliation(s)
- Emre Unal
- a Liver Imaging Team, Department of Radiology , Hacettepe University School of Medicine , Ankara , Turkey
- b Department of Radiology , Zonguldak Ataturk State Hospital , Zonguldak , Turkey
| | - Ilkay Sedakat Idilman
- a Liver Imaging Team, Department of Radiology , Hacettepe University School of Medicine , Ankara , Turkey
- c Department of Radiology , Ankara Ataturk Education and Research Hospital , Ankara , Turkey
| | - Muşturay Karçaaltıncaba
- a Liver Imaging Team, Department of Radiology , Hacettepe University School of Medicine , Ankara , Turkey
| |
Collapse
|
31
|
Gd-EOB-DTPA-enhanced MRI T1 mapping for assessment of liver function in rabbit fibrosis model: comparison of hepatobiliary phase images obtained at 10 and 20 min. Radiol Med 2017; 122:239-247. [DOI: 10.1007/s11547-016-0719-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/19/2016] [Indexed: 01/13/2023]
|
32
|
Ünal E, Akata D, Karcaaltincaba M. Liver Function Assessment by Magnetic Resonance Imaging. Semin Ultrasound CT MR 2016; 37:549-560. [DOI: 10.1053/j.sult.2016.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Okada M, Murakami T, Kuwatsuru R, Nakamura Y, Isoda H, Goshima S, Hanaoka R, Haradome H, Shinagawa Y, Kitao A, Fujinaga Y, Marugami N, Yuki M, Ichikawa T, Higaki A, Hori M, Fujii S, Matsui O. Biochemical and Clinical Predictive Approach and Time Point Analysis of Hepatobiliary Phase Liver Enhancement on Gd-EOB-DTPA–enhanced MR Images: A Multicenter Study. Radiology 2016; 281:474-483. [DOI: 10.1148/radiol.2016151061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Rao SX, Zeng MS. Assessment of liver function by Gd-EOB-DTPA enhanced magnetic resonance imaging. Shijie Huaren Xiaohua Zazhi 2016; 24:3940-3945. [DOI: 10.11569/wcjd.v24.i28.3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA), a liver-specific magnetic resonance imaging (MRI) contrast agent, is increasingly used for imaging-based liver function tests. Like indocyanine green and mebrofenin, Gd-EOB-DTPA is taken up by hepatocytes through organic anion-transporting polypeptides 1 (OATP1) B1 and B3 and is then excreted into the bile by multi-drug resistance protein (MRP2). The advantages of Gd-EOB-DTPA-based liver function tests include function measurement integrated in an existing MRI protocol, ability of evaluating segmental liver function, and no ionizing radiation. The approaches based on Gd-EOB-DTPA for function measurement are as follows: measurement of biliary elimination, hepatic parenchymal enhancement, MR relaxometry, and MR perfusion. These approaches have potential value for assessing liver reserve, hepatic fibrosis, non-alcoholic fatty liver disease and so on.
Collapse
|
35
|
Fang KC, Su CW, Chiou YY, Lee PC, Chiu NC, Liu CA, Chen PH, Kao WY, Huang YH, Huo TI, Hou MC, Lin HC, Wu JC. The impact of clinically significant portal hypertension on the prognosis of patients with hepatocellular carcinoma after radiofrequency ablation: a propensity score matching analysis. Eur Radiol 2016; 27:2600-2609. [PMID: 27678133 DOI: 10.1007/s00330-016-4604-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Accepted: 09/07/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To assess the impact of clinically significant portal hypertension (CSPH) on the prognosis of patients with hepatocellular carcinoma (HCC) undergoing radiofrequency ablation (RFA). METHODS We retrospectively enrolled 280 treatment-naïve early-stage HCC patients who had Child-Pugh grade A or B and received upper gastrointestinal endoscopy at the time of HCC diagnosis. CSPH was defined as (1) a platelet count < 100,000/mm3 associated with splenomegaly and/or (2) the presence of oesophageal/gastric varices by endoscopy. Factors determining poor overall survival and recurrence after RFA were analysed by Cox proportional hazards model and propensity score matching analysis. RESULTS A total of 192 (68.6 %) patients had CSPH. The cumulative 5-year survival rates were 50.6 % and 76.7 % in patients with and without CSPH, respectively (p = 0.015). Based on multivariate analysis, age > 65 years (hazard ratio (HR) 1.740, p = 0.025), serum albumin levels ≤ 3.5 g/dL (HR 3.268, p < 0.001) and multiple tumours (HR 1.693, p = 0.046), but not CSPH, were independent risk factors associated with poor overall survival after RFA. Moreover, the overall survival rates were comparable between patients with and without CSPH after adjusting for confounding factors via propensity score matching analysis. CONCLUSIONS CSPH was not associated with poor outcomes after RFA. KEY POINTS • CSPH was common in HCC patients who underwent RFA therapy. • CSPH was not an independent risk factor in determining poor prognosis. • Serum albumin level was more important to determine the outcomes.
Collapse
Affiliation(s)
- Kuan-Chieh Fang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Wei Su
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-You Chiou
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Division of Gastrointestinal Radiology, Department of Radiology, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei, 112, Taiwan.
| | - Pei-Chang Lee
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Yuanshan Branch, Taipei Veterans General Hospital, Yilan, Taiwan.,Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Nai-Chi Chiu
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastrointestinal Radiology, Department of Radiology, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei, 112, Taiwan
| | - Chien-An Liu
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastrointestinal Radiology, Department of Radiology, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei, 112, Taiwan
| | - Ping-Hsien Chen
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Yu Kao
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Teh-Ia Huo
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Ching Wu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
36
|
Yang L, Ding Y, Rao S, Chen C, Wu L, Sheng R, Fu C, Zeng M. Staging liver fibrosis in chronic hepatitis B with T 1 relaxation time index on gadoxetic acid-enhanced MRI: Comparison with aspartate aminotransferase-to-platelet ratio index and FIB-4. J Magn Reson Imaging 2016; 45:1186-1194. [PMID: 27563840 DOI: 10.1002/jmri.25440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To assess the accuracy of the T1 relaxation time index on gadoxetic acid-enhanced magnetic resonance imaging (MRI) for staging liver fibrosis in chronic hepatitis B (CHB), in comparison and combination with the aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis-4 (FIB-4). MATERIALS AND METHODS A retrospective study of gadoxetic acid-enhanced T1 mapping and serum biochemical tests was performed on 126 CHB patients who underwent gadoxetic acid-enhanced 1.5T MRI, and the histological score used as the gold standard. The reduction rate of T1 relaxation time before and 20 minutes after gadoxetic acid injection (ΔT1 , ΔR1%), the contrast uptake rate (KHep ), APRI, and FIB-4 were calculated. The diagnostic efficacy of ΔT1 , ΔR1%, KHep , APRI, and FIB-4 for predicting stage 2 or greater (≥S2), stage 3 or greater (≥S3), and stage 4 (S4) was compared. RESULTS ΔT1 (r = -0.513, P < 0.001), ΔR1% (r = -0.626, P < 0.001), KHep (r = -0.527, P < 0.001), APRI (r = 0.519, P < 0.001), and FIB-4 (r = 0.476, P < 0.001) correlated significantly with fibrosis stages. Areas under the curves (AUCs) of ΔR1% for detecting ≥S2, ≥S3, and S4 were 0.849, 0.827, and 0.809, which were greater than that of APRI (0.763, 0.745, 0.787) and FIB-4 (0.727, 0.738, 0.772), but significant difference was found only in discriminating ≥S2 between ΔR1% and FIB-4 (P = 0.027). The combination of all five indices performed best, with AUC, sensitivity, and specificity of 0.860, 87.21%, and 72.50% for diagnosing ≥S2, 0.878, 82.81%, and 85.48% for ≥S3, and 0.867, 80.00%, and 83.95% for S4. CONCLUSION The gadoxetic acid-enhanced T1 relaxation time index appears to be superior to APRI and FIB-4 for predicting hepatic fibrosis. The combined use of gadoxetic acid-enhanced T1 mapping, APRI, and FIB-4 may be more reliable for staging liver fibrosis in CHB. LEVEL OF EVIDENCE 4 J. Magn. Reson. Imaging 2017;45:1186-1194.
Collapse
Affiliation(s)
- Li Yang
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ying Ding
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Shengxiang Rao
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Caizhong Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Lifang Wu
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ruofan Sheng
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Caixia Fu
- Siemens Healthcare, Shanghai, P.R. China
| | - Mengsu Zeng
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
37
|
Peng Z, Jiang M, Cai H, Chan T, Dong Z, Luo Y, Li ZP, Feng ST. Gd-EOB-DTPA-enhanced magnetic resonance imaging combined with T1 mapping predicts the degree of differentiation in hepatocellular carcinoma. BMC Cancer 2016; 16:625. [PMID: 27520833 PMCID: PMC4983030 DOI: 10.1186/s12885-016-2607-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/25/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Variable degrees of differentiation in hepatocellular carcinoma(HCC)under Edmondson-Steiner grading system has been proven to be an independent prognostic indicator for HCC. Up till now, there has been no effective radiological method that can reveal the degree of differentiation in HCC before surgery. This paper aims to evaluate the use of Gd-EOB-DTPA-Enhanced Magnetic Resonance Imaging combined with T1 mapping for the diagnosis of HCC and assessing its degree of differentiation. METHODS Forty-four patients with 53 pathologically proven HCC had undergone Gd-EOB-DTPA enhanced MRI with T1 mapping before surgery. Out of the 53 lesions,13 were grade I, 27 were gradeII, and 13 were grade III. The T1 values of each lesion were measured before and at 20 min after Gd-EOB-DTPA administration (T1p and T1e). The absolute reduction in T1 value (T1d) and the percentage reduction (T1d %) were calculated. The one-way ANOVA and Pearson correlation were used for comparisons between the T1 mapping values. RESULTS The T1d and T1d % of grade I, II and III of HCC was 660.5 ± 422.8ms、295.0 ± 99.6ms、276.2 ± 95.0ms and 54.0 ± 12.2 %、31.5 ± 6.9 %、27.7 ± 6.7 % respectively. The differences between grade Iand II, grade Iand III were statistically significant (p < 0.05), but there was no statically significant difference between grade II and III. The T1d % was the best marker for grading of HCC, with a Spearman correlation coefficient of -0.676. CONCLUSIONS T1 mapping before and after Gd-EOB-DTPA administration can predict degree of differentiation in HCC.
Collapse
Affiliation(s)
- Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China
| | - Mengjie Jiang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China.,Department of Radiology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Huasong Cai
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China
| | - Tao Chan
- Medical Imaging Department, Union Hospital, Hong Kong, 18 Fu Kin Street, Tai Wai, Shatin, N.T, Hong Kong
| | - Zhi Dong
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China
| | - Zi-Ping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China.
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
38
|
Matoori S, Froehlich JM, Breitenstein S, Doert A, Pozdniakova V, Koh DM, Gutzeit A. Age dependence of spleen- and muscle-corrected hepatic signal enhancement on hepatobiliary phase gadoxetate MRI. Eur Radiol 2016; 26:1889-94. [PMID: 26334505 DOI: 10.1007/s00330-015-3965-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/16/2015] [Accepted: 08/04/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To identify correlations of signal enhancements (SE) and SE normalized to reference tissues of the spleen, kidney, liver, musculus erector spinae (MES) and ductus hepatocholedochus (DHC) on hepatobiliary phase gadoxetate-enhanced MRI with patient age in non-cirrhotic patients. METHODS A heterogeneous cohort of 131 patients with different clinical backgrounds underwent a standardized 3.0-T gadoxetate-enhanced liver MRI between November 2008 and June 2013. After exclusion of cirrhotic patients, a cohort of 75 patients with no diagnosed diffuse liver disease was selected. The ratio of signal intensity 20 min post- to pre-contrast administration (SE) in the spleen, kidney, liver, MES and DHC, and the SE of the kidney, liver and DHC normalized to the reference tissues spleen or MES were compared to patient age. RESULTS Patient age was inversely correlated with the liver SE normalized to the spleen and MES SE (both p < 0.001) and proportionally with the SE of the spleen (p = 0.043), the MES (p = 0.030) and the kidney (p = 0.022). No significant correlations were observed for the DHC (p = 0.347) and liver SE (p = 0.606). CONCLUSION The age dependence of hepatic SE normalized to the enhancement in the spleen and MES calls for a cautious interpretation of these quantification methods. KEY POINTS • Patient age was inversely correlated with spleen- and MES-corrected liver rSE (p < 0.001). • Patient age was correlated with spleen (p = 0.043) and MES SE (p = 0.030). • Patient age may confound quantitative liver function assessment using gadoxetate-enhanced liver MRI.
Collapse
Affiliation(s)
- Simon Matoori
- Department of Radiology, Paracelsus Medical University Salzburg, Muellner Hauptstraße 48, 5020, Salzburg, Austria
- Clinical Research Group, Hirslanden Clinic St. Anna, St.Anna-Strasse 32, 6006, Lucerne, Switzerland
| | - Johannes M Froehlich
- Clinical Research Group, Hirslanden Clinic St. Anna, St.Anna-Strasse 32, 6006, Lucerne, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5 / 10, 8093, Zurich, Switzerland
- Department of Radiology, Cantonal Hospital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland
| | - Stefan Breitenstein
- Department of Surgery, Clinic for Visceral and Thoracic Surgery, Cantonal Hospital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland
| | - Aleksis Doert
- Department of Radiology, Cantonal Hospital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland
| | - Viktoria Pozdniakova
- Department of Radiology, Stavanger University Hospital, Armauer Hansens vei 20, 4011, Stavanger, Norway
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, Surrey, England, UK
| | - Andreas Gutzeit
- Department of Radiology, Paracelsus Medical University Salzburg, Muellner Hauptstraße 48, 5020, Salzburg, Austria.
- Clinical Research Group, Hirslanden Clinic St. Anna, St.Anna-Strasse 32, 6006, Lucerne, Switzerland.
- Department of Radiology, Cantonal Hospital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland.
| |
Collapse
|
39
|
Goceri E, Shah ZK, Layman R, Jiang X, Gurcan MN. Quantification of liver fat: A comprehensive review. Comput Biol Med 2016; 71:174-89. [PMID: 26945465 DOI: 10.1016/j.compbiomed.2016.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Fat accumulation in the liver causes metabolic diseases such as obesity, hypertension, diabetes or dyslipidemia by affecting insulin resistance, and increasing the risk of cardiac complications and cardiovascular disease mortality. Fatty liver diseases are often reversible in their early stage; therefore, there is a recognized need to detect their presence and to assess its severity to recognize fat-related functional abnormalities in the liver. This is crucial in evaluating living liver donors prior to transplantation because fat content in the liver can change liver regeneration in the recipient and donor. There are several methods to diagnose fatty liver, measure the amount of fat, and to classify and stage liver diseases (e.g. hepatic steatosis, steatohepatitis, fibrosis and cirrhosis): biopsy (the gold-standard procedure), clinical (medical physics based) and image analysis (semi or fully automated approaches). Liver biopsy has many drawbacks: it is invasive, inappropriate for monitoring (i.e., repeated evaluation), and assessment of steatosis is somewhat subjective. Qualitative biomarkers are mostly insufficient for accurate detection since fat has to be quantified by a varying threshold to measure disease severity. Therefore, a quantitative biomarker is required for detection of steatosis, accurate measurement of severity of diseases, clinical decision-making, prognosis and longitudinal monitoring of therapy. This study presents a comprehensive review of both clinical and automated image analysis based approaches to quantify liver fat and evaluate fatty liver diseases from different medical imaging modalities.
Collapse
Affiliation(s)
- Evgin Goceri
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, USA.
| | - Zarine K Shah
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, USA
| | - Rick Layman
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, USA
| | - Xia Jiang
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, USA
| | - Metin N Gurcan
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, USA
| |
Collapse
|
40
|
Imaging of HCC-Current State of the Art. Diagnostics (Basel) 2015; 5:513-45. [PMID: 26854169 PMCID: PMC4728473 DOI: 10.3390/diagnostics5040513] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 12/17/2022] Open
Abstract
Early diagnosis of hepatocellular carcinoma (HCC) is crucial for optimizing treatment outcome. Ongoing advances are being made in imaging of HCC regarding detection, grading, staging, and also treatment monitoring. This review gives an overview of the current international guidelines for diagnosing HCC and their discrepancies as well as critically summarizes the role of magnetic resonance imaging (MRI) and computed tomography (CT) techniques for imaging in HCC. The diagnostic performance of MRI with nonspecific and hepatobililiary contrast agents and the role of functional imaging with diffusion-weighted imaging will be discussed. On the other hand, CT as a fast, cheap and easily accessible imaging modality plays a major role in the clinical routine work-up of HCC. Technical advances in CT, such as dual energy CT and volume perfusion CT, are currently being explored for improving detection, characterization and staging of HCC with promising results. Cone beam CT can provide a three-dimensional analysis of the liver with tumor and vessel characterization comparable to cross-sectional imaging so that this technique is gaining an increasing role in the peri-procedural imaging of HCC treated with interventional techniques.
Collapse
|
41
|
3D T1 relaxometry pre and post gadoxetic acid injection for the assessment of liver cirrhosis and liver function. Magn Reson Imaging 2015; 33:1075-1082. [DOI: 10.1016/j.mri.2015.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/09/2015] [Accepted: 06/20/2015] [Indexed: 02/06/2023]
|
42
|
Yuan M, Zhang YD, Zhu C, Yu TF, Shi HB, Shi ZF, Li H, Wu JF. Comparison of intravoxel incoherent motion diffusion-weighted MR imaging with dynamic contrast-enhanced MRI for differentiating lung cancer from benign solitary pulmonary lesions. J Magn Reson Imaging 2015; 43:669-79. [PMID: 26340144 DOI: 10.1002/jmri.25018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND To compare intravoxel incoherent motion (IVIM) and pharmacokinetic analysis dynamic contrast-enhanced MR imaging (DCE-MRI) in distinguishing lung cancer (LC) from benign solitary pulmonary lesions (SPL). METHODS This prospective study was approved by the institutional review board, and written informed consent was obtained. Eighty-one consecutive patients considered for SPL underwent DW-IVIM and DCE-3T MRI. ADC, D, D*, and f were calculated with mono- and bi-exponential models. K(trans) , kep , ve , and vp were calculated with the modified Tofts model. Receiver operating characteristic (ROC) analysis was constructed to determine the diagnostic performance of IVIM and DCE-MRI in discriminating LC from benignity. RESULTS There were 29 patients with a total of 48 benign SPL and 52 LCs: 4 small cell carcinomas (SCLC), 19 squamous cell carcinomas (SCC), and 29 adenocarcinomas (Adeno-Ca). Both Adeno-Ca (ADC: 1.19 ± 0.23 × 10(-3) mm(2) /s; D:1.12 ± 0.35 × 10(-3) mm(2) /s; ve :0.27 ± 0.13; K(trans) :0.24 ± 0.09 min(-1) ; kep :0.90 ± 0.45 min(-1) ) and SCC (1.13± 0.28 × 10(-3) mm(2) /s; 1.02 ± 0.32 10(-3) mm(2) /s; 0.32 ± 0.14; 0.26 ± 0.08 min(-1) ; 0.90 ± 0.48 min(-1) ) had significantly lower ADC, D, ve and larger K(trans) , kep than benignity (1.37 ± 0.38 × 10(-3) mm(2) /s; 1.34 ± 0.45 × 10(-3) mm(2) /s; 0.42 ± 0.19; 0.19 ± 0.08 min(-1) ; 0.53 ± 0.26 min(-1) ). D (72.2%) had significantly higher accuracy (72.2%) and higher sensitivity (91.3%) than other imaging indices (accuracy: 55.5-68.0%; sensitivity: 41.3-78.3%; all P < 0.01) except for accuracy in kep (70.8%; P > 0.05) in discriminating LC from benignity. K(trans) exhibited significantly higher specificity (84.6%) than the other indices (38.5-73.1%; P < 0.01). These results can be improved by combined D and K(trans) , leading to a sensitivity, specificity and accuracy of 94.2%, 92%, and 93.5%, respectively. CONCLUSION IVIM-derived D and DCE-derived K(trans) are two promising parameters for differentiating LC from benignity.
Collapse
Affiliation(s)
- Mei Yuan
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Dong Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chan Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong-Fu Yu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Bin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhao-Fei Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Li
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang-Fen Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|