1
|
Cogels MM, Rouas R, Ghanem GE, Martinive P, Awada A, Van Gestel D, Krayem M. Humanized Mice as a Valuable Pre-Clinical Model for Cancer Immunotherapy Research. Front Oncol 2021; 11:784947. [PMID: 34869042 PMCID: PMC8636317 DOI: 10.3389/fonc.2021.784947] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/29/2021] [Indexed: 01/31/2023] Open
Abstract
Immunotherapy with checkpoint inhibitors opened new horizons in cancer treatment. Clinical trials for novel immunotherapies or unexplored combination regimens either need years of development or are simply impossible to perform like is the case in cancer patients with limited life expectancy. Thus, the need for preclinical models that rapidly and safely allow for a better understanding of underlying mechanisms, drug kinetics and toxicity leading to the selection of the best regimen to be translated into the clinic, is of high importance. Humanized mice that can bear both human immune system and human tumors, are increasingly used in recent preclinical immunotherapy studies and represent a remarkably unprecedented tool in this field. In this review, we describe, summarize, and discuss the recent advances of humanized mouse models used for cancer immunotherapy research and the challenges faced during their establishment. We also highlight the lack of preclinical studies using this model for radiotherapy-based research and argue that it can be a great asset to understand and answer many open questions around radiation therapy such as its presumed associated "abscopal effect".
Collapse
Affiliation(s)
- Morgane M. Cogels
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Redouane Rouas
- Laboratory of Cellular Therapy (UTCH), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghanem E. Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Martinive
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ahmad Awada
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mohammad Krayem
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Kotecki N, Kindt N, Krayem M, Awada A. New horizons in early drugs development in solid cancers. Curr Opin Oncol 2021; 33:513-519. [PMID: 34310410 DOI: 10.1097/cco.0000000000000766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Drug development is the process of bringing new anticancer agents into clinical practice. From the basic research to clinical research each step is essential and intimately linked. The aim of this review is to describe emerging preclinical models and to provide an overview of selected drugs recently developed in oncology. RECENT FINDINGS Preclinical models reproducing human immune-tumor interactions, 3D cell cultures and microfluidic platforms are of great interest for the development of immunotherapies and combination therapies and offer the opportunity to better understand the interplay between cancer and stromal cells.Following a better biological understanding of cancer and advances in precision oncology, new exciting drugs (e.g. antibodies-drugs conjugates [ADCs], immunotherapeutic strategies, molecular-targeted therapies) have entered the field of clinical research and even clinical practice. SUMMARY Recent improvements in preclinical models will allow an accurate selection of drug candidates for clinical research. Innovative drugs are currently being developed from early to later phases of development. An important remaining challenge in drug development is to set up a new model of patient-centered clinical research to facilitate quick access to innovation and target-oriented trials.
Collapse
Affiliation(s)
| | - Nadège Kindt
- Laboratoire d'oncologie clinique et expérimentale (LOCE), Jules Bordet Institute, Brussels, Belgium
| | - Mohammad Krayem
- Laboratoire d'oncologie clinique et expérimentale (LOCE), Jules Bordet Institute, Brussels, Belgium
| | - Ahmad Awada
- Oncology Medicine Department
- Laboratoire d'oncologie clinique et expérimentale (LOCE), Jules Bordet Institute, Brussels, Belgium
| |
Collapse
|
3
|
Ajami M, Soleimani M, Abroun S, Atashi A. Comparison of cord blood CD34 + stem cell expansion in coculture with mesenchymal stem cells overexpressing SDF‐1 and soluble /membrane isoforms of SCF. J Cell Biochem 2019; 120:15297-15309. [DOI: 10.1002/jcb.28797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Mansoureh Ajami
- Department of Hematology and Blood Banking, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Saeid Abroun
- Department of Hematology and Blood Banking, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Amir Atashi
- Department of Hematology and Blood Banking, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
- Stem Cell and Tissue Engineering Research Center Shahroud University of Medical Sciences Shahroud Iran
| |
Collapse
|
4
|
Boyd AL, Aslostovar L, Reid J, Ye W, Tanasijevic B, Porras DP, Shapovalova Z, Almakadi M, Foley R, Leber B, Xenocostas A, Bhatia M. Identification of Chemotherapy-Induced Leukemic-Regenerating Cells Reveals a Transient Vulnerability of Human AML Recurrence. Cancer Cell 2018; 34:483-498.e5. [PMID: 30205048 DOI: 10.1016/j.ccell.2018.08.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/29/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Despite successful remission induction, recurrence of acute myeloid leukemia (AML) remains a clinical obstacle thought to be caused by the retention of dormant leukemic stem cells (LSCs). Using chemotherapy-treated AML xenografts and patient samples, we have modeled patient remission and relapse kinetics to reveal that LSCs are effectively depleted via cell-cycle recruitment, leaving the origins of relapse unclear. Post-chemotherapy, in vivo characterization at the onset of disease relapse revealed a unique molecular state of leukemic-regenerating cells (LRCs) responsible for disease re-growth. LRCs are transient, can only be detected in vivo, and are molecularly distinct from therapy-naive LSCs. We demonstrate that LRC features can be used as markers of relapse and are therapeutically targetable to prevent disease recurrence.
Collapse
Affiliation(s)
- Allison L Boyd
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Michael G. DeGroote School of Medicine, McMaster University, 1200 Main Street West, MDCL 5029, Hamilton, Ontario L8N 3Z5, Canada
| | - Lili Aslostovar
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Michael G. DeGroote School of Medicine, McMaster University, 1200 Main Street West, MDCL 5029, Hamilton, Ontario L8N 3Z5, Canada
| | - Jennifer Reid
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Michael G. DeGroote School of Medicine, McMaster University, 1200 Main Street West, MDCL 5029, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Wendy Ye
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Michael G. DeGroote School of Medicine, McMaster University, 1200 Main Street West, MDCL 5029, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Borko Tanasijevic
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Michael G. DeGroote School of Medicine, McMaster University, 1200 Main Street West, MDCL 5029, Hamilton, Ontario L8N 3Z5, Canada
| | - Deanna P Porras
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Michael G. DeGroote School of Medicine, McMaster University, 1200 Main Street West, MDCL 5029, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Zoya Shapovalova
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Michael G. DeGroote School of Medicine, McMaster University, 1200 Main Street West, MDCL 5029, Hamilton, Ontario L8N 3Z5, Canada
| | - Mohammed Almakadi
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Michael G. DeGroote School of Medicine, McMaster University, 1200 Main Street West, MDCL 5029, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Brian Leber
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Anargyros Xenocostas
- Department of Medicine, Division of Hematology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Mickie Bhatia
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Michael G. DeGroote School of Medicine, McMaster University, 1200 Main Street West, MDCL 5029, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
5
|
Chantzichristos VG, Gkrozou F, Stellos K, Paschopoulos ME, Tselepis AD. Comparative Anti-Platelet Profiling Reveals a Potent Anti-Aggregatory Effect of CD34+ Progenitor Cell-Derived Late-Outgrowth Endothelial Cells in vitro. J Vasc Res 2017; 55:13-25. [DOI: 10.1159/000481779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/23/2017] [Indexed: 02/01/2023] Open
|
6
|
Park HC, Son YB, Lee SL, Rho GJ, Kang YH, Park BW, Byun SH, Hwang SC, Cho IA, Cho YC, Sung IY, Woo DK, Byun JH. Effects of Osteogenic-Conditioned Medium from Human Periosteum-Derived Cells on Osteoclast Differentiation. Int J Med Sci 2017; 14:1389-1401. [PMID: 29200953 PMCID: PMC5707756 DOI: 10.7150/ijms.21894] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022] Open
Abstract
Stem/progenitor cell-based regenerative medicine using the osteoblast differentiation of mesenchymal stem cells (MSCs) is regarded as a promising approach for the therapeutic treatment of various bone defects. The effects of the osteogenic differentiation of stem/progenitor cells on osteoclast differentiation may have important implications for use in therapy. However, there is little data regarding the expression of osteoclastogenic proteins during osteoblastic differentiation of human periosteum-derived cells (hPDCs) and whether factors expressed during this process can modulate osteoclastogenesis. In the present study, we measured expression of RANKL in hPDCs undergoing osteoblastic differentiation and found that expression of RANKL mRNA was markedly increased in these cells in a time-dependent manner. RANKL protein expression was also significantly enhanced in osteogenic-conditioned media from hPDCs undergoing osteoblastic differentiation. We then isolated and cultured CD34+ hematopoietic stem cells (HSCs) from umbilical cord blood (UCB) mononuclear cells (MNCs) and found that these cells were well differentiated into several hematopoietic lineages. Finally, we co-cultured human trabecular bone osteoblasts (hOBs) with CD34+ HSCs and used the conditioned medium, collected from hPDCs during osteoblastic differentiation, to investigate whether factors produced during osteoblast maturation can affect osteoclast differentiation. Specifically, we measured the effect of this osteogenic-conditioned media on expression of osteoclastogenic markers and osteoclast cell number. We found that osteoclastic marker gene expression was highest in co-cultures incubated with the conditioned medium collected from hPDCs with the greatest level of osteogenic maturation. Although further study will be needed to clarify the precise mechanisms that underlie osteogenic-conditioned medium-regulated osteoclastogenesis, our results suggest that the osteogenic maturation of hPDCs could promote osteoclastic potential.
Collapse
Affiliation(s)
- Hyun-Chang Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Hoon Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - In-Ae Cho
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yeong-Cheol Cho
- Department of Oral and Maxillofacial Surgery, College of Medicine, Ulsan University Hospital, University of Ulsan, Ulsan, Republic of Korea
| | - Iel-Yong Sung
- Department of Oral and Maxillofacial Surgery, College of Medicine, Ulsan University Hospital, University of Ulsan, Ulsan, Republic of Korea
| | - Dong Kyun Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
7
|
Genetic Comparison of Stemness of Human Umbilical Cord and Dental Pulp. Stem Cells Int 2016; 2016:3453890. [PMID: 27087814 PMCID: PMC4819116 DOI: 10.1155/2016/3453890] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022] Open
Abstract
This study focuses on gene expression patterns and functions in human umbilical cord (UC) and dental pulp (DP) containing mesenchymal stem cells (MSCs). DP tissues were collected from 25 permanent premolars. UC tissue samples were obtained from three newborns. Comparative gene profiles were obtained using cDNA microarray analysis and the expression of tooth development-associated and MSC-related genes was assessed by the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Genes related to cell proliferation, angiogenesis, and immune responses were expressed at higher levels in UC, whereas genes related to growth factor and receptor activity and signal transduction were more highly expressed in DP. Although UC and DP tissues exhibited similar expression of surface markers for MSCs, UC showed higher expression of CD29, CD34, CD44, CD73, CD105, CD146, and CD166. qRT-PCR analysis showed that CD146, CD166, and MYC were expressed 18.3, 8.24, and 1.63 times more highly in UC, whereas the expression of CD34 was 2.15 times higher in DP. Immunohistochemical staining revealed significant differences in the expression of genes (DSPP, DMP1, and CALB1) related to odontogenesis and angiogenesis in DP. DP and UC tissue showed similar gene expression, with the usual MSC markers, while they clearly diverged in their differentiation capacity.
Collapse
|
8
|
Bakhashab S, Ahmed FW, Schulten HJ, Bashir A, Karim S, Al-Malki AL, Gari MA, Abuzenadah AM, Chaudhary AG, Alqahtani MH, Lary S, Ahmed F, Weaver JU. Metformin improves the angiogenic potential of human CD34⁺ cells co-incident with downregulating CXCL10 and TIMP1 gene expression and increasing VEGFA under hyperglycemia and hypoxia within a therapeutic window for myocardial infarction. Cardiovasc Diabetol 2016; 15:27. [PMID: 26861446 PMCID: PMC4748498 DOI: 10.1186/s12933-016-0344-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/26/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in patients with diabetes mellitus (DM). To identify the most effective treatment for CVD, it is paramount to understand the mechanism behind cardioprotective therapies. Although metformin has been shown to reduce CVD in Type-2 DM clinical trials, the underlying mechanism remains unexplored. CD34(+) cell-based therapies offer a new treatment approach to CVD. The aim of this study was to investigate the effect of metformin on the angiogenic properties of CD34(+) cells under conditions mimicking acute myocardial infarction in diabetes. METHODS CD34(+) cells were cultured in 5.5 or 16.5 mmol/L glucose ± 0.01 mmol/L metformin and then additionally ± 4 % hypoxia. The paracrine function of CD34(+) cell-derived conditioned medium was assessed by measuring pro-inflammatory cytokines, vascular endothelial growth factor A (VEGFA), and using an in vitro tube formation assay for angiogenesis. Also, mRNA of CD34(+) cells was assayed by microarray and genes of interest were validated by qRT-PCR. RESULTS Metformin increased in vitro angiogenesis under hyperglycemia-hypoxia and augmented the expression of VEGFA. It also reduced the angiogenic-inhibitors, chemokine (C-X-C motif) ligand 10 (CXCL10) and tissue inhibitor of metalloproteinase 1 (TIMP1) mRNAs, which were upregulated under hyperglycemia-hypoxia. In addition metformin, increased expression of STEAP family member 4 (STEAP4) under euglycemia, indicating an anti-inflammatory effect. CONCLUSIONS Metformin has a dual effect by simultaneously increasing VEGFA and reducing CXCL10 and TIMP1 in CD34(+) cells in a model of the diabetic state combined with hypoxia. Therefore, these angiogenic inhibitors are promising therapeutic targets for CVD in diabetic patients. Moreover, our data are commensurate with a vascular protective effect of metformin and add to the understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Fahad W Ahmed
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne, UK.
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Ayat Bashir
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Mamdooh A Gari
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Adel M Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed H Alqahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sahira Lary
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Jolanta U Weaver
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne, UK.
| |
Collapse
|
9
|
Topping it up: methods to improve cord blood transplantation outcomes by increasing the number of CD34+ cells. Cytotherapy 2015; 17:723-729. [PMID: 25791069 DOI: 10.1016/j.jcyt.2015.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/05/2015] [Indexed: 11/23/2022]
Abstract
Cord blood is increasingly recognized for its excellent stem cell potential, lenient matching criteria, instant availability and clinical behavior in transplants when cell dose criteria can be met. However with 1-2 log fewer total (stem cell) numbers in the graft compared with other cell sources, the infused cell dose per kilogram is critical for engraftment and outcome, creating the need for development of stem cell support platforms. The co-transplant platforms of haplo cord and double unit cord blood (DUCB) transplantation are aimed toward increasing stem cell dose. Together with the optimization of reduced-intensity protocols, long-term sustained engraftment using cord blood has become available to most patients, including elderly patients. Haplo cord has a low incidence of both acute and chronic graft-versus-host disease but may require anti-thymocyte globulin ATG for effective neutrophil recovery. DUCB can be performed without anti-thymocyte globulin with excellent immune reconstitution and disease-free survival, but engraftment is considerably slower, and graft-versus-host disease incidence significant. Both haplo-cord and DUCB transplantation appear to both be valid alternatives to matched unrelated donors in adults.
Collapse
|
10
|
Werner-Klein M, Proske J, Werno C, Schneider K, Hofmann HS, Rack B, Buchholz S, Ganzer R, Blana A, Seelbach-Göbel B, Nitsche U, Männel DN, Klein CA. Immune humanization of immunodeficient mice using diagnostic bone marrow aspirates from carcinoma patients. PLoS One 2014; 9:e97860. [PMID: 24830425 PMCID: PMC4022674 DOI: 10.1371/journal.pone.0097860] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/24/2014] [Indexed: 01/18/2023] Open
Abstract
Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs) from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null) (NSG) and HLA-I expressing NSG mice (NSG-HLA-A2/HHD) comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses.
Collapse
Affiliation(s)
| | - Judith Proske
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Christian Werno
- Project Group Personalized Tumor Therapy, Fraunhofer Institute of Toxicology and Experimental Medicine, Regensburg, Germany
| | - Katharina Schneider
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | | | - Brigitte Rack
- Department of Gynecology and Obstetrics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Buchholz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Roman Ganzer
- Department of Urology, University of Leipzig, Leipzig, Germany
| | - Andreas Blana
- Department of Urology, Fuerth Hospital, Fuerth, Germany
| | - Birgit Seelbach-Göbel
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Ulrich Nitsche
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Daniela N. Männel
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Christoph A. Klein
- Project Group Personalized Tumor Therapy, Fraunhofer Institute of Toxicology and Experimental Medicine, Regensburg, Germany
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Wallet HL, Sobh M, Morisset S, Robin M, Fegueux N, Fürst S, Mohty M, Deconinck E, Fouillard L, Bordigoni P, Rio B, Sirvent A, Renaud M, Dhedin N, Tabrizi R, Maury S, Buzyn A, Michel G, Maillard N, Cahn JY, Bay JO, Yakoub-Agha I, Huynh A, Schmidt-Tanguy A, Lamy T, Lioure B, Raus N, Marry E, Garnier F, Balère ML, Gluckman E, Rocha V, Socié G, Blaise D, Milpied N, Michallet M. Double umbilical cord blood transplantation for hematological malignancies: a long-term analysis from the SFGM-TC registry. Exp Hematol 2013; 41:924-33. [PMID: 23831606 DOI: 10.1016/j.exphem.2013.05.297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/23/2013] [Accepted: 05/25/2013] [Indexed: 01/10/2023]
Abstract
Allogeneic hematopoietic stem cell (HSC) transplantation is a curative treatment for many hematologic malignancies for which umbilical cord blood (UCB) represents an alternative source of HSCs. To overcome the low cellularity of one UCB unit, double UCB transplantation (dUCBT) has been developed in adults. We have analyzed the outcome of 136 patients who underwent dUCBT reported to the SFGM-TC registry between 2005 and 2007. Forty-six patients received myeloablative regimens, and 90 patients received reduced-intensity conditioning regimens. There were 84 cases of leukemia, 17 cases of non-Hodgkin lymphoma, 11 cases of myeloma, and 24 other hematologic malignancies. At transplantation, 40 (29%) patients were in complete remission. At day 60 after transplantation, the cumulative incidence of neutrophil recovery was 91%. We observed one UCB unit domination in 88% of cases. The cumulative incidence of day 100 acute graft-versus-host disease, chronic graft-versus-host disease, transplant-related mortality, and relapse at 2 years were 36%, 23%, 27%, and 28% respectively. After a median follow-up of 49.5 months, the 3-year probabilities of overall and progression-free survival were 41% and 35%, respectively, with a significant overall survival advantage when male cord engrafted male recipients. We obtained a long-term plateau among patients in complete remission, which makes dUCBT a promising treatment strategy for these patients.
Collapse
|
12
|
Karlsson C, Baudet A, Miharada N, Soneji S, Gupta R, Magnusson M, Enver T, Karlsson G, Larsson J. Identification of the chemokine CCL28 as a growth and survival factor for human hematopoietic stem and progenitor cells. Blood 2013; 121:3838-42, S1-15. [PMID: 23509159 DOI: 10.1182/blood-2013-02-481192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In an attempt to discover novel growth factors for hematopoietic stem and progenitor cells (HSPCs), we have assessed cytokine responses of cord blood (CB)-derived CD34(+) cells in a high-content growth factor screen. We identify the immunoregulatory chemokine (C-C motif) ligand 28 (CCL28) as a novel growth factor that directly stimulates proliferation of primitive hematopoietic cells from different ontogenetic origins. CCL28 enhances the functional progenitor cell content of cultured cells by stimulating cell cycling and induces gene expression changes associated with survival. Importantly, addition of CCL28 to cultures of purified putative hematopoietic stem cells (HSCs) significantly increases the ability of the cells to long-term repopulate immunodeficient mice compared with equivalent input numbers of fresh cells. Together, our findings identify CCL28 as a potent growth-promoting factor with the ability to support the in vitro and in vivo functional properties of cultured human hematopoietic cells.
Collapse
Affiliation(s)
- Christine Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lawal RA, Calvi LM. The niche as a target for hematopoietic manipulation and regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:415-22. [PMID: 21902610 DOI: 10.1089/ten.teb.2011.0197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs), rare primitive cells capable of reconstituting all blood cell lineages, are the only stem cells currently routinely used for therapeutic purposes. Clinical experience has shown that HSC number is an important limiting factor in treatment success. Strategies to expand HSCs are of great clinical appeal, as they would improve therapeutic use of these cells in stem cell transplantation and in conditions of bone marrow failure. The microenvironment in which HSCs reside, known as the niche, has long been considered a critical regulator of HSCs. Data accumulated over the past decade strongly confirm the importance of the niche in HSC behavior. A number of niche components as well as signaling pathways, such as Notch, have been implicated in the interaction of the microenvironment with HSCs and continue to be genetically evaluated in the hope of defining the critical elements that are required and which, if modified, can initiate HSC behaviors. In this review, we highlight the known characteristics of HSCs, challenges in their expansion, the niche phenomenon, and explain why niche stimulated HSC expansion is of utmost interest in the field, while beginning to bring to the fore potential caveats of niche manipulation. Lastly, the potential pitfalls of avoiding malignancy and controlling self-renewal versus differentiation will be briefly reviewed.
Collapse
|
14
|
Abstract
Despite progress in our understanding of the growth factors that support the progressive maturation of the various cell lineages of the hematopoietic system, less is known about factors that govern the self-renewal of hematopoietic stem and progenitor cells (HSPCs), and our ability to expand human HSPC numbers ex vivo remains limited. Interest in stem cell expansion has been heightened by the increasing importance of HSCs in the treatment of both malignant and nonmalignant diseases, as well as their use in gene therapy. To date, most attempts to ex vivo expand HSPCs have used hematopoietic growth factors but have not achieved clinically relevant effects. More recent approaches, including our studies in which activation of the Notch signaling pathway has enabled a clinically relevant ex vivo expansion of HSPCs, have led to renewed interest in this arena. Here we briefly review early attempts at ex vivo expansion by cytokine stimulation followed by an examination of our studies investigating the role of Notch signaling in HSPC self-renewal. We will also review other recently developed approaches for ex vivo expansion, primarily focused on the more extensively studied cord blood-derived stem cell. Finally, we discuss some of the challenges still facing this field.
Collapse
|
15
|
Frecha C, Fusil F, Cosset FL, Verhoeyen E. In vivo gene delivery into hCD34+ cells in a humanized mouse model. Methods Mol Biol 2011; 737:367-90. [PMID: 21590405 DOI: 10.1007/978-1-61779-095-9_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vivo targeted gene delivery to hematopoietic stem cells (HSCs) would mean a big step forward in the field of gene therapy. This would imply that the risk of cell differentiation and loss of homing/-engraftment is reduced, as there is no need for purification of the target cell. In vivo gene delivery also bypasses the issue that no precise markers that permit the isolation of a primitive hHSC exist up to now. Indeed, in vivo gene transfer could target all HSCs in their stem-cell niche, including those cells that are "missed" by the purification criteria. Moreover, for the majority of diseases, there is a requirement of a minimal number of gene-corrected cells to be reinfused to allow an efficient long-term engraftment. This requisite might become a limiting factor when treating children with inherited disorders, due to the low number of bone marrow (BM) CD34(+) HSCs that can actually be isolated. These problems could be overcome by using efficient in vivo HSC-specific lentiviral vectors (LVs). Additionally, vectors for in vivo HSC transduction must be specific for the target cell, to avoid vector spreading while enhancing transduction efficiency. Of importance, a major barrier in LV transduction of HSCs is that 75% of HSCs are residing in the G0 phase of the cell cycle and are not very permissive for classical VSV-G-LV transduction. Therefore, we engineered "early-activating-cytokine (SCF or/and TPO)" displaying LVs that allowed a slight and transient stimulation of hCD34(+) cells resulting in efficient lentiviral gene transfer while preserving the "stemness" of the targeted HSCs. The selective transduction of HSCs by these vectors was demonstrated by their capacity to promote selective transduction of CD34(+) cells in in vitro-derived, long-term culture-initiating cell colonies and long-term NOD/SCID repopulating cells. A second generation of these "early-acting-cytokine"-displaying lentiviral vectors has now been developed that is fit for targeted in vivo gene delivery to hCD34(+) cells. In the method presented here, we describe the in vivo gene delivery into hCD34(+) cells by intramarrow injection of these new vectors into humanized BALB/c Rag2( null )/IL2rgc ( null ) (BALB/c RAGA) mice.
Collapse
Affiliation(s)
- Cecilia Frecha
- Human Virology Department, INSERM U758, Ecole Normale Supérieure de Lyon, and Université de Lyon 1, Lyon, France
| | | | | | | |
Collapse
|
16
|
O E, Lee BH, Ahn HY, Shin JC, Kim HK, Kim M, Park IY, Park YG, Joe YA. Efficient nonadhesive ex vivo expansion of early endothelial progenitor cells derived from CD34+ human cord blood fraction for effective therapeutic vascularization. FASEB J 2010; 25:159-69. [PMID: 20852063 DOI: 10.1096/fj.10-162040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial progenitor cells (EPCs) have been shown to have therapeutic potential in ischemic disease. However, the number of EPCs for cell therapy is limited. In this study, instead of the typical adherent culture method, we investigated a more efficient, clinically applicable nonadhesive expansion method for early EPCs using cord blood-derived cells to overcome rapid cellular senescence. After a suspension culture of isolated CD34(+) cells in serum-free medium containing each cytokine combination was maintained for 9 d, the number of expanded functional EPCs was assessed by an adherent culture assay. Compared to mononuclear cells, the CD34(+) fraction was superior in its expansion of functional EPCs that could differentiate into acLDL/UEA-1(+) cells without significant cellular senescence, whereas the CD34(-) fraction showed no EPC expansion. Among the cytokine combinations tested for the CD34(+) fraction, a combination (SFIb) consisting of stem cell factor (SCF), FMS-like tyrosine kinase 3 ligand, interleukin-3, and basic fibroblast growth factor resulted in a reproducible 64- to 1468-fold EPC expansion from various cord blood origins. Interestingly, the SFIb combination displayed markedly increased EPC expansion (2.43-fold), with a higher percentage of CD34(+) cells (2.17-fold), undifferentiated blasts (2.38-fold) and CXCR4(+) cells (1.68-fold) compared to another cytokine combination (SCF, thrombopoietin, and granulocyte colony-stimulating factor), although the two cytokine combinations had a similar level of total mononucleated cell expansion (∼ 10% difference). Accordingly, the cells expanded in the SFIb combination were more effective in recovery of blood flow and neovascularization in hind-limb ischemia in vivo. Taken together, these results suggest that the nonadhesive serum-free culture conditions of the CD34(+) fraction provide an effective EPC expansion method for cell therapy, and an expansion condition leading to high percentages of CD34(+) cells and blasts is likely important in EPC expansion.
Collapse
Affiliation(s)
- Eunju O
- Cancer Research Institute, Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Banpo-dong 505, Seocho-ku, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
[Allogeneic cord blood transplantation for adults: current results and future development]. Bull Cancer 2009; 97:137-48. [PMID: 20018584 DOI: 10.1684/bdc.2009.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hematopoietic stem cell transplantation is the choice treatment of many hematopoietic disorders. However, there is still no related or HLA-matched unrelated donor for one-third of the patients. Cord blood, which contains a lot of hematopoietic progenitors immunologically naive, represents not only an interesting alternative as hematopoietic stem cell source but also allows more HLA incompatibilities than the other sources. Promising results in children lead to develop cord blood transplantation in adults first of all in hematopoietic malignancies (acute leukemias and lymphoid diseases) and in a second time, in non-malignant diseases such as aplastic anaemia. The main problems for the development of this new strategy in adults are the poor number of cells per unit, the delay for hematopoietic recovery in comparison with other hematopoietic stem cell sources and, consequently higher transplant related mortality. In order to improve the results in adults, new strategies emerged. Double cord blood transplantation, expansion methods and intra-bone injection of the graft will be reviewed here, as well as alternative transplantation strategies such as non-myeloablative conditioning.
Collapse
|
18
|
Lin H, De Stanchina E, Zhou XK, She Y, Hoang D, Cheung SW, Cassileth B, Cunningham-Rundles S. Maitake beta-glucan enhances umbilical cord blood stem cell transplantation in the NOD/SCID mouse. Exp Biol Med (Maywood) 2009; 234:342-53. [PMID: 19144872 DOI: 10.3181/0807-rm-226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Beta glucans are cell wall constituents of yeast, fungi and bacteria, as well as mushrooms and barley. Glucans are not expressed on mammalian cells and are recognized as pathogen-associated molecular patterns (PAMPS) by pattern recognition receptors (PRR). Beta glucans have potential activity as biological response modifiers for hematopoiesis and enhancement of bone marrow recovery after injury. We have reported that Maitake beta glucan (MBG) enhanced mouse bone marrow (BMC) and human umbilical cord blood (CB) cell granulocyte-monocyte colony forming unit (GM-CFU) activity in vitro and protected GM-CFU forming stem cells from doxorubicin (DOX) toxicity. The objective of this study was to determine the effects of MBG on expansion of phenotypically distinct subpopulations of progenitor and stem cells in CB from full-term infants cultured ex vivo and on homing and engraftment in vivo in the nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse. MBG promoted a greater expansion of CD34+CD33+CD38- human committed hematopoietic progenitor (HPC) cells compared to the conventional stem cell culture medium (P = 0.002 by ANOVA). CD34+CXCR4+CD38- early, uncommitted human hematopoietic stem cell (HSC) numbers showed a trend towards increase in response to MBG. The fate of CD34+ enriched CB cells after injection into the sublethally irradiated NOS/SCID mouse was evaluated after retrieval of xenografted human CB from marrow and spleen by flow cytometric analysis. Oral administration of MBG to recipient NOS/SCID mice led to enhanced homing at 3 days and engraftment at 6 days in mouse bone marrow (P = 0.002 and P = 0.0005, respectively) compared to control mice. More CD34+ human CB cells were also retrieved from mouse spleen in MBG treated mice at 6 days after transplantation. The studies suggest that MBG promotes hematopoiesis through effects on CD34+ progenitor cell expansion ex vivo and when given to the transplant recipient could enhance CD34+ precursor cell homing and support engraftment.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pediatrics, Cornell University Weill Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bernard D, Peakman M, Hayday AC. Establishing humanized mice using stem cells: maximizing the potential. Clin Exp Immunol 2008; 152:406-14. [PMID: 18435804 DOI: 10.1111/j.1365-2249.2008.03659.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Studies on physiology and pathology as they relate to the immune system draw heavily upon rodent models. With the increasing impetus provided by initiatives in translational medicine, the demand for ever more sophisticated, 'humanized' murine models is greater than ever. However, the design and implementation of studies in such mice is far from trivial. Here we provide a technical perspective on the increasing interest in developing humanized mice. We give examples of primary data starting with the routine procurement of human donor material, through CD34(+) cell purification prior to engraftment to injection into immunocompromised mice. Our goal is to provide practical advice to the many investigators who may be commencing or considering such studies.
Collapse
Affiliation(s)
- D Bernard
- King's College London, Department of Immunobiology, London, UK
| | | | | |
Collapse
|
20
|
Newman PJ, Aster R, Boylan B. Human platelets circulating in mice: applications for interrogating platelet function and survival, the efficacy of antiplatelet therapeutics, and the molecular basis of platelet immunological disorders. J Thromb Haemost 2007; 5 Suppl 1:305-9. [PMID: 17635741 DOI: 10.1111/j.1538-7836.2007.02466.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we describe a novel animal model for examining the survival and function of human platelets following their circulation in non-obese diabetic/severe combined immunodeficient mice. Resting human platelets in platelet-rich plasma are introduced into the retro-orbital plexus, where they are absorbed with high efficiency and circulate for up to 2 days, comprising 10-20% of total circulating platelets. During this period of time, the human platelets can be exposed to a number of biochemical and immunochemical reagents, including novel antithrombotic compounds, or human antiplatelet antibodies that have been implicated in platelet destruction, activation or clearance. Platelets can also be subjected to a variety of storage conditions before infusion, and their relative survival and function following storage and circulation compared. The ability to evaluate in living mice the in vivo function and survival of circulating human platelets may prove valuable for determining mechanisms of antibody-mediated platelet passivation, and aid in the development of novel antiplatelet therapeutics.
Collapse
Affiliation(s)
- P J Newman
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201, USA.
| | | | | |
Collapse
|
21
|
Zlatev A, Mihaylova A, Baltadjieva D, Ivanova M, Naumova E. Cord blood stem cell transplantation. Why it is necessary to establish a Bulgarian cord blood bank? Cell Tissue Bank 2007; 9:343-6. [PMID: 17546431 DOI: 10.1007/s10561-007-9045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
The allogenic transplantation of hemopoietic stem cell from bone marrow and peripheral blood is limited due to the necessity to identify HLA matched donor within the family or in bone marrow donor registries. Although, more than 10 million donors are available worldwide, completely HLA matched donors could be found only for 75% of the patients. It is well known that transplantations of hematopoietic stem cell from cord blood are characterized with a lower risk of GvHD and therefore do not require so strict criteria for HLA matching, and less time for search of matched donor is needed. The necessity to establish a National cord blood bank in Bulgaria is emphasized further by the heterogeneity of HLA allele and haplotype distribution in the Bulgarian population. That could be explained by the ethnic diversity of the population. As a result some alleles are more frequent in Bulgarians compared to other populations. The organization, accreditation, and development of a strategy for a National cord blood bank will be discussed.
Collapse
Affiliation(s)
- Asen Zlatev
- Central Laboratory of Clinical Immunology, University Hospital Alexandrovska, Sofia, 1431, Bulgaria
| | | | | | | | | |
Collapse
|
22
|
Brenner S, Ryser MF, Whiting-Theobald NL, Gentsch M, Linton GF, Malech HL. The late dividing population of gamma-retroviral vector transduced human mobilized peripheral blood progenitor cells contributes most to gene-marked cell engraftment in nonobese diabetic/severe combined immunodeficient mice. Stem Cells 2007; 25:1807-13. [PMID: 17464090 DOI: 10.1634/stemcells.2006-0581] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We used the nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model to assess the repopulation potential of subpopulations of mobilized human CD34+ peripheral blood progenitor cells (PBPC). First, PBPC were transduced with gamma-retrovirus vector RD114-MFGS-CFP, which requires cell division for successful transduction, at 24 hours, 48 hours, and 72 hours to achieve 96% cyan fluorescent protein (CFP)-positive cells. Cells were sorted 12 hours after the last transduction into CFP-positive (divided cells) and CFP-negative populations. CFP-positive cells were transplanted postsort, whereas the CFP-negative cells were retransduced and injected at 120 hours. The CFP-negative sorted and retransduced cells contained markedly fewer vector copies and resulted in a 32-fold higher overall engraftment and in a 13-fold higher number of engrafted transgene positive cells. To assess cell proliferation as an underlying cause for the different engraftment levels, carboxyfluorescein succinimidyl ester-labeling of untransduced PBPC was performed to track the number of cell divisions. At 72 hours after initiation of culture, when 95% of all cells have divided, PBPC were sorted into nondivided and divided fractions and transplanted into NOD/SCID mice. Nondivided cells demonstrated 45-fold higher engraftment than divided cells. Late dividing PBPC in ex vivo culture retain high expression of the stem cell marker CD133, whereas rapidly proliferating cells lose CD133 in correlation to the number of cell divisions. Our studies demonstrate that late dividing progenitors transduced with gamma-retroviral vectors contribute most to NOD/SCID engraftment and transgene marking. Confining the gamma-retroviral transduction to CD133-positive cells on days 3 and 4 could greatly reduce the number of transplanted vector copies, limiting the risk of leukemia from insertional mutagenesis. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Sebastian Brenner
- Laboratory of Host Defences, National Institute of Allergy and Infectious Diseases, National Institute of health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Hwang WYK, Samuel M, Tan D, Koh LP, Lim W, Linn YC. A Meta-Analysis of Unrelated Donor Umbilical Cord Blood Transplantation versus Unrelated Donor Bone Marrow Transplantation in Adult and Pediatric Patients. Biol Blood Marrow Transplant 2007; 13:444-53. [PMID: 17382250 DOI: 10.1016/j.bbmt.2006.11.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 11/01/2006] [Indexed: 12/28/2022]
Abstract
Several studies have compared the results of unrelated donor bone marrow transplantation (UBMT) and unrelated donor cord blood transplantation (UCBT). To objectively analyze these data, we performed a systematic review and meta-analysis of pooled data on comparative studies of UCBT and UBMT in patients requiring hematopoietic stem cell transplantation. Combining the studies, 161 children and 316 adults undergoing UCBT (mostly 1 or 2 antigen-mismatched), along with 316 children and 996 adults undergoing UBMT (almost entirely fully matched with the recipient), were analyzed. T-cell-depleted UBMT was excluded; where data were available, only fully matched UBMT was used in the analysis. Pooled comparisons of studies of UCBT and UBMT in children found that the incidence of chronic graft-versus-host disease (GVHD) was lower with UCBT (relative risk [RR] = 0.26; 95% confidence interval [CI] = 0.12-0.57; P = .16), but the incidence of grade III-IV acute GVHD did not differ (RR = 1.46; 95% CI = 0.42-5.03; P = .55). There was no difference in 2-year OS in children when studies were pooled (RR = 0.76; 95% CI = 0.31-1.87; P = .55). For adults, transplantation-related mortality (pooled estimate, 1.04; 95% CI = 0.52-2.08; P = .91) and disease-free survival (DFS) (pooled estimate, 0.59; 95% CI = 0.18-1.96; P = .39) were not statistically different. Because of the unavailability of randomized controlled trials, pooled analysis of nonrandomized comparative studies was performed. Thus, our meta-analysis confirmed that UCBT in children and adults had consistently equivalent survival outcomes compared with UBMT despite greater donor-recipient HLA disparity with UCBT.
Collapse
Affiliation(s)
- William Ying Khee Hwang
- Department of Hematology, Singapore General Hospital, Outram Road, Singapore 169608, Republic of Singapore.
| | | | | | | | | | | |
Collapse
|
24
|
Hemmoranta H, Hautaniemi S, Niemi J, Nicorici D, Laine J, Yli-Harja O, Partanen J, Jaatinen T. Transcriptional Profiling Reflects Shared and Unique Characters for CD34+and CD133+Cells. Stem Cells Dev 2006; 15:839-51. [PMID: 17253947 DOI: 10.1089/scd.2006.15.839] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD34 and CD133 are the most commonly used markers to enrich hematopoietic stem cells (HSCs). Positively selected HSCs are increasingly used for autologous and allogeneic transplantation, yet the biological properties of CD34(+) and CD133(+) cells are largely unknown. In the present study, a genome-wide gene expression analysis of human cord blood (CB)-derived CD34(+) cells was performed. The CD34(+) gene expression profile was compared to an identically constructed CD133(+) gene expression profile to reveal the specific expression patterns and major differences of CD34(+) and CD133(+) cells. As expected, many genes were similarly expressed in the two cell populations, but cell-type-specific gene expression was also demonstrated. Self-organizing map analysis was used to identify transcripts having similar expression patterns, and the results were compared between CD34(+) and CD133(+) cells. Also, a prioritization algorithm was used to rank the genes best separating CD34(+) and CD133(+) cells from their CD34() and CD133() counterparts in CB. Our results show that CD133(+) cells have higher numbers of up-regulated genes than CD34(+) cells. Furthermore, the uniquely expressed genes in CD34(+) or CD133(+) cell populations were associated with different biological processes. CD34(+) cells overexpressed many transcripts associated with development and response to stress or external stimuli. In CD133(+) cells, the most significantly represented biological processes were establishment and maintenance of chromatin architecture, DNA metabolism, and cell cycle. The differences between the gene expression profiles of CD34(+) and CD133(+) cells indicate the more primitive nature of CD133(+) cells. These profiles suggest that CD34(+) and CD133(+) cells may have different roles in hematopoietic regeneration.
Collapse
Affiliation(s)
- Heidi Hemmoranta
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Su ZJ, Chen HB, Zhang JK, Xu L. Effects of dendritic cells from cord blood CD34 + cells on human hepatocarcinoma cell line BEL-7402 in vitro and in SCID mice. World J Gastroenterol 2005; 11:2502-7. [PMID: 15832426 PMCID: PMC4305643 DOI: 10.3748/wjg.v11.i16.2502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a cancer vaccine of dendritic cells derived from human cord blood CD34+ cells and to investigate its cytotoxicity on human hepatocarcinoma cells in vitro and in sever combined immunodeficiency (SCID) mice.
METHODS: Lymphocytes from cord blood or peripheral blood were primed by DCs, which were derived from cord blood and pulsed with whole tumor cell lysates. Nonradiative neutral red uptake assay was adopted to detect the cytotoxicity of primed lymphocytes on human hepatocarcinoma cell line BEL-7402 in vitro. The anti-tumor effect of primed lymphocytes in vivo was detected in SCID mice, including therapeutic effect and vaccination effect.
RESULTS: The cytotoxicity of DC vaccine primed lymphocytes from cord blood or peripheral blood on human hepatoc-arcinoma cell line BEL-7402 was significantly higher than that of unprimed lymphocytes in vitro (44.09% vs 14.69%, 47.92% vs 19.44%, P<0.01). There was no significant difference between the cytotoxicity of primed lymphocytes from cord blood and peripheral blood (P>0.05). The tumor growth rate and tumor size were smaller in SCID mice treated or vaccinated with primed lymphocytes than those with unprimed lymphocytes. SCID mice vaccinated with primed lymphocytes had a lower tumor incidence (80% vs 100%, P<0.05) and delayed tumor latent period compared with mice vaccinated with unprimed lymphocytes (11 d vs 7 d, P<0.01).
CONCLUSION: Vaccine of cord blood derived-DCs has an inhibitory activity on growth of human hepatocarcinoma cells in vitro and in SCID mice. The results also implicate the potential role of cord blood derived-DC vaccine in clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Zhong-Jing Su
- Cancer Pathology Laboratory, Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | | | | | | |
Collapse
|
26
|
Yuan R, Astle CM, Chen J, Harrison DE. Genetic regulation of hematopoietic stem cell exhaustion during development and growth. Exp Hematol 2005; 33:243-50. [PMID: 15676219 DOI: 10.1016/j.exphem.2004.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 10/21/2004] [Indexed: 11/16/2022]
Abstract
OBJECTIVE During aging, hematopoietic stem cell (HSC) exhaustion is more severe in BALB/cByJ (BALB) mice than in C57BL/6J (B6) mice. Our objective is to determine whether HSC exhaustion during development from fetus to adult also is more severe for BALB than for B6 mice. MATERIALS AND METHODS Hematopoietic stem cells from fetal liver cells (FLCs) and from young adult bone marrow cells (BMCs) were compared using the competitive repopulation assay to measure long-term repopulating ability (LTRA) and HSC expansion after serial transplantation. LTRAs were measured in repopulating units (RU), as the ability to produce donor-type erythrocytes and lymphocytes in lethally irradiated recipients relative to the congenic fresh marrow competitor. To test expansion, FLCs or BMCs were serially transplanted into lethally irradiated carriers whose marrow cells were compared using fluorescence-activated cell staining (FACS), and subsequently tested for LTRA. RESULTS BALB and B6 FLCs, respectively, repopulated 2.6 and 13.5 times as well as BMCs. LTRAs correlated with HSC expansion for BALB, but not B6. Per million donor cells, CD34(-) HSC-enriched fractions (HEFs) and total RU values were 6.8 and 4.6 times higher for FLCs than for BMCs in BALB carriers, while these ratios were only 1.2 and 0.97 higher in B6 carriers. CONCLUSION In B6 HSC development, LTRA is dissociated from expansion. Although 1 x 10(6) BMCs have much lower LTRA, they expand HSCs as well as 1 x 10(6) FLCs. HSC expansion is partly exhausted in BALB, but not B6, during development.
Collapse
Affiliation(s)
- Rong Yuan
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Cord blood (CB) has served as a clinically beneficial source of hematopoietic stem (HSC) and progenitor (HPC) cells for transplantation and correction of a large number of malignant and non-malignant disorders. The capacity of CB to perform these functions is intimately related to the quality and quantity of HSC and HPC present in CB. This review covers the biology of HSC and HPC, efforts to expand these cells ex vivo for enhanced clinical utility that has thus far not been very successful, and recent studies on attempts to enhance the homing and engrafting capability of HSC as an alternative means for more effective use of the limited numbers of CB cells collected. This review also highlights the presence in CB of mesenchymal stem cells, unrestricted somatic stem cells, endothelial progenitor cells and immune cells. The presence and biology of these non-HSC/HPC may open up future possibilities for additional clinical benefit of CB, a product considered mainly for discard before its clinical transplantation potential was realized in the late 1980s.
Collapse
Affiliation(s)
- H E Broxmeyer
- Department of Microbiology and Immunology, and the Walther Oncology Center, Indiana univrsity School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Pesce M, Orlandi A, Iachininoto MG, Straino S, Torella AR, Rizzuti V, Pompilio G, Bonanno G, Scambia G, Capogrossi MC. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 2003; 93:e51-62. [PMID: 12919944 DOI: 10.1161/01.res.0000090624.04507.45] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human umbilical cord blood (UCB) contains high numbers of endothelial progenitors cells (EPCs) characterized by coexpression of CD34 and CD133 markers. Prior studies have shown that CD34+/CD133+ EPCs from the cord or peripheral blood (PB) can give rise to endothelial cells and induce angiogenesis in ischemic tissues. In the present study, it is shown that freshly isolated human cord blood CD34+ cells injected into ischemic adductor muscles gave rise to endothelial and, unexpectedly, to skeletal muscle cells in mice. In fact, the treated limbs exhibited enhanced arteriole length density and regenerating muscle fiber density. Under similar experimental conditions, CD34- cells did not enhance the formation of new arterioles and regenerating muscle fibers. In nonischemic limbs CD34+ cells increased arteriole length density but did not promote formation of new muscle fibers. Endothelial and myogenic differentiation ability was maintained in CD34+ cells after ex vivo expansion. Myogenic conversion of human cord blood CD34+ cells was also observed in vitro by coculture onto mouse myoblasts. These results show that human cord blood CD34+ cells differentiate into endothelial and skeletal muscle cells, thus providing an indication of human EPCs plasticity. The full text of this article is available online at http://www.circresaha.org.
Collapse
Affiliation(s)
- Maurizio Pesce
- Laboratorio di Biologia Vascolare e Terapia Genica, Centro Cardiologico Monzino, IRCCS, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wada M, Ebihara Y, Ma F, Yagasaki H, Ito M, Takahashi T, Mugishima H, Takahashi S, Tsuji K. Tunica interna endothelial cell kinase expression and hematopoietic and angiogenic potentials in cord blood CD34+ cells. Int J Hematol 2003; 77:245-52. [PMID: 12731667 DOI: 10.1007/bf02983781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Tunica interna endothelial cell kinase (TEK) is expressed in both hematopoietic and endothelial cells and plays a crucial role in hematopoiesis and angiogenesis in mouse development. In humans, however, little is known about the hematopoietic and angiogenic potentials of TEK-expressing cells in umbilical cord blood (CB) cells, which originate during the human fetal period. We therefore compared the hematopoietic and angiogenic abilities of CB CD34+TEK+ and CD34+TEK- cells by using a clonogenic assay and xenotransplantation into immunodeficient NOD/SCID mice. The results showed that colony-forming cells and cells capable of repopulating in NOD/SCID mice were present in both CD34+TEK+ and CD34+TEK- cells and that the hematopoietic activities of the cell types were similar. In contrast, the potential to differentiate into endothelial cells in vivo was greater in the CD34+TEK+ cells. All NOD/SCID mice engrafted with CD34+TEK+ cells had human CD31-expressing and VE-cadherin-expressing endothelial cells in the vessels of the ischemic muscles and/ or human endothelial cells expressing CD31, kinase-insert domain-containing receptor, and endothelial nitric oxide synthase in liver sinusoidal cells, whereas such endothelial cells were detected in only 3 of the 7 recipients engrafted with CD34+TEK- cells. This result has important implications in cell therapy using CB cells for treating hematopoietic disorders and vascular diseases.
Collapse
Affiliation(s)
- Mika Wada
- Department of Pediatrics, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bracci-Laudiero L, Celestino D, Starace G, Antonelli A, Lambiase A, Procoli A, Rumi C, Lai M, Picardi A, Ballatore G, Bonini S, Aloe L. CD34-positive cells in human umbilical cord blood express nerve growth factor and its specific receptor TrkA. J Neuroimmunol 2003; 136:130-9. [PMID: 12620652 DOI: 10.1016/s0165-5728(03)00007-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, we investigated whether hematopoietic stem cells (HSC) and progenitors present in human cord blood can express nerve growth factor (NGF)-specific receptors, TrkA and p75. Our results showed a marked expression of TrkA and NGF in cord blood CD34(+) cells. A gradient of TrkA and NGF expression exists and is highest in cord blood CD34(+) cells, reduced in cord blood mononuclear cells (MNC) and minimal in mononuclear cells isolated from adult peripheral blood. Our findings suggest that NGF may play a role in the differentiation of hematopoietic progenitors and indicate a different requirement for NGF by immune cells, depending on their state of maturity.
Collapse
MESH Headings
- Adult
- Antigens, CD34/immunology
- Cell Differentiation/immunology
- Fetal Blood/cytology
- Fetal Blood/immunology
- Flow Cytometry
- Fluorescent Antibody Technique
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Humans
- Infant, Newborn
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Middle Aged
- Nerve Growth Factor/genetics
- Nerve Growth Factor/metabolism
- RNA, Messenger/metabolism
- Receptor, Nerve Growth Factor
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
Collapse
Affiliation(s)
- Luisa Bracci-Laudiero
- Institute of Neurobiology and Molecular Medicine, CNR, Viale Marx 15/43, 00137 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Roesler J, Brenner S, Bukovsky AA, Whiting-Theobald N, Dull T, Kelly M, Civin CI, Malech HL. Third-generation, self-inactivating gp91(phox) lentivector corrects the oxidase defect in NOD/SCID mouse-repopulating peripheral blood-mobilized CD34+ cells from patients with X-linked chronic granulomatous disease. Blood 2002; 100:4381-90. [PMID: 12393624 DOI: 10.1182/blood-2001-12-0165] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HIV-1-derived lentivectors are promising for gene transfer into hematopoietic stem cells but require preclinical in vivo evaluation relevant to specific human diseases. Nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice accept human hematopoietic stem cell grafts, providing a unique opportunity for in vivo evaluation of therapies targeting human hematopoietic diseases. We demonstrate for the first time that hematopoietic stem cells from patients with X-linked chronic granulomatous disease (X-CGD) give rise to X-CGD-phenotype neutrophils in the NOD/SCID model that can be corrected using VSV-G-pseudotyped, 3rd-generation, self-inactivating (SIN) lentivector encoding gp91(phox). We transduced X-CGD patient-mobilized CD34(+) peripheral blood stem cells (CD34(+)PBSCs) with lentivector-gp91(phox) or amphotropic oncoretrovirus MFGS-gp91(phox) and evaluated correction ex vivo and in vivo in NOD/SCID mice. Only lentivector transduced CD34(+)PBSCs under ex vivo conditions nonpermissive for cell division, but both vectors performed best under conditions permissive for proliferation (multiple growth factors). Under the latter conditions, lentivector and MFGS achieved significant ex vivo correction of X-CGD CD34(+)PBSCs (18% and 54% of cells expressing gp91(phox), associated with 53% and 163% of normal superoxide production, respectively). However, lentivector, but not MFGS, achieved significant correction of human X-CGD neutrophils arising in vivo in NOD/SCID mice that underwent transplantation (20% and 2.4%, respectively). Thus, 3rd-generation SIN lentivector-gp91(phox) performs well as assessed in human X-CGD neutrophils differentiating in vivo, and our studies suggest that the NOD/SCID model is generally applicable for in vivo study of therapies evaluated in human blood cells expressing a specific disease phenotype.
Collapse
Affiliation(s)
- Joachim Roesler
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1886, USA
| | | | | | | | | | | | | | | |
Collapse
|