1
|
Tsai K, Tullis B, Jensen T, Graff T, Reynolds P, Arroyo J. Differential expression of mTOR related molecules in the placenta from gestational diabetes mellitus (GDM), intrauterine growth restriction (IUGR) and preeclampsia patients. Reprod Biol 2021; 21:100503. [PMID: 33826986 DOI: 10.1016/j.repbio.2021.100503] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
The mechanistic target of rapamycin (mTOR) pathway is involved in the function and growth of the placenta during pregnancy. The mTOR pathway responds to nutrient availability and growth factors that regulate protein expression and cell growth. Disrupted mTOR signaling is associated with the development of several obstetric complications. The purpose of this study was to identify the differential placental expression of various mTOR-associated proteins in the placenta during normal gestation (Control), gestational diabetes mellitus (GDM), intrauterine growth restriction (IUGR) and preeclampsia (PE). Immunohistochemistry localized activated proteins (phospho; p) mTOR, pp70, p4EBP1, pAKT and pERK. Real-time PCR array was performed to show differing placental expression of additional mTOR-associated genes. Western blot was performed for pAMPK protein. We observed: 1) increased pmTOR during GDM and decreased pmTOR during IUGR and PE, 2) increased pp70 during IUGR and decreased pp70 during GDM and PE, 3) increased p4EBP1 during GDM, IUGR, and PE, 4) increased pAKT during GDM, 5) increased pERK during IUGR, 6) differential placental expression of mTOR pathway associated genes and increased pAMPK during GDM and PE. We conclude that regulation of the mTOR pathway is uniquely involved in the development of these obstetric complications. Insights into this pathway may provide avenues that if modify may help alleviate these diseases.
Collapse
Affiliation(s)
- Kary Tsai
- Lung and Placenta Research Laboratory, Brigham Young University, Department of Physiology and Developmental Biology, Provo, UT, USA
| | - Benton Tullis
- Lung and Placenta Research Laboratory, Brigham Young University, Department of Physiology and Developmental Biology, Provo, UT, USA
| | - Tyler Jensen
- Lung and Placenta Research Laboratory, Brigham Young University, Department of Physiology and Developmental Biology, Provo, UT, USA
| | - Taylor Graff
- Lung and Placenta Research Laboratory, Brigham Young University, Department of Physiology and Developmental Biology, Provo, UT, USA
| | - Paul Reynolds
- Lung and Placenta Research Laboratory, Brigham Young University, Department of Physiology and Developmental Biology, Provo, UT, USA
| | - Juan Arroyo
- Lung and Placenta Research Laboratory, Brigham Young University, Department of Physiology and Developmental Biology, Provo, UT, USA.
| |
Collapse
|
2
|
Fekry B, Ribas-Latre A, Baumgartner C, Mohamed AMT, Kolonin MG, Sladek FM, Younes M, Eckel-Mahan KL. HNF4α-Deficient Fatty Liver Provides a Permissive Environment for Sex-Independent Hepatocellular Carcinoma. Cancer Res 2019; 79:5860-5873. [PMID: 31575546 DOI: 10.1158/0008-5472.can-19-1277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/02/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023]
Abstract
The incidence of hepatocellular carcinoma (HCC) is on the rise worldwide. Although the incidence of HCC in males is considerably higher than in females, the projected rates of HCC incidence are increasing for both sexes. A recently appreciated risk factor for HCC is the growing problem of nonalcoholic fatty liver disease, which is usually associated with obesity and the metabolic syndrome. In this study, we showed that under conditions of fatty liver, female mice were more likely to develop HCC than expected from previous models. Using an inducible knockout model of the tumor-suppressive isoform of hepatocyte nuclear factor 4 alpha ("P1-HNF4α") in the liver in combination with prolonged high fat (HF) diet, we found that HCC developed equally in male and female mice as early as 38 weeks of age. Similar sex-independent HCC occurred in the "STAM" model of mice, in which severe hyperglycemia and HF feeding results in rapid hepatic lipid deposition, fibrosis, and ultimately HCC. In both sexes, reduced P1-HNF4α activity, which also occurs under chronic HF diet feeding, increased hepatic lipid deposition and produced a greatly augmented circadian rhythm in IL6, a factor previously linked with higher HCC incidence in males. Loss of HNF4α combined with HF feeding induced epithelial-mesenchymal transition in an IL6-dependent manner. Collectively, these data provide a mechanism-based working hypothesis that could explain the rising incidence of aggressive HCC. SIGNIFICANCE: This study provides a mechanism for the growing incidence of hepatocellular carcinoma in both men and women, which is linked to nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Baharan Fekry
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, Texas
| | - Aleix Ribas-Latre
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, Texas
| | - Corrine Baumgartner
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, Texas
| | - Alaa M T Mohamed
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, Texas
| | - Mikhail G Kolonin
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, Texas.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, Texas
| | - Frances M Sladek
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California
| | - Mamoun Younes
- Department of Pathology and Laboratory Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, Texas
| | - Kristin L Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, Texas. .,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, Texas
| |
Collapse
|
3
|
Awan FM, Naz A, Obaid A, Ikram A, Ali A, Ahmad J, Naveed AK, Janjua HA. MicroRNA pharmacogenomics based integrated model of miR-17-92 cluster in sorafenib resistant HCC cells reveals a strategy to forestall drug resistance. Sci Rep 2017; 7:11448. [PMID: 28904393 PMCID: PMC5597599 DOI: 10.1038/s41598-017-11943-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/31/2017] [Indexed: 12/27/2022] Open
Abstract
Among solid tumors, hepatocellular carcinoma (HCC) emerges as a prototypical therapy-resistant tumor. Considering the emerging sorafenib resistance crisis in HCC, future studies are urgently required to overcome resistance. Recently noncoding RNAs (ncRNAs) have emerged as significant regulators in signalling pathways involved in cancer drug resistance and pharmacologically targeting these ncRNAs might be a novel stratagem to reverse drug resistance. In the current study, using a hybrid Petri net based computational model, we have investigated the harmonious effect of miR-17-92 cluster inhibitors/mimics and circular RNAs on sorafenib resistant HCC cells in order to explore potential resistance mechanisms and to identify putative targets for sorafenib-resistant HCC cells. An integrated model was developed that incorporates seven miRNAs belonging to miR-17-92 cluster (hsa-miR-17-5p, hsa-miR-17-3p, hsa-miR-19a, hsa-miR-19b, hsa-miR-18a, hsa-miR-20a and hsa-miR-92) and crosstalk of two signaling pathways (EGFR and IL-6) that are differentially regulated by these miRNAs. The mechanistic connection was proposed by the correlation between members belonging to miR-17-92 cluster and corresponding changes in the protein levels of their targets in HCC, specifically those targets that have verified importance in sorafenib resistance. Current findings uncovered potential pathway features, underlining the significance of developing modulators of this cluster to combat drug resistance in HCC.
Collapse
Affiliation(s)
- Faryal Mehwish Awan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Anam Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Ayesha Obaid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Aqsa Ikram
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Abdul Khaliq Naveed
- Islamic International Medical College (IIMC), Riphah International University, Rawalpindi, Pakistan
| | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| |
Collapse
|
4
|
Lamarca A, Mendiola M, Barriuso J. Hepatocellular carcinoma: Exploring the impact of ethnicity on molecular biology. Crit Rev Oncol Hematol 2016; 105:65-72. [PMID: 27372199 DOI: 10.1016/j.critrevonc.2016.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/15/2016] [Accepted: 06/14/2016] [Indexed: 01/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer-related death. The high rate of diagnosis in non-curable stages and the lack of novel active treatments make it necessary to review all the possible sources of misleading results in this scenario. The incidence of HCC shows clear geographical variation with higher annual incidence in Asia and Africa than in Western countries; we aimed to review the literature to find if there are different trends in the main activated molecular pathways. Hyperactivation of RAS/RAF/MEK/ERK and PI3K/AKT/mTOR signalling and epithelial to mesenchymal transition (EMT) process are more prevalent in the Western population; however, fibroblast growth factor (FGF), transforming growth factor β (TGFβ) and Notch pathways seems to be more relevant in Asian population. Whether these variations just reflect the distinct distribution of known causes of HCC or proper ethnical differences remain to be elucidated. Nevertheless, these clearly different patterns are relevant to regional or worldwide clinical trial design. If this information is neglected by sponsors and researchers the rate of failure in HCC trials will not improve.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Marta Mendiola
- Cancer Molecular Pathology and Therapeutic Targets Research Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Jorge Barriuso
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Mukherjee A, Samanta S, Karmakar P. Inactivation of PTEN is responsible for the survival of Hep G2 cells in response to etoposide-induced damage. Mutat Res 2011; 715:42-51. [PMID: 21784088 DOI: 10.1016/j.mrfmmm.2011.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/04/2011] [Accepted: 07/08/2011] [Indexed: 05/31/2023]
Abstract
The chemo-resistance character of human hepatocellular carcinoma cells is well known but the anomalies associated with such resistance character are not completely understood. In this study, etoposide-induced signaling events in human hepatocellular carcinoma cell line, Hep G2 has been compared with Chang Liver cells, a normal human liver cell line. Hep G2 cells are resistant to etoposide when compared with Chang Liver cells. Etoposide-induced γH2AX foci in Hep G2 cells are persisted for a longer time without affecting cell cycle, indicating that Hep G2 cells are able to maintain its growth with damaged DNA. Further, Akt signaling pathway is deregulated in Hep G2 cells. The upstream negative regulator of Akt, PTEN remains inactive, as it is hyperphosphorylated in Hep G2 cells. Inhibition of PI-3K pathway by wortmannin partially reverses the etoposide-resistance character of Hep G2 cells. Either Hep G2 or Chang Liver cells when transfected with plasmid carrying active Akt (myr-Akt) become resistance towards etoposide compared to the cells transfected with empty vectors or kinase defective Akt. Transient transfection of wild type PTEN in Hep G2 cells does not change its response towards etoposide whereas Chang Liver cells become sensitive after transfection with same plasmid. These results suggest that inactivation of PTEN, which renders activation of Akt, may contribute largely for the etoposide-resistance character of Hep G2 cells.
Collapse
Affiliation(s)
- Ananda Mukherjee
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | | | | |
Collapse
|
6
|
Martínez-López N, Varela-Rey M, Fernández-Ramos D, Woodhoo A, Vázquez-Chantada M, Embade N, Espinosa-Hevia L, Bustamante FJ, Parada LA, Rodriguez MS, Lu SC, Mato JM, Martínez-Chantar ML. Activation of LKB1-Akt pathway independent of phosphoinositide 3-kinase plays a critical role in the proliferation of hepatocellular carcinoma from nonalcoholic steatohepatitis. Hepatology 2010; 52:1621-1631. [PMID: 20815019 PMCID: PMC2967637 DOI: 10.1002/hep.23860] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED LKB1, originally considered a tumor suppressor, plays an important role in hepatocyte proliferation and liver regeneration. Mice lacking the methionine adenosyltransferase (MAT) gene MAT1A exhibit a chronic reduction in hepatic S-adenosylmethionine (SAMe) levels, basal activation of LKB1, and spontaneous development of nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). These results are relevant for human health because patients with liver cirrhosis, who are at risk to develop HCC, have a marked reduction in hepatic MAT1A expression and SAMe synthesis. In this study, we isolated a cell line (SAMe-deficient [SAMe-D]) from MAT1A knockout (MAT1A-KO) mouse HCC to examine the role of LKB1 in the development of liver tumors derived from metabolic disorders. We found that LKB1 is required for cell survival in SAMe-D cells. LKB1 regulates Akt-mediated survival independent of phosphoinositide 3-kinase, adenosine monophosphate protein-activated kinase (AMPK), and mammalian target of rapamycin complex (mTORC2). In addition, LKB1 controls the apoptotic response through phosphorylation and retention of p53 in the cytoplasm and the regulation of herpesvirus-associated ubiquitin-specific protease (HAUSP) and Hu antigen R (HuR) nucleocytoplasmic shuttling. We identified HAUSP as a target of HuR. Finally, we observed cytoplasmic staining of p53 and p-LKB1(Ser428) in a NASH-HCC animal model (from MAT1A-KO mice) and in liver biopsies obtained from human HCC derived from both alcoholic steatohepatitis and NASH. CONCLUSION The SAMe-D cell line is a relevant model of HCC derived from NASH disease in which LKB1 is the principal conductor of a new regulatory mechanism and could be a practical tool for uncovering new therapeutic strategies.
Collapse
Affiliation(s)
- Nuria Martínez-López
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Bizkaia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wu SK, Wang BJ, Yang Y, Feng XH, Zhao XP, Yang DL. Expression of PTEN, PPM1A and P-Smad2 in hepatocellular carcinomas and adjacent liver tissues. World J Gastroenterol 2007; 13:4554-9. [PMID: 17729405 PMCID: PMC4611826 DOI: 10.3748/wjg.v13.i34.4554] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expressions of PTEN, PPM1A and P-Smad2 in hepatocellular carcinoma (HCC) and their significance.
METHODS: The expressions of PTEN, PPM1A and P-Smad2 in 31 HCC tissues, 25 adjacent liver tissues and 13 non-tumor liver tissues were detected by using Envision immunohistochemical technique.
RESULTS: The positive expression (64.52%) and staining intensity (4.19 ± 3.31) of PTEN in the cytoplasm of HCC were significantly lower and weaker than those in the adjacent or non-tumor liver tissues (97.37%, 7.88 ± 0.93; 100%, 7.77 ± 0.93, respectively) (P < 0.05), and its staining intensity in the cytoplasm of HCC, which belongs to Edmondson pathologic grades II-III and above, was also lower than that of gradeIandI-II. Furthermore, its location in the nucleus or cytoplasm of liver cells was negatively correlated with the progression of liver disease (r = -0.339, P = 0.002); most of PPM1A might be only expressed in the nucleus of adjacent liver tissues, non-HCC tissues or Edmondson gradeIandI-II HCC, but it was mainly expressed in the cytoplasm of HCC with Edmondson grade ≥ II, weakly or negatively expressed in the nucleus (P < 0.05), and its location was negatively correlated with the progression of liver disease (r = -0.45, P = 0.0000). P-Smad2, which was mostly located in the nucleus and cytoplasm of gradeIandI-II HCC, surrounding or non-tumor liver tissues, was only in the nucleus of HCC with Edmondson grade II and above (P < 0.001), and its location was positively correlated with the disease progression (r = 0.224, P = 0.016). Spearman correlation analysis revealed that P-Smad2 was significantly negatively correlated with PTEN and PPM1A (r = -0.748, P = 0.000; r = -0.366, P = 0.001, respectively); and PTEN and PPM1A were positively correlated with HCC carcinogenesis (r = 0.428, P = 0.000).
CONCLUSION: The aberrant location of expression and staining intensity of PTEN, PPM1A and P-Smad2 in HCC and their relationship might have an impact on the pathogenesis of HCC.
Collapse
Affiliation(s)
- Shu-Kun Wu
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefangdadao, Wuhan, Hubei Province, China
| | | | | | | | | | | |
Collapse
|