1
|
Dolganova IN, Varvina DA, Shikunova IA, Alekseeva AI, Karalkin PA, Kuznetsov MR, Nikitin PV, Zotov AK, Mukhina EE, Katyba GM, Zaytsev KI, Tuchin VV, Kurlov VN. Proof of concept for the sapphire scalpel combining tissue dissection and optical diagnosis. Lasers Surg Med 2021; 54:611-622. [PMID: 34918347 DOI: 10.1002/lsm.23509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/18/2021] [Accepted: 11/27/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVES The development of compact diagnostic probes and instruments with an ability to direct access to organs and tissues and integration of these instruments into surgical workflows is an important task of modern physics and medicine. The need for such tools is essential for surgical oncology, where intraoperative visualization and demarcation of tumor margins define further prognosis and survival of patients. In this paper, the possible solution for this intraoperative imaging problem is proposed and its feasibility to detect tumorous tissue is studied experimentally. METHODS For this aim, the sapphire scalpel was developed and fabricated using the edge-defined film-fed growth technique aided by mechanical grinding, polishing, and chemical sharpening of the cutting edge. It possesses optical transparency, mechanical strength, chemical inertness, and thermal resistance alongside the presence of the as-grown hollow capillary channels in its volume for accommodating optical fibers. The rounding of the cutting edge exceeds the same for metal scalpels and can be as small as 110 nm. Thanks to these features, sapphire scalpel combines tissue dissection with light delivering and optical diagnosis. The feasibility for the tumor margin detection was studied, including both gelatin-based tissue phantoms and ex vivo freshly excised specimens of the basal cell carcinoma from humans and the glioma model 101.8 from rats. These tumors are commonly diagnosed either non-invasively or intraoperatively using different modalities of fluorescence spectroscopy and imaging, which makes them ideal candidates for our feasibility test. For this purpose, fiber-based spectroscopic measurements of the backscattered laser radiation and the fluorescence signals were carried out in the visible range. RESULTS Experimental studies show the feasibility of the proposed sapphire scalpel to provide a 2-mm-resolution of the tumor margins' detection, along with an ability to distinguish the tumor invasion region, which results from analysis of the backscattered optical fields and the endogenous or exogenous fluorescence data. CONCLUSIONS Our findings justified a strong potential of the sapphire scalpel for surgical oncology. However, further research and engineering efforts are required to optimize the sapphire scalpel geometry and the optical diagnosis protocols to meet the requirements of oncosurgery, including diagnosis and resection of neoplasms with different localizations and nosologies.
Collapse
Affiliation(s)
- Irina N Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Bauman Moscow State Technical University, Moscow, Russia
| | - Daria A Varvina
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,International School "Medicine of the Future", Sechenov University, Moscow, Russia
| | - Irina A Shikunova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - Anna I Alekseeva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Research Institute of Human Morphology, Moscow, Russia
| | - Pavel A Karalkin
- Institute for Cluster Oncology, Sechenov University, Moscow, Russia.,Hertsen Moscow Oncology Research Institute, National Medical Research Radiological Centre, Moscow, Russia
| | | | - Pavel V Nikitin
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Arsen K Zotov
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia.,Bauman Moscow State Technical University, Moscow, Russia.,Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | | | - Gleb M Katyba
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia.,Bauman Moscow State Technical University, Moscow, Russia.,Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Kirill I Zaytsev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Bauman Moscow State Technical University, Moscow, Russia.,Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Valery V Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia.,Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia.,National Research Tomsk University, Tomsk, Russia
| | - Vladimir N Kurlov
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Bauman Moscow State Technical University, Moscow, Russia
| |
Collapse
|
2
|
Endogenous Fluorescence Dissimilarity Assessment of Four Potential Biomarkers of Early Liver Fibrosis by Preservation Media Effect. J Fluoresc 2020; 30:249-257. [DOI: 10.1007/s10895-019-02484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
3
|
LaRiviere B, Ferguson NL, Garman KS, Fisher DA, Jokerst NM. Methods of extraction of optical properties from diffuse reflectance measurements of ex-vivo human colon tissue using thin film silicon photodetector arrays. BIOMEDICAL OPTICS EXPRESS 2019; 10:5703-5715. [PMID: 31799041 PMCID: PMC6865100 DOI: 10.1364/boe.10.005703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 05/03/2023]
Abstract
Spatially resolved diffuse reflectance spectroscopy (SRDRS) is a promising technique for characterization of colon tissue. Herein, two methods for extracting the reduced scattering and absorption coefficients ( μ s ' ( λ ) and μ a ( λ ) ) from SRDRS data using lookup tables of simulated diffuse reflectance are reported. Experimental measurements of liquid tissue phantoms performed with a custom multi-pixel silicon SRDRS sensor spanning the 450 - 750 nm wavelength range were used to evaluate the extraction methods, demonstrating that the combined use of spatial and spectral data reduces extraction error compared to use of spectral data alone. Additionally, SRDRS measurements of normal and tumor ex-vivo human colon tissue are presented along with μ s ' ( λ ) and μ a ( λ ) extracted from these measurements.
Collapse
Affiliation(s)
- Ben LaRiviere
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | - Nan M. Jokerst
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
4
|
Shalaby N, Al-Ebraheem A, Le D, Cornacchi S, Fang Q, Farrell T, Lovrics P, Gohla G, Reid S, Hodgson N, Farquharson M. Time-resolved fluorescence (TRF) and diffuse reflectance spectroscopy (DRS) for margin analysis in breast cancer. Lasers Surg Med 2018; 50:236-245. [DOI: 10.1002/lsm.22795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Nourhan Shalaby
- School of Interdisciplinary Science; McMaster University; Ontario Canada
| | - Alia Al-Ebraheem
- School of Interdisciplinary Science; McMaster University; Ontario Canada
| | - Du Le
- School of Interdisciplinary Science; McMaster University; Ontario Canada
| | - Sylvie Cornacchi
- Faculty of Health Sciences, Department of Surgery; McMaster University; Hamilton Ontario Canada
| | - Qiyin Fang
- Faculty of Engineering; McMaster University; Hamilton Ontario Canada
| | - Thomas Farrell
- Juravinski Hospital and Cancer Centre; Hamilton Ontario Canada
| | - Peter Lovrics
- Faculty of Health Sciences, Department of Surgery; McMaster University; Hamilton Ontario Canada
- St. Joseph's Healthcare; Hamilton Ontario Canada
| | - Gabriela Gohla
- St. Joseph's Healthcare; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Susan Reid
- Juravinski Hospital and Cancer Centre; Hamilton Ontario Canada
| | - Nicole Hodgson
- Juravinski Hospital and Cancer Centre; Hamilton Ontario Canada
| | | |
Collapse
|
5
|
Milovanovic P, Hrncic D, Radotic K, Stankovic M, Mutavdzic D, Djonic D, Rasic-Markovic A, Djuric D, Stanojlovic O, Djuric M. Moderate hyperhomocysteinemia induced by short-term dietary methionine overload alters bone microarchitecture and collagen features during growth. Life Sci 2017; 191:9-16. [PMID: 28987632 DOI: 10.1016/j.lfs.2017.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/20/2023]
Abstract
AIMS In general, hyperhomocysteinemia is increasingly appreciated as a risk factor for various diseases, including osteoporosis. However, its effects in non-adults remain largely unknown. Our aim was to determine whether dietary-caused increased homocysteine levels have deleterious effects on bone structure during growth. MAIN METHODS We developed a model of moderate hyperhomocysteinemia caused by short-term methionine nutritional overload in growing rats. 30-days-old male Wistar albino rats were randomly assigned to either experimental group subject to a 30-days hypermethionine diet or control group. High-resolution 3D assessment of bone geometry and microarchitecture, as well as fluorescence spectroscopic analysis of bone matrix were performed. KEY FINDINGS Short-term moderate hyperhomocysteinemia (~30μmol/L) achieved in the study notably affected bone and cartilage characteristics. Parameters of the cortical bone geometry in the experimental group indicated peculiar reorganization of the bone cross-section. Trabecular bone microarchitecture was especially sensitive to hyperhomocysteinemia showing clearly negative bone balance in the experimental group (almost 30% reduced bone volume, mainly due to ~25% decrease in trabecular number as well as markedly reduced trabecular connections). Fluorescent spectroscopy of bone matrix revealed multiple alterations to collagen spectra due to homocysteine accumulation in bone, indicative of broken collagenous cross-links. SIGNIFICANCE Given that appropriate accrual of bone mass during growth has important effects on the risk of osteoporosis in adulthood, understanding the skeletal effects of dietary-induced hyperhomocysteinemia in non-adults is essential for interpreting its importance as a modifiable risk factor for osteoporosis and improving programs to preserve/re-establish bone health.
Collapse
Affiliation(s)
- Petar Milovanovic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Dragan Hrncic
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ksenija Radotic
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Mira Stankovic
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Dragosav Mutavdzic
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Danijela Djonic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Rasic-Markovic
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Djuric
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Stanojlovic
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Djuric
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
6
|
Nguyen DT, van Horssen P, Derriks H, van de Giessen M, van Leeuwen T. Autofluorescence imaging for improved visualization of joint structures during arthroscopic surgery. J Exp Orthop 2017; 4:19. [PMID: 28577187 PMCID: PMC5457390 DOI: 10.1186/s40634-017-0094-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/15/2017] [Indexed: 11/16/2022] Open
Abstract
Background The purpose of our study is to develop the arthroscopic autofluorescence imaging (AFI) system to improve the visualization during arthroscopic surgery by real-time enhancing the contrast between joint structures with autofluorescence imaging. Its validity was evaluated around the arthroscopic anterior cruciate ligament (ACL) reconstruction, specifically improving the contrast between the femoral insertion site and its background. The feasibility of the AFI system was validated with bovine and human knees. The spectral responses of the femoral insertion site and its surrounding bone and cartilage were measured with a fluorospectrometer. A prototype of the AFI system was developed based on the spectral responses (SR) and test images of the insertion site. The accuracy was validated by evaluating the overlap between manually segmented insertion sites on the white light color images and on the corresponding spectral unmixed autofluorescence images. The final prototype of the AFI system was tested during arthroscopy in cadaveric knees. Results The results showed that the joint structures have different SRs. Spectral unmixing enabled separation of the SRs and improved the contrast between the joint structures. The agreement between visible light and autofluorescence ligament insertions had a mean Dice coefficient of 0.84 and the mean Dice coefficient of the interobserver variability for visible light imaging was 0.85. Conclusions We have shown that the femoral insertion site can be accurately visualized with autofluorescence imaging combined with spectral unmixing. The AFI system demonstrates the feasibility of real-time and subject-specific visualization of the femoral insertion site which can facilitate anatomic ACL reconstruction. In addition, the AFI system can facilitate arthroscopic procedures in other joints and can also be used as a diagnostic tool. Electronic supplementary material The online version of this article (doi:10.1186/s40634-017-0094-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duy Tan Nguyen
- Present Address: Department of Family Medicine, University of Gent, Ghent, Belgium. .,Department of Orthopaedic Surgery, University of Amsterdam, Amsterdam, The Netherlands.
| | - Pepijn van Horssen
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands.,Biomedical Engineering and Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans Derriks
- Department of Orthopaedic Surgery, University of Amsterdam, Amsterdam, The Netherlands.,Present Address: St. Maartenskliniek, Nijmegen, The Netherlands
| | - Martijn van de Giessen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Intelligent Systems, Faculty of Electrical Engineering, Applied Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Ton van Leeuwen
- Biomedical Engineering and Physics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Kim IA, Taylor ZD, Cheng H, Sebastian C, Maccabi A, Garritano J, Tajudeen B, Razfar A, Palma Diaz F, Yeh M, Stafsudd O, Grundfest W, St. John M. Dynamic Optical Contrast Imaging: A Technique to Differentiate Parathyroid Tissue from Surrounding Tissues. Otolaryngol Head Neck Surg 2017; 156:480-483. [DOI: 10.1177/0194599816686294] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The variable location and indistinct features of parathyroid glands can make their intraoperative identification challenging. Currently, there exists no routine use of localization methods during surgery. Dynamic optical contrast imaging (DOCI) leverages a novel realization of temporally dependent measurements of tissue autofluorescence that allows the acquisition of specific tissue properties. A prospective series of patients with primary hyperparathyroidism was examined. Parathyroid lesions and surrounding tissues were collected; fluorescence decay images were acquired via DOCI. Ex vivo samples (81 patients) were processed for histologic assessment. DOCI extracts relative fluorescence decay information in a surgically relevant field of view with a clinically accessible acquisition time <2 minutes. Analysis of DOCI revealed microscopic characterization sufficient for tissue type identification consistent with histology ( P < .05). DOCI is capable of efficiently distinguishing parathyroid tissue from adjacent tissues. Such an intraoperative tool would be transformative, helping surgeons to identify lesions, preserve healthy tissue, and improve patient outcomes.
Collapse
Affiliation(s)
- Irene A. Kim
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
- Head and Neck Cancer Program, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Zachary D. Taylor
- Head and Neck Cancer Program, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California–Los Angeles, Los Angeles, California, USA
- Department of Surgery, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Harrison Cheng
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California–Los Angeles, Los Angeles, California, USA
| | - Christine Sebastian
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
- Head and Neck Cancer Program, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Ashkan Maccabi
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California–Los Angeles, Los Angeles, California, USA
| | - James Garritano
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California–Los Angeles, Los Angeles, California, USA
| | - Bobby Tajudeen
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
- Head and Neck Cancer Program, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Ali Razfar
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
- Head and Neck Cancer Program, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Fernando Palma Diaz
- Department of Pathology, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Michael Yeh
- Department of Surgery, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Oscar Stafsudd
- Department of Electrical Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California–Los Angeles, Los Angeles, California, USA
| | - Warren Grundfest
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California–Los Angeles, Los Angeles, California, USA
- Department of Surgery, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
- Department of Electrical Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California–Los Angeles, Los Angeles, California, USA
| | - Maie St. John
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
- Head and Neck Cancer Program, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| |
Collapse
|
8
|
Review: in vivo optical spectral tissue sensing-how to go from research to routine clinical application? Lasers Med Sci 2016; 32:711-719. [PMID: 27909918 DOI: 10.1007/s10103-016-2119-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
Innovations in optical spectroscopy have helped the technology reach a point where performance previously seen only in laboratory settings can be translated and tested in real-world applications. In the field of oncology, spectral tissue sensing (STS) by means of optical spectroscopy is considered to have major potential for improving diagnostics and optimizing treatment outcome. The concept has been investigated for more than two decades and yet spectral tissue sensing is not commonly employed in routine medical practice. It is therefore important to understand what is needed to translate technological advances and insights generated through basic scientific research in this field into clinical practice. The aim of the discussion presented here is not to provide a comprehensive review of all work published over the last decades but rather to highlight some of the challenges found in literature and encountered by our group in the quest to translate optical technologies into useful clinical tools. Furthermore, an outlook is proposed on how translational researchers could proceed to eventually have STS incorporated in the process of clinical decision-making.
Collapse
|
9
|
de Boer LL, Hendriks BHW, van Duijnhoven F, Peeters-Baas MJTFDV, Van de Vijver K, Loo CE, Jóźwiak K, Sterenborg HJCM, Ruers TJM. Using DRS during breast conserving surgery: identifying robust optical parameters and influence of inter-patient variation. BIOMEDICAL OPTICS EXPRESS 2016; 7:5188-5200. [PMID: 28018735 PMCID: PMC5175562 DOI: 10.1364/boe.7.005188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 05/12/2023]
Abstract
Successful breast conserving surgery consists of complete removal of the tumor while sparing healthy surrounding tissue. Despite currently available imaging and margin assessment tools, recognizing tumor tissue at a resection margin during surgery is challenging. Diffuse reflectance spectroscopy (DRS), which uses light for tissue characterization, can potentially guide surgeons to prevent tumor positive margins. However, inter-patient variation and changes in tissue physiology occurring during the resection might hamper this light-based technology. Here we investigate how inter-patient variation and tissue status (in vivo vs ex vivo) affect the performance of the DRS optical parameters. In vivo and ex vivo measurements of 45 breast cancer patients were obtained and quantified with an analytical model to acquire the optical parameters. The optical parameter representing the ratio between fat and water provided the best discrimination between normal and tumor tissue, with an area under the receiver operating characteristic curve of 0.94. There was no substantial influence of other patient factors such as menopausal status on optical measurements. Contrary to expectations, normalization of the optical parameters did not improve the discriminative power. Furthermore, measurements taken in vivo were not significantly different from the measurements taken ex vivo. These findings indicate that DRS is a robust technology for the detection of tumor tissue during breast conserving surgery.
Collapse
Affiliation(s)
- Lisanne L. de Boer
- Netherlands Cancer Institute – Antoni van Leeuwenhoek, Amsterdam The Netherlands
| | - Benno H. W. Hendriks
- Philips Research, Eindhoven, The Netherlands
- Biomechanical Engineering Department, Delft University of Technology, Delft, The Netherlands
| | | | | | - Koen Van de Vijver
- Netherlands Cancer Institute – Antoni van Leeuwenhoek, Amsterdam The Netherlands
| | - Claudette E. Loo
- Netherlands Cancer Institute – Antoni van Leeuwenhoek, Amsterdam The Netherlands
| | - Katarzyna Jóźwiak
- Netherlands Cancer Institute – Antoni van Leeuwenhoek, Amsterdam The Netherlands
| | - Henricus J. C. M. Sterenborg
- Netherlands Cancer Institute – Antoni van Leeuwenhoek, Amsterdam The Netherlands
- Academic Medical Center, Department of Biomedical Engineering and Physics, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands
| | - Theo J. M. Ruers
- Netherlands Cancer Institute – Antoni van Leeuwenhoek, Amsterdam The Netherlands
- MIRA Institute, University Twente, The Netherlands
| |
Collapse
|
10
|
Tajudeen BA, Taylor ZD, Garritano J, Cheng H, Pearigen A, Sherman AJ, Palma-Diaz F, Mishra P, Bhargava S, Pesce J, Kim I, Sebastian C, Razfar A, Papour A, Stafsudd O, Grundfest W, St. John M. Dynamic optical contrast imaging as a novel modality for rapidly distinguishing head and neck squamous cell carcinoma from surrounding normal tissue. Cancer 2016; 123:879-886. [DOI: 10.1002/cncr.30338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Bobby A. Tajudeen
- Department of Head and Neck Surgery, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
- Head and Neck Cancer Program, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
| | - Zachary D. Taylor
- Head and Neck Cancer Program, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences; University of California Los Angeles; Los Angeles California
- Department of Surgery, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
| | - James Garritano
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences; University of California Los Angeles; Los Angeles California
| | - Harrison Cheng
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences; University of California Los Angeles; Los Angeles California
| | - Aidan Pearigen
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences; University of California Los Angeles; Los Angeles California
| | - Adria J. Sherman
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences; University of California Los Angeles; Los Angeles California
| | - Fernando Palma-Diaz
- Department of Pathology, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
| | - Pratik Mishra
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences; University of California Los Angeles; Los Angeles California
| | - Siddharth Bhargava
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences; University of California Los Angeles; Los Angeles California
| | - Julianna Pesce
- Department of Head and Neck Surgery, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
- Head and Neck Cancer Program, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
| | - Irene Kim
- Department of Head and Neck Surgery, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
- Head and Neck Cancer Program, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
| | - Christine Sebastian
- Department of Head and Neck Surgery, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
- Head and Neck Cancer Program, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
| | - Ali Razfar
- Department of Head and Neck Surgery, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
- Head and Neck Cancer Program, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
| | - Asael Papour
- Department of Electrical Engineering, Henry Samueli School of Engineering and Applied Sciences; University of California Los Angeles; Los Angeles California
| | - Oscar Stafsudd
- Department of Electrical Engineering, Henry Samueli School of Engineering and Applied Sciences; University of California Los Angeles; Los Angeles California
| | - Warren Grundfest
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences; University of California Los Angeles; Los Angeles California
- Department of Surgery, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
- Department of Electrical Engineering, Henry Samueli School of Engineering and Applied Sciences; University of California Los Angeles; Los Angeles California
| | - Maie St. John
- Department of Head and Neck Surgery, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
- Head and Neck Cancer Program, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine; University of California Los Angeles; Los Angeles California
| |
Collapse
|
11
|
Bergauer B, Knipfer C, Amann A, Rohde M, Tangermann-Gerk K, Adler W, Schmidt M, Nkenke E, Stelzle F. Does Laser Surgery Interfere with Optical Nerve Identification in Maxillofacial Hard and Soft Tissue?--An Experimental Ex Vivo Study. SENSORS 2015; 15:25416-32. [PMID: 26437416 PMCID: PMC4634421 DOI: 10.3390/s151025416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/09/2015] [Accepted: 09/28/2015] [Indexed: 11/16/2022]
Abstract
The protection of sensitive structures (e.g., nerves) from iatrogenic damage is of major importance when performing laser surgical procedures. Especially in the head and neck area both function and esthetics can be affected to a great extent. Despite its many benefits, the surgical utilization of a laser is therefore still limited to superficial tissue ablation. A remote feedback system which guides the laser in a tissue-specific way would provide a remedy. In this context, it has been shown that nerval structures can be specifically recognized by their optical diffuse reflectance spectra both before and after laser ablation. However, for a translation of these findings to the actual laser ablation process, a nerve protection within the laser pulse is of utmost significance. Thus, it was the aim of the study to evaluate, if the process of Er:YAG laser surgery--which comes with spray water cooling, angulation of the probe (60°) and optical process emissions--interferes with optical tissue differentiation. For the first time, no stable conditions but the ongoing process of laser tissue ablation was examined. Therefore, six different tissue types (nerve, skin, muscle, fat, cortical and cancellous bone) were acquired from 15 pig heads. Measurements were performed during Er:YAG laser ablation. Diffuse reflectance spectra (4500, wavelength range: 350-650 nm) where acquired. Principal component analysis (PCA) and quadratic discriminant analysis (QDA) were calculated for classification purposes. The clinical highly relevant differentiation between nerve and bone was performed correctly with an AUC of 95.3% (cortial bone) respectively 92.4% (cancellous bone). The identification of nerve tissue against the biological very similar fat tissue yielded good results with an AUC value of 83.4% (sensitivity: 72.3%, specificity: of 82.3%). This clearly demonstrates that nerve identification by diffuse reflectance spectroscopy works reliably in the ongoing process of laser ablation in spite of the laser beam, spray water cooling and the tissue alterations entailed by tissue laser ablation. This is an essential step towards a clinical utilization.
Collapse
Affiliation(s)
- Bastian Bergauer
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany.
| | - Christian Knipfer
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany.
| | - Andreas Amann
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany.
| | - Maximilian Rohde
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany.
| | - Katja Tangermann-Gerk
- Bavarian Laser Center GmbH (blz), Erlangen 91054, Germany.
- SAOT-Graduate School in Advanced Optical Technologies, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany.
| | - Werner Adler
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany.
| | - Michael Schmidt
- Bavarian Laser Center GmbH (blz), Erlangen 91054, Germany.
- SAOT-Graduate School in Advanced Optical Technologies, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany.
- Chair of Photonic Technologies, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany.
| | - Emeka Nkenke
- Department of Oral and Maxillofacial Surgery, Medical University of Vienna, Vienna 1090, Austria.
| | - Florian Stelzle
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany.
- SAOT-Graduate School in Advanced Optical Technologies, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany.
| |
Collapse
|
12
|
Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity. Photodiagnosis Photodyn Ther 2014; 11:82-90. [DOI: 10.1016/j.pdpdt.2014.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 01/23/2014] [Accepted: 03/12/2014] [Indexed: 11/18/2022]
|
13
|
Optical nerve identification in head and neck surgery after Er:YAG laser ablation. Lasers Med Sci 2014; 29:1641-8. [DOI: 10.1007/s10103-014-1569-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
|
14
|
Coda S, Thompson AJ, Kennedy GT, Roche KL, Ayaru L, Bansi DS, Stamp GW, Thillainayagam AV, French PMW, Dunsby C. Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe. BIOMEDICAL OPTICS EXPRESS 2014; 5:515-38. [PMID: 24575345 PMCID: PMC3920881 DOI: 10.1364/boe.5.000515] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/11/2013] [Accepted: 11/26/2013] [Indexed: 05/20/2023]
Abstract
We present an ex vivo study of temporally and spectrally resolved autofluorescence in a total of 47 endoscopic excision biopsy/resection specimens from colon, using pulsed excitation laser sources operating at wavelengths of 375 nm and 435 nm. A paired analysis of normal and neoplastic (adenomatous polyp) tissue specimens obtained from the same patient yielded a significant difference in the mean spectrally averaged autofluorescence lifetime -570 ± 740 ps (p = 0.021, n = 12). We also investigated the fluorescence signature of non-neoplastic polyps (n = 6) and inflammatory bowel disease (n = 4) compared to normal tissue in a small number of specimens.
Collapse
Affiliation(s)
- Sergio Coda
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Endoscopy Unit, Department of Gastroenterology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK
- These authors contributed equally to this work
| | - Alex J. Thompson
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- These authors contributed equally to this work
| | - Gordon T. Kennedy
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Kim L. Roche
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Endoscopy Unit, Department of Gastroenterology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Lakshmana Ayaru
- Endoscopy Unit, Department of Gastroenterology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Devinder S. Bansi
- Endoscopy Unit, Department of Gastroenterology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Gordon W. Stamp
- Department of Histopathology, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Andrew V. Thillainayagam
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Endoscopy Unit, Department of Gastroenterology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK
- These authors contributed equally to this work
| | - Paul M. W. French
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- These authors contributed equally to this work
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Department of Histopathology, Imperial College London, Du Cane Road, London, W12 0NN, UK
- These authors contributed equally to this work
| |
Collapse
|
15
|
Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery. SENSORS 2013; 13:13717-31. [PMID: 24152930 PMCID: PMC3859088 DOI: 10.3390/s131013717] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/27/2013] [Indexed: 11/21/2022]
Abstract
Laser surgery provides a number of advantages over conventional surgery. However, it implies large risks for sensitive tissue structures due to its characteristic non-tissue-specific ablation. The present study investigates the discrimination of nine different ex vivo tissue types by using uncorrected (raw) autofluorescence spectra for the development of a remote feedback control system for tissue-selective laser surgery. Autofluorescence spectra (excitation wavelength 377 ± 50 nm) were measured from nine different ex vivo tissue types, obtained from 15 domestic pig cadavers. For data analysis, a wavelength range between 450 nm and 650 nm was investigated. Principal Component Analysis (PCA) and Quadratic Discriminant Analysis (QDA) were used to discriminate the tissue types. ROC analysis showed that PCA, followed by QDA, could differentiate all investigated tissue types with AUC results between 1.00 and 0.97. Sensitivity reached values between 93% and 100% and specificity values between 94% and 100%. This ex vivo study shows a high differentiation potential for physiological tissue types when performing autofluorescence spectroscopy followed by PCA and QDA. The uncorrected autofluorescence spectra are suitable for reliable tissue discrimination and have a high potential to meet the challenges necessary for an optical feedback system for tissue-specific laser surgery.
Collapse
|
16
|
Stelzle F, Terwey I, Knipfer C, Adler W, Tangermann-Gerk K, Nkenke E, Schmidt M. The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study. J Transl Med 2012; 10:123. [PMID: 22704127 PMCID: PMC3546422 DOI: 10.1186/1479-5876-10-123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/16/2012] [Indexed: 11/10/2022] Open
Abstract
Background Optical diffuse reflectance can remotely differentiate various bio tissues. To implement this technique in an optical feedback system to guide laser surgery in a tissue-specific way, the alteration of optical tissue properties by laser ablation has to be taken into account. It was the aim of this study to evaluate the general feasibility of optical soft tissue differentiation by diffuse reflectance spectroscopy under the influence of laser ablation, comparing the tissue differentiation results before and after laser intervention. Methods A total of 70 ex vivo tissue samples (5 tissue types) were taken from 14 bisected pig heads. Diffuse reflectance spectra were recorded before and after Er:YAG-laser ablation. The spectra were analyzed and differentiated using principal component analysis (PCA), followed by linear discriminant analysis (LDA). To assess the potential of tissue differentiation, area under the curve (AUC), sensitivity and specificity was computed for each pair of tissue types before and after laser ablation, and compared to each other. Results Optical tissue differentiation showed good results before laser exposure (total classification error 13.51%). However, the tissue pair nerve and fat yielded lower AUC results of only 0.75. After laser ablation slightly reduced differentiation results were found with a total classification error of 16.83%. The tissue pair nerve and fat showed enhanced differentiation (AUC: 0.85). Laser ablation reduced the sensitivity in 50% and specificity in 80% of the cases of tissue pair comparison. The sensitivity of nerve–fat differentiation was enhanced by 35%. Conclusions The observed results show the general feasibility of tissue differentiation by diffuse reflectance spectroscopy even under conditions of tissue alteration by laser ablation. The contrast enhancement for the differentiation between nerve and fat tissue after ablation is assumed to be due to laser removal of the surrounding lipid-rich nerve sheath. The results create the basis for a guidance system to control laser ablation in a tissue-specific way.
Collapse
Affiliation(s)
- Florian Stelzle
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University of Erlangen-Nuremberg, Glückstrasse 11, 91054, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Stelzle F, Adler W, Zam A, Tangermann-Gerk K, Knipfer C, Douplik A, Schmidt M, Nkenke E. In vivo optical tissue differentiation by diffuse reflectance spectroscopy: preliminary results for tissue-specific laser surgery. Surg Innov 2012; 19:385-93. [PMID: 22344924 DOI: 10.1177/1553350611429692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Laser surgery requires feedback to avoid the accidental destruction of critically important tissues. It was the aim of the authors to identify different tissue types in vivo by diffuse reflectance spectroscopy to set the basis for tissue-specific control of laser surgery. METHODS Tissue differentiation was performed on in vivo tissue of rats (skin, fat, muscle, and nerve) by diffuse reflectance spectroscopy between 350 and 650 nm. Data analysis was done using principal components analysis, followed by linear discriminant analysis (LDA). The differentiation performance was evaluated by receiver operating characteristic (ROC) analysis. RESULTS ROC analysis showed a tissue differentiation of 100%, with a high sensitivity of more than 99%. Only the tissue pair skin/fat showed a reduced differentiation performance and specificity. CONCLUSION The results show the general viability of in vivo optical tissue differentiation and create a basis for the further development of a control system for tissue-specific laser surgery.
Collapse
Affiliation(s)
- Florian Stelzle
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang Z, Li Z, Chen R, Lin J, Li Y, Li C. In vitro imaging of thyroid tissues using two-photon excited fluorescence and second harmonic generation. Photomed Laser Surg 2010; 28 Suppl 1:S129-33. [PMID: 20649422 DOI: 10.1089/pho.2009.2563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To evaluate the feasibility of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging to discriminate the normal, nodular goiter and papillary cancerous thyroid tissue. MATERIALS AND METHODS In total, 45 fresh thyroid specimens (normal, 15; nodular goiter, 12; and papillary cancerous, 18) from 31 subjects were directly imaged by the TPEF and SHG combination method. RESULTS The microstructure of follicle and collagen structure in thyroid tissue were clearly identified, morphologic changes between normal, nodular goiter, and papillary cancerous thyroid tissue were well characterized by using two-photon excitation fluorescence. SHG imaging of the collagen matrix also revealed the differences between normal and abnormal. CONCLUSIONS Our preliminary study suggests that the TPEF and SHG combination method might be a useful tool in revealing pathologic changes in thyroid tissue.
Collapse
Affiliation(s)
- Zufang Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P. R. China
| | | | | | | | | | | |
Collapse
|
19
|
McGinty J, Galletly NP, Dunsby C, Munro I, Elson DS, Requejo-Isidro J, Cohen P, Ahmad R, Forsyth A, Thillainayagam AV, Neil MAA, French PMW, Stamp GW. Wide-field fluorescence lifetime imaging of cancer. BIOMEDICAL OPTICS EXPRESS 2010; 1:627-640. [PMID: 21258496 PMCID: PMC3017991 DOI: 10.1364/boe.1.000627] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 05/20/2023]
Abstract
Optical imaging of tissue autofluorescence has the potential to provide rapid label-free screening and detection of surface tumors for clinical applications, including when combined with endoscopy. Quantitative imaging of intensity-based contrast is notoriously difficult and spectrally resolved imaging does not always provide sufficient contrast. We demonstrate that fluorescence lifetime imaging (FLIM) applied to intrinsic tissue autofluorescence can directly contrast a range of surface tissue tumors, including in gastrointestinal tissues, using compact, clinically deployable instrumentation achieving wide-field fluorescence lifetime images of unprecedented clarity. Statistically significant contrast is observed between cancerous and healthy colon tissue for FLIM with excitation at 355 nm. To illustrate the clinical potential, wide-field fluorescence lifetime images of unstained ex vivo tissue have been acquired at near video rate, which is an important step towards real-time FLIM for diagnostic and interoperative imaging, including for screening and image-guided biopsy applications.
Collapse
Affiliation(s)
- James McGinty
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London,
SW7 2AZ, UK
| | - Neil P. Galletly
- Department of Histopathology, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London,
SW7 2AZ, UK
- Department of Histopathology, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Ian Munro
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London,
SW7 2AZ, UK
| | - Daniel S. Elson
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London,
SW7 2AZ, UK
| | - Jose Requejo-Isidro
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London,
SW7 2AZ, UK
| | - Patrizia Cohen
- Department of Histopathology, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Raida Ahmad
- Department of Histopathology, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amanda Forsyth
- Department of Histopathology, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Andrew V. Thillainayagam
- Department of Gastroenterology, Division of Medicine, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Mark A. A. Neil
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London,
SW7 2AZ, UK
| | - Paul M. W. French
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London,
SW7 2AZ, UK
| | - Gordon W Stamp
- Department of Histopathology, Imperial College London, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
20
|
Alchab L, Dupuis G, Balleyguier C, Mathieu MC, Fontaine-Aupart MP, Farcy R. Towards an optical biopsy for the diagnosis of breast cancer in vivo by endogenous fluorescence spectroscopy. JOURNAL OF BIOPHOTONICS 2010; 3:373-384. [PMID: 19953536 DOI: 10.1002/jbio.200900070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The techniques of medical imaging allow the detection of suspect lesions in the breast, but they do not always evidence the malignant nature of these lesions. Breast biopsies and histological analyses are therefore implemented to establish a diagnosis. In order to reduce the number of these invasive procedures, a portable clinical system was designed based upon the excitation of Endogenous Fluorescence in vivo at 405 nm via a fiber-optics probe included in a disposable needle of small diameter (<1 mm). From the fluorescence signal, the authors are able to discriminate between diseased and healthy areas of human breast biopsies. Stronger fluorescence intensity and systematic spectral red shift of the tumor areas were observed. These results are confirmed by confocal microscopy. This new instrument is promising for the minimally invasive diagnosis of breast tumors in vivo with an appreciable limitation of patient trauma and of operational and financial cost.
Collapse
Affiliation(s)
- Lama Alchab
- Centre de Photonique Biomédicale, Centre Laser de l'Université Paris-Sud 11, Faculté des Sciences d'Orsay, Orsay cedex, France
| | | | | | | | | | | |
Collapse
|
21
|
Kamath SD, Mahato KK. Principal component analysis (PCA)-based k-nearest neighbor (k-NN) analysis of colonic mucosal tissue fluorescence spectra. Photomed Laser Surg 2010; 27:659-68. [PMID: 19514813 DOI: 10.1089/pho.2008.2338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The objective of this study was to verify the suitability of principal component analysis (PCA)-based k-nearest neighbor (k-NN) analysis for discriminating normal and malignant autofluorescence spectra of colonic mucosal tissues. BACKGROUND DATA Autofluorescence spectroscopy, a noninvasive technique, has high specificity and sensitivity for discrimination of diseased and nondiseased colonic tissues. Previously, we assessed the efficacy of the technique on colonic data using PCA Match/No match and Artificial Neural Networks (ANNs) analyses. To improve the classification reliability, the present work was conducted using PCA-based k-NN analysis and was compared with previously obtained results. METHODS A total of 115 fluorescence spectra (69 normal and 46 malignant) were recorded from 13 normal and 10 malignant colonic tissues with 325 nm pulsed laser excitation in the spectral region 350-600 nm in vitro. We applied PCA to extract the relevant information from the spectra and used a nonparametric k-NN analysis for classification. RESULTS The normal and malignant spectra showed large variations in shape and intensity. Statistically significant differences were found between normal and malignant classes. The performance of the analysis was evaluated by calculating the statistical parameters specificity and sensitivity, which were found to be 100% and 91.3%, respectively. CONCLUSION The results obtained in this study showed good discrimination between normal and malignant conditions using PCA-based k-NN analysis.
Collapse
Affiliation(s)
- Sudha D Kamath
- Biophysics Unit, Manipal Life Sciences Centre, Manipal University, Manipal, India
| | | |
Collapse
|
22
|
Ebenezar J, Aruna P, Ganesan S. Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro. Photochem Photobiol 2009; 86:77-86. [PMID: 19845540 DOI: 10.1111/j.1751-1097.2009.00628.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of this study was to assess the diagnostic potential of synchronous fluorescence (SF) spectroscopy (SFS) technique for the detection and characterization of normal and different malignancy stages of moderately differentiated squamous cell carcinoma (MDSCC), poorly differentiated squamous cell carcinoma (PDSCC) cervical tissues. SF spectra were measured from 45 biopsies from 30 patients in vitro. Characteristic, highly resolved peaks and significant spectral differences between normal and MDSCC, PDSCC cervical tissues were obtained. Nine potential ratios were calculated and used as input variables for a discriminant analysis across different groups. The potentiality of the SFS technique was estimated by two discriminant analyses. Discriminant analysis I performed across normal and abnormal (including MDSCC and PDSCC) cervical tissues classified as 100% both original and the cross-validated grouped cases. In discriminant analysis II performed across the three groups, normal, MDSCC and PDSCC, 100% of both original and the cross-validated grouped cases were correctly classified. Using the SFS technique, one can obtain all the key biochemical markers such as tryptophan, collagen, hemoglobin, reduced form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide in a single scan and hence they can be targeted as tumor markers in the detection of normal from abnormal cervical tissues.
Collapse
Affiliation(s)
- Jeyasingh Ebenezar
- Division of Medical Physics & Lasers, Department of Physics, Anna University, Chennai, India
| | | | | |
Collapse
|
23
|
Raman RN, Pivetti CD, Rubenchik AM, Matthews DL, Troppmann C, Demos SG. Evaluation of the contribution of the renal capsule and cortex to kidney autofluorescence intensity under ultraviolet excitation. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:020505. [PMID: 19405710 DOI: 10.1117/1.3094948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The use of reduced nicotinamide adenine dinucleotide (NADH) fluorescence to gain metabolic information on kidneys in response to an alteration in oxygen availability has previously been experimentally demonstrated, but signal quantification has not, to date, been addressed. In this work the relative contribution to rat kidney autofluorescence of the capsule versus cortex under ultraviolet excitation is determined from experimental results obtained using autofluorescence microscopy and a suitable mathematical model. The results allow for a quantitative assessment of the relative contribution of the signal originating in the metabolically active cortex as a function of capsule thickness for different wavelengths.
Collapse
|
24
|
Péry E, Blondel WCPM, Thomas C, Guillemin F. Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:024048. [PMID: 19405776 DOI: 10.1117/1.3122368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This work is first a description of a statistical simulation algorithm developed for simulating the spectral absorption and emission of several fluorophores in an absorbing and diffusing multilayer model. Second, a detailed experimental validation of the simulation program is conducted on two sets of liquid and solid multilayer phantoms, containing one, two, or three fluorophores, within absorbing and scattering media. Experimental spatially resolved reflectance spectra are acquired in the wavelength band 400 to 800 nm and compared to corresponding simulated spectra. The degree of similarity between experimentation and simulation data is quantified. The results obtained underline good correlations with mean errors varying from 2 to 10%, depending on the number of layers and on the complexity of the phantom's composition.
Collapse
Affiliation(s)
- Emilie Péry
- Nancy University, Automatic Control Research Centre (CRAN), Joint Research Unit (UMR) 7039 Nancy University, National Center for Scientific Research (CNRS), F-54516 Vandoeuvre-les-Nancy, France.
| | | | | | | |
Collapse
|
25
|
Galletly N, McGinty J, Dunsby C, Teixeira F, Requejo-Isidro J, Munro I, Elson D, Neil M, Chu A, French P, Stamp G. Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin. Br J Dermatol 2008; 159:152-61. [DOI: 10.1111/j.1365-2133.2008.08577.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Rodero AB, Silveira Jr. L, Rodero DA, Racanicchi R, Pacheco MTT. Fluorescence Spectroscopy for Diagnostic Differentiation in Uteri’s Cervix Biopsies with Cervical/Vaginal Atypical Cytology. J Fluoresc 2008; 18:979-85. [DOI: 10.1007/s10895-008-0359-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 02/27/2008] [Indexed: 11/28/2022]
|
27
|
Kirkpatrick ND, Brewer MA, Utzinger U. Endogenous optical biomarkers of ovarian cancer evaluated with multiphoton microscopy. Cancer Epidemiol Biomarkers Prev 2008; 16:2048-57. [PMID: 17932352 DOI: 10.1158/1055-9965.epi-07-0009] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Among gynecologic cancers, ovarian cancer is the second most common and has the highest mortality. Currently, there is no accurate early diagnostic technique for ovarian cancer. Furthermore, little is understood regarding the early progression of this disease. We have imaged multiphoton interactions of endogenous tissue constituents from normal and abnormal ovarian biopsies that were kept viable during transport from the operating room and microscopy. EXPERIMENTAL DESIGN The ovarian surface and underlying stroma were assessed with two-photon excited fluorescence (2PEF) and second harmonic generation (SHG). High-resolution, optically sectioned images were analyzed for epithelial morphology based on 2PEF and collagen density and structural integrity based on SHG. Additionally, multiwavelength 2PEF provided an estimation of the cellular redox ratio of epithelial cells. RESULTS Normal tissue exhibited a uniform epithelial layer with highly structured collagen in the stroma, whereas abnormal tissue exhibited varied epithelium with large cells and substantial quantitative changes to the collagen structure. Samples from patients at high risk for developing ovarian cancer (based on their personal/family history of cancer) exhibited highly variable cellular redox ratios and changes in collagen structure that trended toward cancer samples. CONCLUSION This study highlights differences in endogenous signals in viable ovarian biopsies based on quantitative collagen structural changes and redox ratio estimates that may lead to improved detection and further insights in ovarian cancer, particularly in the early stages of the disease.
Collapse
|
28
|
De Beule PAA, Dunsby C, Galletly NP, Stamp GW, Chu AC, Anand U, Anand P, Benham CD, Naylor A, French PMW. A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2007; 78:123101. [PMID: 18163714 DOI: 10.1063/1.2818785] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The autofluorescence of biological tissue can be exploited for the detection and diagnosis of disease but, to date, its complex nature and relatively weak signal levels have impeded its widespread application in biology and medicine. We present here a portable instrument designed for the in situ simultaneous measurement of autofluorescence emission spectra and temporal decay profiles, permitting the analysis of complex fluorescence signals. This hyperspectral fluorescence lifetime probe utilizes two ultrafast lasers operating at 355 and 440 nm that can excite autofluorescence from many different biomolecules present in skin tissue including keratin, collagen, nicotinamide adenine dinucleotide (phosphate), and flavins. The instrument incorporates an optical fiber probe to provide sample illumination and fluorescence collection over a millimeter-sized area. We present a description of the system, including spectral and temporal characterizations, and report the preliminary application of this instrument to a study of recently resected (<2 h) ex vivo skin lesions, illustrating its potential for skin cancer detection and diagnosis.
Collapse
Affiliation(s)
- P A A De Beule
- Department of Physics, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Drakaki E, Makropoulou M, Serafetinides AA. In vitro fluorescence measurements and Monte Carlo simulation of laser irradiation propagation in porcine skin tissue. Lasers Med Sci 2007; 23:267-76. [PMID: 17674121 DOI: 10.1007/s10103-007-0478-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
In dermatology, the in vivo spectral fluorescence measurements of human skin can serve as a valuable supplement to standard non-invasive techniques for diagnosing various skin diseases. However, quantitative analysis of the fluorescence spectra is complicated by the fact that skin is a complex multi-layered and inhomogeneous organ, with varied optical properties and biophysical characteristics. In this work, we recorded, in vitro, the laser-induced fluorescence emission signals of healthy porcine skin, one of the animals, which is considered as one of the most common models for investigations related to medical diagnostics of human cutaneous tissues. Differences were observed in the form and intensity of the fluorescence signal of the porcine skin, which can be attributed to the different concentrations of the native fluorophores and the variable physical and biological conditions of the skin tissue. As the light transport in the tissue target is directly influencing the absorption and the fluorescence emission signals, we performed Monte Carlo simulation of the light distribution in a five-layer model of human skin tissue, with a pulsed ultraviolet laser beam.
Collapse
Affiliation(s)
- E Drakaki
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, Athens 15780, Greece.
| | | | | |
Collapse
|
30
|
Crowell E, Wang G, Cox J, Platz CP, Geng L. Correlation coefficient mapping in fluorescence spectroscopy: tissue classification for cancer detection. Anal Chem 2007; 77:1368-75. [PMID: 15732920 DOI: 10.1021/ac049074+] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Correlation coefficient mapping has been applied to intrinsic fluorescence spectra of colonic tissue for the purpose of cancer diagnosis. Fluorescence emission spectra were collected of 57 colonic tissue sites in a range of 4 physiological conditions: normal (29), hyperplastic (2), adenomatous (5), and cancerous tissues (21). The sample-sample correlation was used to examine the ability of correlation coefficient mapping to determine tissue disease state. The correlation coefficient map indicates two main categories of samples. These categories were found to relate to disease states of the tissue. Sensitivity, selectivity, predictive value positive, and predictive value negative for differentiation between normal tissue and all other categories were all above 92%. This was found to be similar to, or higher than, tissue classification using existing methods of data reduction. Wavelength-wavelength correlation among the samples highlights areas of importance for tissue classification. The two-dimensional correlation map reveals absorption by NADH and hemoglobin in the samples as negative correlation, an effect not obvious from the one-dimensional fluorescence spectra alone. The integrity of tissue was examined in a time series of spectra of a single tissue sample taken after tissue resection. The wavelength-wavelength correlation coefficient map shows the areas of significance for each fluorophore and their relation to each other. NADH displays negative correlation to collagen and FAD, from the absorption of emission or fluorescence resonance energy transfer. The wavelength-wavelength correlation map for the decay set also clearly shows that there are only three fluorophores of importance in the samples, by the well-defined pattern of the map. The sample-sample correlation coefficient map reveals the changes over time and their impact on tissue classification. Correlation coefficient mapping proves to be an effective method for sample classification and cancer detection.
Collapse
Affiliation(s)
- Ed Crowell
- Department of Chemistry, the Optical Science and Technology Center, and the Center for Biocatalysis and Bioprocessing, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
31
|
Kamath SD, Mahato KK. Optical pathology using oral tissue fluorescence spectra: classification by principal component analysis and k-means nearest neighbor analysis. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:014028. [PMID: 17343503 DOI: 10.1117/1.2437738] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The spectral analysis and classification for discrimination of pulsed laser-induced autofluorescence spectra of pathologically certified normal, premalignant, and malignant oral tissues recorded at a 325-nm excitation are carried out using MATLAB@R6-based principal component analysis (PCA) and k-means nearest neighbor (k-NN) analysis separately on the same set of spectral data. Six features such as mean, median, maximum intensity, energy, spectral residuals, and standard deviation are extracted from each spectrum of the 60 training samples (spectra) belonging to the normal, premalignant, and malignant groups and they are used to perform PCA on the reference database. Standard calibration models of normal, premalignant, and malignant samples are made using cluster analysis. We show that a feature vector of length 6 could be reduced to three components using the PCA technique. After performing PCA on the feature space, the first three principal component (PC) scores, which contain all the diagnostic information, are retained and the remaining scores containing only noise are discarded. The new feature space is thus constructed using three PC scores only and is used as input database for the k-NN classification. Using this transformed feature space, the centroids for normal, premalignant, and malignant samples are computed and the efficient classification for different classes of oral samples is achieved. A performance evaluation of k-NN classification results is made by calculating the statistical parameters specificity, sensitivity, and accuracy and they are found to be 100, 94.5, and 96.17%, respectively.
Collapse
Affiliation(s)
- Sudha D Kamath
- Center for Laser Spectroscopy, KMC Life Sciences Center, Manipal Academy of Higher Education, Manipal 576 104, India
| | | |
Collapse
|
32
|
Malini R, Venkatakrishna K, Kurien J, Pai KM, Rao L, Kartha VB, Krishna CM. Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study. Biopolymers 2006; 81:179-93. [PMID: 16231284 DOI: 10.1002/bip.20398] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Optical spectroscopy methods are fast emerging as potential alternatives for early diagnosis of cancer. A Raman spectroscopy method for discrimination of normal and malignant oral tissues has been developed by us earlier. It is necessary to evaluate and establish the validity of the approach before it can be routinely used. In the present study, our Raman spectroscopy investigations are extended further to evaluate the efficacy of the technique to discriminate between normal, inflammatory, premalignant, and malignant conditions in oral tissue. Spectral profiles of normal, malignant, premalignant, and inflammatory conditions show pronounced differences between one another. Spectra of normal tissues can be attributed mainly to lipids whereas pathological tissue spectra are dominated by proteins. Principal components analysis (PCA) of the spectral data sets belonging to the four different categories showed that scores of factors differentiated between normal and all pathological conditions but gave only poor discrimination among the three pathological states. PCA combined with multiparameter limit tests allow match/mismatch criteria to be applied to test samples when pathologically certified calibration sets are available in each class. It is shown that by this method all the four tissue types could be discriminated and diagnosed correctly. The biochemical differences between normal and pathological conditions of oral tissue are also discussed from spectral differences of the different classes of spectra.
Collapse
Affiliation(s)
- R Malini
- Center for Laser Spectroscopy, Manipal Academy of Higher Education, Manipal, India
| | | | | | | | | | | | | |
Collapse
|
33
|
Paguirigan A, Beebe DJ. Gelatin based microfluidic devices for cell culture. LAB ON A CHIP 2006; 6:407-13. [PMID: 16511624 DOI: 10.1039/b517524k] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We have developed a technique for fabricating microfluidic devices from gelatin using a natural crosslinking process. Gelatin, crosslinked with the naturally occurring enzyme transglutaminase is molded to produce microchannels suitable for adherent cell culture and analysis. The autofluorescence of the material was shown to be minimal and within the range of typical background, ensuring utility with analyses using fluorescent dyes and labels would not be affected. Also, normal murine mammary epithelial cells were successfully cultured in the microchannels. The morphology of these adherent epithelial cells was shown to be significantly different for cells grown on rigid tissue culture plastic in either macro- or microscale cultures (even in the presence of a surface coating of gelatin) than those grown on the flexible crosslinked gelatin microchannels. Using these devices, the effects of both the extracellular matrix and soluble factors on cellular behavior and differentiation can be studied in microenvironments that more closely mimic the in vivo environment.
Collapse
Affiliation(s)
- A Paguirigan
- Engineering Centers Bldg., 1550 Engineering Dr., Madison, WI 53704, USA
| | | |
Collapse
|
34
|
Chidananda SM, Satyamoorthy K, Rai L, Manjunath AP, Kartha VB. Optical diagnosis of cervical cancer by fluorescence spectroscopy technique. Int J Cancer 2006; 119:139-45. [PMID: 16450394 DOI: 10.1002/ijc.21825] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the present work, we examine normal and malignant stage IIIB cervical tissue by laser induced fluorescence, with 2 different objectives. (i) Development of the fluorescence spectroscopy technique as a standard optical method for discrimination of normal and malignant tissue samples and, (ii) Optimization of the technique by the method of matching of a sample spectrum with calibration sets of spectra of pathologically certified samples. Laser-induced fluorescence spectra were measured using samples from 62 subjects at different excitation wavelengths. Principal component analysis (PCA) of spectra and intensity ratios of curve-resolved fluorescence peaks were tested for discrimination. It was found that PCA of total fluorescence at 325 nm excitation gives specificity and sensitivity over 95%. Use of calibration sets of spectra of histo-pathologically certified samples combined with PCA for matching and pass/fail classification of test samples is shown to have high sensitivity/specificity for routine diagnostic purposes as well as for possible staging of the disease. Further, the multi-component origin of the fluorescence spectra is illustrated by curve resolution and fluorescence spectra of separated proteins of tissue homogenates.
Collapse
Affiliation(s)
- Siddappa M Chidananda
- Center for Molecular and Cellular Biology, Manipal Academy of Higher Education, Science Center, Manipal, Karnataka, India
| | | | | | | | | |
Collapse
|
35
|
Subhash N, Mallia JR, Thomas SS, Mathews A, Sebastian P, Madhavan J. Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:014018. [PMID: 16526895 DOI: 10.1117/1.2165184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A low-cost, fast, and noninvasive method for early diagnosis of malignant lesions of oral mucosa based on diffuse reflectance spectral signatures is presented. In this technique, output of a tungsten halogen lamp is guided to the tissue through the central fiber of a reflection probe whose surrounding six fibers collects tissue reflectance. Ex vivo diffuse reflectance spectra in the 400 to 600-nm region is measured from surgically removed oral cavity lesions using a miniature fiber optic spectrometer connected to a computer. Reflectance spectral intensity is higher in malignant tissues and shows dips at 542 and 577 nm owing to absorption from oxygenated hemoglobin (HbO2). Measurements carried out, within an hour of surgical excision, on malignant lesion and adjoining uninvolved mucosa show that these absorption features are more prominent in neoplastic tissues owing to increased microvasculature and blood content. It is observed that reflectance intensity ratio of hemoglobin bands, R540/R575, from malignant sites are always lower than that from normal sites and vary according to the histological grade of malignancy. The diffuse reflectance intensity ratio R540/R575 of the hemoglobin bands appears to be a useful tool to discriminate between malignant lesions and normal mucosa of the oral cavity in a clinical setting.
Collapse
Affiliation(s)
- N Subhash
- Centre for Earth Science Studies, Biophotonics Laboratory, Akkulam, Trivandrum-695031, India.
| | | | | | | | | | | |
Collapse
|
36
|
Nayak GS, Kamath S, Pai KM, Sarkar A, Ray S, Kurien J, D'Almeida L, Krishnanand BR, Santhosh C, Kartha VB, Mahato KK. Principal component analysis and artificial neural network analysis of oral tissue fluorescence spectra: Classification of normal premalignant and malignant pathological conditions. Biopolymers 2006; 82:152-66. [PMID: 16470821 DOI: 10.1002/bip.20473] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pulsed laser-induced autofluorescence spectroscopic studies of pathologically certified normal, premalignant, and malignant oral tissues were carried out at 325 nm excitation. The spectral analysis and classification for discrimination among normal, premalignant, and malignant conditions were performed using principal component analysis (PCA) and artificial neural network (ANN) separately on the same set of spectral data. In case of PCA, spectral residuals, Mahalanobis distance, and scores of factors were used for discrimination among normal, premalignant, and malignant cases. In ANN, parameters like mean, spectral residual, standard deviation, and total energy were used to train the network. The ANN used in this study is a classical multiplayer feed-forward type with a back-propagation algorithm for the training of the network. The specificity and sensitivity were determined in both classification schemes. In the case of PCA, they are 100 and 92.9%, respectively, whereas for ANN they are 100 and 96.5% for the data set considered.
Collapse
Affiliation(s)
- G S Nayak
- Department of Electronics and Communication, MIT, Manipal, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hsiung PL, Nambiar PR, Fujimoto JG. Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:064033. [PMID: 16409098 DOI: 10.1117/1.2147155] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ultrahigh resolution optical coherence tomography (OCT) is an emerging imaging modality that enables noninvasive imaging of tissue with 1- to 3-microm resolutions. Initial OCT studies have typically been performed using harvested tissue specimens (ex vivo). No reports have investigated postexcision tissue degradation on OCT image quality. We investigate the effects of formalin fixation and commonly used cell culture media on tissue optical scattering characteristics in OCT images at different times postexcision compared to in vivo conditions. OCT imaging at 800-nm wavelength with 1.5-mum axial resolution is used to image the hamster cheek pouch in vivo, followed by excision and imaging during preservation in phosphate-buffered saline (PBS), Dulbecco's Modified Eagle's Media (DMEM), and 10% neutral-buffered formalin. Imaging is performed in vivo and at sequential time points postexcision from 15 min to 10 to 18 h. Formalin fixation results in increases in scattering intensity from the muscle layers, as well as shrinkage of the epithelium, muscle, and connective tissue of approximately 50%. PBS preservation shows loss of optical contrast within two hours, occurring predominantly in deep muscle and connective tissue. DMEM maintains tissue structure and optical scattering characteristics close to in vivo conditions up to 4 to 6 h after excision and best preserved tissue optical properties when compared to in vivo imaging.
Collapse
Affiliation(s)
- Pei-Lin Hsiung
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
38
|
Abstract
AIM: To investigate the autofluorescence spectroscopic differences in normal and adenomatous colonic tissues and to determine the optimal excitation wavelengths for subsequent study and clinical application.
METHODS: Normal and adenomatous colonic tissues were obtained from patients during surgery. A FL/FS920 combined TCSPC spectrofluorimeter and a lifetime spectr-ometer system were used for fluorescence measurement. Fluorescence excitation wavelengths varying from 260 to 540 nm were used to induce the autofluorescence spectra, and the corresponding emission spectra were recorded from a range starting 20 nm above the excitation wavelength and extending to 800 nm. Emission spectra were assembled into a three-dimensional fluorescence spectroscopy and an excitation-emission matrix (EEM) to exploit endogenous fluorophores and diagnostic information. Then emission spectra of normal and adenomatous colonic tissues at certain excitation wavelengths were compared to determine the optimal excitation wavelengths for diagnosis of colonic cancer.
RESULTS: When compared to normal tissues, low NAD (P)H and FAD, but high amino acids and endogenous phorphyrins of protoporphyrin IX characterized the high-grade malignant colonic tissues. The optimal excitation wavelengths for diagnosis of colonic cancer were about 340, 380, 460, and 540 nm.
CONCLUSION: Significant differences in autofluorescence peaks and its intensities can be observed in normal and adenomatous colonic tissues. Autofluorescence EEMs are able to identify colonic tissues.
Collapse
Affiliation(s)
- Bu-Hong Li
- Biomedical Optics Laboratory, Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| | | |
Collapse
|
39
|
Zhu C, Palmer GM, Breslin TM, Xu F, Ramanujam N. Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:024032. [PMID: 15910105 DOI: 10.1117/1.1897398] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We explore the effects of the illumination and collection geometry on optical spectroscopic diagnosis of breast cancer. Fluorescence and diffuse reflectance spectroscopy in the UV-visible spectral range are made with a multiseparation probe at three illumination-collection separations of 735, 980, and 1225 microm, respectively, from 13 malignant and 34 nonmalignant breast tissues. Statistical analysis is carried out on two types of data inputs: (1) the fluorescence and diffuse reflectance spectra recorded at each of the three illumination-collection separations and (2) the integrated fluorescence (at each excitation wavelength) or diffuse reflectance over the entire spectrum at all three illumination-collection separations. The results show that using the integrated fluorescence intensities recorded at a single excitation wavelength at all three illumination-collection separations can discriminate malignant from nonmalignant breast tissues with similar classification accuracy to that using spectral data measured at several excitation wavelengths with a single illumination-collection separation. These findings have significant implications with respect to the design of an optical system for breast cancer diagnosis. Examining the intensity attenuation at a single wavelength rather than spectral intensities at multiple wavelengths can significantly reduce the measurement and data processing time in a clinical setting as well as the cost and complexity of the optical system.
Collapse
Affiliation(s)
- Changfang Zhu
- University of Wisconsin-Madison, Department of Electrical and Computer Engineering, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
40
|
Wu Y, Xi P, Qu J, Cheung TH, Yu MY. Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue. OPTICS EXPRESS 2005; 13:382-8. [PMID: 19488364 DOI: 10.1364/opex.13.000382] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A portable confocal system with the excitations at 355nm and 457nm was instrumented to investigate the depth-resolved fluorescence of cervical tissue. The study focused on extracting biochemical and morphological information carried in the depth-resolved signals measured from the normal squamous epithelial tissue and squamous intraepithelial lesions. Strong keratin fluorescence with the spectral characteristics similar to collagen were observed from the topmost keratinizing layer of all tissue samples. It was found that NADH and FAD fluorescence measured from the underlying non-keratinizing epithelial layer were strongly correlated to the tissue pathology. This study demonstrates that the depth-resolved fluorescence spectroscopy can potentially provide more accurate diagnostic information for determining tissue pathology.
Collapse
|
41
|
Dramićanin T, Dramićanin MD, Jokanović V, Nikolić-Vukosavljević D, Dimitrijević B. Three-dimensional Total Synchronous Luminescence Spectroscopy Criteria for Discrimination Between Normal and Malignant Breast Tissues. Photochem Photobiol 2005; 81:1554-8. [PMID: 16149859 DOI: 10.1562/2005-02-15-ra-442] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Specimens of malignant and normal female human breast tissues were analyzed after surgery by means of synchronous luminescence spectroscopy. Measurements were performed in the ranges of excitation wavelengths from 330 to 650 nm and synchronous wavelengths from 30 to 120 nm to obtain ordinary and first derivative three-dimensional total synchronous luminescence spectra (3d-TSLS) of each specimen. Arithmetic mean of these spectra has been calculated for normal and malignant specimens and analyzed to establish criteria for tissue differentiation. Spectral domain volumes (volumes below luminescence intensity surface) and mean spectral slopes have been calculated and also analyzed as tissue discrimination criteria. The obtained results are discussed in view of the possible relevance of synchronous luminescence spectroscopy in discrimination between normal and malignant breast tissue.
Collapse
Affiliation(s)
- Tatjana Dramićanin
- Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia and Montenegro.
| | | | | | | | | |
Collapse
|
42
|
Krishna CM, Sockalingum GD, Kurien J, Rao L, Venteo L, Pluot M, Manfait M, Kartha VB. Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma. APPLIED SPECTROSCOPY 2004; 58:1128-35. [PMID: 15479531 DOI: 10.1366/0003702041959460] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Micro-Raman spectra of formalin-fixed oral squamous normal and carcinoma tissues, stored at room temperature for 2 months, have been recorded. Spectra were recorded both in the epithelial and subepithelial regions of the tissues. No noticeable spectral contamination due to formalin was observed. Very significant differences between spectra of normal epithelial and malignant epithelial samples were found. No such differences in spectra of subepithelial malignant and subepithelial normal samples could be observed. This study shows that spectra from the epithelial region changes drastically because of malignancy-induced biochemical changes in this region. Major differences between normal and malignant spectra seem to arise from the protein composition, conformational/structural changes, and possible increase in protein content in malignant epithelia. The differences between normal epithelial and subepithelial spectra, as expected, arise mainly from the collagen in subepithelial tissue. Principal component analysis of the combined sets of spectra-epithelial and subepithelial, normal and malignant- showed that very good discrimination can be achieved by Raman microspectroscopy. This study thus validates the suitability of formalin-fixed tissues for optical pathology in oral malignancy.
Collapse
Affiliation(s)
- C Murali Krishna
- Center for Laser Spectroscopy, Manipal Academy of Higher Education, Manipal-576104, India.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Skala MC, Palmer GM, Zhu C, Liu Q, Vrotsos KM, Marshek-Stone CL, Gendron-Fitzpatrick A, Ramanujam N. Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers. Lasers Surg Med 2004; 34:25-38. [PMID: 14755422 PMCID: PMC2768119 DOI: 10.1002/lsm.10239] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES The first objective of this study was to evaluate the performance of fluorescence spectroscopy for diagnosing pre-cancers in stratified squamous epithelial tissues in vivo using two different probe geometries with (1) overlapping versus (2) non-overlapping illumination and collection areas on the tissue surface. Probe (1) and probe (2) are preferentially sensitive to the fluorescence originating from the tissue surface and sub-surface tissue depths, respectively. The second objective was to design a novel, angled illumination fiber-optic probe to maximally exploit the depth-dependent fluorescence properties of epithelial tissues. STUDY DESIGN/MATERIALS AND METHODS In the first study, spectra were measured from epithelial pre-cancers and normal tissues in the hamster cheek pouch and analyzed with a non-parametric classification algorithm. In the second study, Monte Carlo modeling was used to simulate fluorescence measurements from an epithelial tissue model with the angled illumination probe. RESULTS An unbiased classification algorithm based on spectra measured with probes (1) and (2), classified pre-cancerous and normal tissues with 78 and 94% accuracy, respectively. The angled illumination probe design provides the capability to detect fluorescence from a wide range of tissue depths in an epithelial tissue model. CONCLUSIONS The first study demonstrates that fluorescence originating from sub-surface tissue depths (probe (2)) is more diagnostic than fluorescence originating from the tissue surface (probe (1)) in the hamster cheek pouch model. However in general, it is difficult to know a priori the optimal probe geometry for pre-cancer detection in a particular epithelial tissue model. The angled illumination probe provides the capability to measure tissue fluorescence selectively from different depths within epithelial tissues, thus obviating the need to select a single optimal probe design for the fluorescence-based diagnosis of epithelial pre-cancers.
Collapse
Affiliation(s)
- Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Gregory M. Palmer
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Changfang Zhu
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Quan Liu
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Kristin M. Vrotsos
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | | | | | - Nirmala Ramanujam
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
44
|
Manjunath BK, Kurein J, Rao L, Krishna CM, Chidananda MS, Venkatakrishna K, Kartha VB. Autofluorescence of oral tissue for optical pathology in oral malignancy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2004; 73:49-58. [PMID: 14732251 DOI: 10.1016/j.jphotobiol.2003.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pulsed laser-induced-fluorescence studies of pathologically certified oral tissues are carried out at different excitations and time delays. Among the several excitations used, 325 nm produced noticeably different spectral profile for normal and malignant tissues. Extensive curve analysis was carried out in order to understand changes in biochemical composition of tissue based on spectral profiles. Curve resolution and principal component analysis (PCA) show that the fluorescence intensity changes from normal to malignant tissue samples are not completely explained in terms of simple collagen and NAD(P)H intensity changes. The spectra require at least five components to be fully accounted for. Several discrimination methodologies based on PCA and intensity differences between different emission peaks (resultant peaks of curve analysis) were also evaluated. The results obtained indicate PCA using Mahalanobis distance and spectral residual as discrimination parameters provides best discrimination and can be used for matching unknown samples to standard calibration sets. Intensity ratio of bound NAD(P)H to collagen seems to be more suitable for discrimination between normal and malignant oral tissue, compared to ratio of collagen to total intensity of all the other components together.
Collapse
Affiliation(s)
- B K Manjunath
- Center for Laser Spectroscopy, Manipal Academy of Higher Education, Manipal 576104, India
| | | | | | | | | | | | | |
Collapse
|
45
|
Palmer GM, Zhu C, Breslin TM, Xu F, Gilchrist KW, Ramanujam N. Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (march 2003). IEEE Trans Biomed Eng 2003; 50:1233-42. [PMID: 14619993 DOI: 10.1109/tbme.2003.818488] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nonmalignant (n = 36) and malignant (n = 20) tissue samples were obtained from breast cancer and breast reduction surgeries. These tissues were characterized using multiple excitation wavelength fluorescence spectroscopy and diffuse reflectance spectroscopy in the ultraviolet-visible wavelength range, immediately after excision. Spectra were then analyzed using principal component analysis (PCA) as a data reduction technique. PCA was performed on each fluorescence spectrum, as well as on the diffuse reflectance spectrum individually, to establish a set of principal components for each spectrum. A Wilcoxon rank-sum test was used to determine which principal components show statistically significant differences between malignant and nonmalignant tissues. Finally, a support vector machine (SVM) algorithm was utilized to classify the samples based on the diagnostically useful principal components. Cross-validation of this nonparametric algorithm was carried out to determine its classification accuracy in an unbiased manner. Multiexcitation fluorescence spectroscopy was successful in discriminating malignant and nonmalignant tissues, with a sensitivity and specificity of 70% and 92%, respectively. The sensitivity (30%) and specificity (78%) of diffuse reflectance spectroscopy alone was significantly lower. Combining fluorescence and diffuse reflectance spectra did not improve the classification accuracy of an algorithm based on fluorescence spectra alone. The fluorescence excitation-emission wavelengths identified as being diagnostic from the PCA-SVM algorithm suggest that the important fluorophores for breast cancer diagnosis are most likely tryptophan, NAD(P)H and flavoproteins.
Collapse
Affiliation(s)
- Gregory M Palmer
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Zhu C, Liu Q, Ramanujam N. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation. JOURNAL OF BIOMEDICAL OPTICS 2003; 8:237-247. [PMID: 12683849 DOI: 10.1117/1.1559058] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Accepted: 10/29/2002] [Indexed: 05/24/2023]
Abstract
Developing fiber optic probe geometries to selectively measure fluorescence spectra from different sublayers within human epithelial tissues will potentially improve the endogenous fluorescence contrast between neoplastic and nonneoplastic tissues. In this study, two basic fiber optic probe geometries, which are called the variable aperture (VA) and multidistance (MD) approaches, are compared for depth-resolved fluorescence measurements from human cervical epithelial tissues. The VA probe has completely overlapping illumination and collection areas with variable diameters, while the MD probe employs separate illumination and collection fibers with a fixed separation between them. Monte Carlo simulation results show that the total fluorescence detected is significantly higher for the VA probe geometry, while the probing depth is significantly greater for the MD probe geometry. An important observation is that the VA probe is more sensitive to the epithelial layer, while the MD probe is more sensitive to the stromal layer. The effect of other factors, including numerical aperture (NA) and tissue optical properties on the fluorescence measurements with VA and MD probe geometries, are also evaluated. The total fluorescence detected with both probe geometries significantly increases when the fiber NA is changed from 0.22 to 0.37. The sensitivity to different sublayers is found to be strongly dependent on the tissue optical properties. The simulation results are used to design a simple fiber optic probe that combines both the VA and MD geometries to enable fluorescence measurements from the different sublayers within human epithelial tissues.
Collapse
Affiliation(s)
- Changfang Zhu
- University of Wisconsin-Madison, Department of Electrical and Computer Engineering, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
47
|
|