Copyright
©The Author(s) 2025.
World J Radiol. Aug 28, 2025; 17(8): 110307
Published online Aug 28, 2025. doi: 10.4329/wjr.v17.i8.110307
Published online Aug 28, 2025. doi: 10.4329/wjr.v17.i8.110307
Table 4 Model performance for predicting tumor node metastasis stages in esophageal cancer patients
Model | Primary cohort | Validation cohorts | ||||
AUC (95%CI) | SEN (95%CI) | SPE (95%CI) | AUC (95%CI) | SEN (95%CI) | SPE (95%CI) | |
T2WI | 0.788 (0.712, 0.858) | 0.75 (0.642, 0.834) | 0.746 (0.634, 0.833) | 0.779 (0.651, 0.892) | 0.667 (0.496, 0.803) | 0.8 (0.627, 0.905) |
T1WI | 0.859 (0.799, 0.919) | 0.829 (0.729, 0.897) | 0.789 (0.681, 0.868) | 0.844 (0.728, 0.941) | 0.636 (0.466, 0.778) | 0.8 (0.627, 0.905) |
Combined | 0.877 (0.819, 0.929) | 0.842 (0.744, 0.907) | 0.761 (0.65, 0.845) | 0.851 (0.739, 0.948) | 0.697 (0.527, 0.826) | 0.8 (0.627, 0.905) |
- Citation: Yang RH, Lin ZP, Dong T, Fan WX, Qin HD, Jiang GH, Dai HY. Magnetic resonance imaging-based radiomics signature for predicting preoperative staging of esophageal cancer. World J Radiol 2025; 17(8): 110307
- URL: https://www.wjgnet.com/1949-8470/full/v17/i8/110307.htm
- DOI: https://dx.doi.org/10.4329/wjr.v17.i8.110307