Prospective Study
Copyright ©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Radiol. Jun 28, 2022; 14(6): 155-164
Published online Jun 28, 2022. doi: 10.4329/wjr.v14.i6.155
Evaluation of the dual vascular supply patterns in ground-glass nodules with a dynamic volume computed tomography
Chao Wang, Ning Wu, Zhuang Zhang, Lai-Xing Zhang, Xiao-Dong Yuan
Chao Wang, Zhuang Zhang, Lai-Xing Zhang, Department of Graduate, Hebei North University, Zhangjiakou 075000, Hebei Province, China
Ning Wu, Xiao-Dong Yuan, Department of Radiology, The Eighth Medical Center of the People's Liberation Army General Hospital, Beijing 100091, China
Author contributions: Yuan XD and Wu N designed the study; Wang C wrote the first draft of the manuscript; Zhang Z and Zhang LX collected the data; Wang C performed the literature search and analysis; Yuan XD and Wang C conducted the statistical analysis and polished the language; all authors participated in and approved the final manuscript.
Supported by the National Natural Science Foundation of China, No. 81671680.
Institutional review board statement: Our prospective study was approved by our institutional review board.
Informed consent statement: Written informed consents were obtained from all patients.
Conflict-of-interest statement: The authors of this manuscript having no conflicts of interest to disclose.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Xiao-Dong Yuan, MD, PhD, Chief Doctor, Professor, Department of Radiology, The Eighth Medical Center of the People's Liberation Army General Hospital, No. 17 Heishanhu Road, Haidian District, Beijing 100091, China. yuanxiaodongzj@163.com
Received: December 2, 2021
Peer-review started: December 2, 2021
First decision: April 8, 2022
Revised: April 20, 2022
Accepted: June 16, 2022
Article in press: June 16, 2022
Published online: June 28, 2022
Abstract
BACKGROUND

In recent years, the detection rate of ground-glass nodules (GGNs) has been improved dramatically due to the popularization of low-dose computed tomography (CT) screening with high-resolution CT technique. This presents challenges for the characterization and management of the GGNs, which depends on a thorough investigation and sufficient diagnostic knowledge of the GGNs. In most diagnostic studies of the GGNs, morphological manifestations are used to differentiate benignancy and malignancy. In contrast, few studies are dedicated to the assessment of the hemodynamics, i.e., perfusion parameters of the GGNs.

AIM

To assess the dual vascular supply patterns of GGNs on different histopathology and opacities.

METHODS

Forty-seven GGNs from 47 patients were prospectively included and underwent the dynamic volume CT. Histopathologic diagnoses were obtained within two weeks after the CT examination. Blood flow from the bronchial artery [bronchial flow (BF)] and pulmonary artery [pulmonary flow (PF)] as well as the perfusion index (PI) = [PF/(PF + BF)] were obtained using first-pass dual-input CT perfusion analysis and compared respectively between different histopathology and lesion types (pure or mixed GGNs) and correlated with the attenuation values of the lesions using one-way ANOVA, student’s t test and Pearson correlation analysis.

RESULTS

Of the 47 GGNs (mean diameter, 8.17 mm; range, 5.3-12.7 mm), 30 (64%) were carcinoma, 6 (13%) were atypical adenomatous hyperplasia and 11 (23%) were organizing pneumonia. All perfusion parameters (BF, PF and PI) demonstrated no significant difference among the three conditions (all P > 0.05). The PFs were higher than the BFs in all the three conditions (all P < 0.001). Of the 30 GGN carcinomas, 14 showed mixed GGNs and 16 pure GGNs with a higher PI in the latter (P < 0.01). Of the 17 benign GGNs, 4 showed mixed GGNs and 13 pure GGNs with no significant difference of the PI between the GGN types (P = 0.21). A negative correlation (r = -0.76, P < 0.001) was demonstrated between the CT attenuation values and the PIs in the 30 GGN carcinomas.

CONCLUSION

The GGNs are perfused dominantly by the PF regardless of its histopathology while the weight of the BF in the GGN carcinomas increases gradually during the progress of its opacification.

Keywords: Ground-glass nodules, Tomography, X-ray computed, Lung cancer, Perfusion computed tomography, Dual blood supply

Core Tip: In this study, bronchial flow (BF) and pulmonary flow (PF) as well as perfusion index (PI) were obtained by using first-pass dual-input computed tomography perfusion analysis and compared respectively among different histopathological types and between pure and mixed ground-glass nodules (GGNs), then correlated with the attenuation values in forty-seven GGNs from 47 patients. We found that the GGNs are perfused dominantly by the PF regardless of histopathological types while the weight of the BF in the GGN carcinomas increases gradually during its opacification. Therefore, the PI may be a potentially useful biomarker for distinguishing indolent nodules from aggressive ones.