Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. Jun 15, 2025; 17(6): 106608
Published online Jun 15, 2025. doi: 10.4251/wjgo.v17.i6.106608
Published online Jun 15, 2025. doi: 10.4251/wjgo.v17.i6.106608
Table 2 The six best models with optimal machine learning approach and their performance in training and internal validation set
Model | Training set | Internal-Validation set | ||||||
Accuracy | AUC (95%CI) | NPV | PPV | Accuracy | AUC (95%CI) | NPV | PPV | |
The tumor-only model (KNN) | 0.690 | 0.757 (0.724-0.789) | 0.532 | 0.796 | 0.731 | 0.750 (0.700-0.801) | 0.654 | 0.780 |
The 5 mm peri-tumor model (LightGBM) | 0.768 | 0.857 (0.824-0.891) | 0.629 | 0.860 | 0.746 | 0.713 (0.665-0.761) | 0.577 | 0.854 |
The 10 mm peri-tumor model (KNN) | 0.723 | 0.802 (0.776-0.829) | 0.548 | 0.839 | 0.776 | 0.803 (0.763-0.842) | 0.577 | 0.902 |
The tumor-peri-tumor 5 mm model (extreme gradient boosting) | 0.935 | 0.987 (0.934-1.000) | 0.887 | 0.968 | 0.701 | 0.774 (0.696-0.853) | 0.654 | 0.732 |
The tumor-peri-tumor 10 mm model (logistic regression) | 0.781 | 0.862 (0.821-0.904) | 0.774 | 0.785 | 0.761 | 0.841 (0.777-0.904) | 0.692 | 0.805 |
The model that incorporates features from all regions—tumor, 5 mm, and 10 mm (LightGBM) | 0.832 | 0.924 (0.890-0.958) | 0.726 | 0.903 | 0.776 | 0.899 (0.850-0.948) | 0.615 | 0.878 |
- Citation: Li YH, Qian GX, Yao L, Lei XD, Zhu Y, Tang L, Xu ZL, Bu XY, Wei MT, Lu JL, Jia WD. Preoperative model for predicting early recurrence in hepatocellular carcinoma patients using radiomics and deep learning: A multicenter study. World J Gastrointest Oncol 2025; 17(6): 106608
- URL: https://www.wjgnet.com/1948-5204/full/v17/i6/106608.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i6.106608