Retrospective Study
Copyright ©The Author(s) 2025.
World J Gastrointest Oncol. May 15, 2025; 17(5): 105872
Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.105872
Table 2 Performance of various machine learning algorithms in the internal validation group
Model
AUC
AUC 95%CI
Accuracy
Sensitivity
Specificity
PPV
NPV
Random forest0.9750.924-0.9980.9510.7270.9810.9570.944
Gradient boosting0.8640.798-0.9020.9830.9090.8520.9420.980
LightGBM0.8340.801-0.8950.9670.8180.8910.9440.962
Voting classifier0.9020.881-0.9720.9830.9090.9480.8790.980
Support vector classifier0.8220.728-0.9150.9670.8180.9270.9430.962
Logistic regression0.7280.708-0.8570.9670.9090.9800.9090.980
XGBoost0.8510.799-0.9240.9830.9090.8930.9150.980
Extra trees0.9010.854-0.950.9350.7270.9800.8880.943
K-nearest neighbors0.7980.705-0.8670.8870.6360.9410.7010.923
Decision tree0.8370.757-0.9030.9190.950.9010.6870.913
Naive Bayes0.8780.797-0.9600.8380.8180.8430.5290.955
AdaBoost0.8680.783-0.9520.9190.8180.9410.7510.962
Ridge classifier0.8420.798-0.8950.9670.9090.9800.9090.980