Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. May 15, 2025; 17(5): 105872
Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.105872
Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.105872
Table 2 Performance of various machine learning algorithms in the internal validation group
Model | AUC | AUC 95%CI | Accuracy | Sensitivity | Specificity | PPV | NPV |
Random forest | 0.975 | 0.924-0.998 | 0.951 | 0.727 | 0.981 | 0.957 | 0.944 |
Gradient boosting | 0.864 | 0.798-0.902 | 0.983 | 0.909 | 0.852 | 0.942 | 0.980 |
LightGBM | 0.834 | 0.801-0.895 | 0.967 | 0.818 | 0.891 | 0.944 | 0.962 |
Voting classifier | 0.902 | 0.881-0.972 | 0.983 | 0.909 | 0.948 | 0.879 | 0.980 |
Support vector classifier | 0.822 | 0.728-0.915 | 0.967 | 0.818 | 0.927 | 0.943 | 0.962 |
Logistic regression | 0.728 | 0.708-0.857 | 0.967 | 0.909 | 0.980 | 0.909 | 0.980 |
XGBoost | 0.851 | 0.799-0.924 | 0.983 | 0.909 | 0.893 | 0.915 | 0.980 |
Extra trees | 0.901 | 0.854-0.95 | 0.935 | 0.727 | 0.980 | 0.888 | 0.943 |
K-nearest neighbors | 0.798 | 0.705-0.867 | 0.887 | 0.636 | 0.941 | 0.701 | 0.923 |
Decision tree | 0.837 | 0.757-0.903 | 0.919 | 0.95 | 0.901 | 0.687 | 0.913 |
Naive Bayes | 0.878 | 0.797-0.960 | 0.838 | 0.818 | 0.843 | 0.529 | 0.955 |
AdaBoost | 0.868 | 0.783-0.952 | 0.919 | 0.818 | 0.941 | 0.751 | 0.962 |
Ridge classifier | 0.842 | 0.798-0.895 | 0.967 | 0.909 | 0.980 | 0.909 | 0.980 |
- Citation: Tu HB, Feng SY, Chen LH, Huang YJ, Zhang JZ, Peng SY, Lin DL, Ye XJ. Integrating ultrasound and serum indicators for evaluating outcomes of targeted immunotherapy in advanced liver cancer. World J Gastrointest Oncol 2025; 17(5): 105872
- URL: https://www.wjgnet.com/1948-5204/full/v17/i5/105872.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i5.105872