Copyright
©The Author(s) 2025.
World J Gastroenterol. Aug 14, 2025; 31(30): 109186
Published online Aug 14, 2025. doi: 10.3748/wjg.v31.i30.109186
Published online Aug 14, 2025. doi: 10.3748/wjg.v31.i30.109186
Table 4 Predictive metrics of various signatures
Dataset | Signature | Accuracy | AUC (95%CI) | Sensitivity | Specificity |
Training | Clinical | 0.530 | 0.655 (0.559-0.751) | 0.882 | 0.313 |
Validation | Clinical | 0.500 | 0.631 (0.470-0.793) | 0.882 | 0.341 |
Training | Radiomics | 0.687 | 0.770 (0.691-0.849) | 0.765 | 0.639 |
Validation | Radiomics | 0.672 | 0.727 (0.597-0.857) | 0.882 | 0.585 |
Training | MIL | 0.821 | 0.880 (0.821-0.940) | 0.824 | 0.819 |
Validation | MIL | 0.793 | 0.877 (0.784-0.970) | 0.882 | 0.756 |
- Citation: Cen YY, Nong HY, Huang XX, Lu XX, Pu CH, Huang LH, Zheng XJ, Pan ZL, Huang Y, Ding K, Huang DY. Computed tomography-based deep learning and multi-instance learning for predicting microvascular invasion and prognosis in hepatocellular carcinoma. World J Gastroenterol 2025; 31(30): 109186
- URL: https://www.wjgnet.com/1007-9327/full/v31/i30/109186.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i30.109186