Copyright
©The Author(s) 2025.
World J Gastroenterol. Aug 14, 2025; 31(30): 109186
Published online Aug 14, 2025. doi: 10.3748/wjg.v31.i30.109186
Published online Aug 14, 2025. doi: 10.3748/wjg.v31.i30.109186
Table 3 Evaluation results of different models on the 2.5-dimensional deep learning-based multi-instance learning method
Dataset | Model | Accuracy | AUC (95%CI) | Sensitivity | Specificity |
Training | ExtraTrees | 0.821 | 0.917 (0.874-0.961) | 0.784 | 0.843 |
Validation | ExtraTrees | 0.776 | 0.861 (0.756-0.966) | 0.882 | 0.732 |
Training | LightGBM | 0.821 | 0.880 (0.821-0.940) | 0.824 | 0.819 |
Validation | LightGBM | 0.793 | 0.877 (0.784-0.970) | 0.882 | 0.756 |
Training | MLP | 0.836 | 0.914 (0.868-0.959) | 0.824 | 0.843 |
Validation | MLP | 0.776 | 0.841 (0.727-0.956) | 0.882 | 0.732 |
- Citation: Cen YY, Nong HY, Huang XX, Lu XX, Pu CH, Huang LH, Zheng XJ, Pan ZL, Huang Y, Ding K, Huang DY. Computed tomography-based deep learning and multi-instance learning for predicting microvascular invasion and prognosis in hepatocellular carcinoma. World J Gastroenterol 2025; 31(30): 109186
- URL: https://www.wjgnet.com/1007-9327/full/v31/i30/109186.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i30.109186