Copyright
©The Author(s) 2025.
World J Gastroenterol. Aug 14, 2025; 31(30): 109186
Published online Aug 14, 2025. doi: 10.3748/wjg.v31.i30.109186
Published online Aug 14, 2025. doi: 10.3748/wjg.v31.i30.109186
Table 1 Scanning parameters of different computed tomography devices
Devices | Revolution aca (GE) | Ingenuity core 64 (Philips) | Revolution (GE) |
Layer thickness (mm) | 5 | 5 | 5 |
Layer interval (mm) | 5 | 5 | 5 |
Tube voltage (kV) | 120 | 120 | 120 |
Tube current (mA) | 50 | 30 | 50 |
Matrix | 512 × 512 | 512 × 512 | 512 × 512 |
Threshold of ROI (HU) | 100 | 150 | 120 |
- Citation: Cen YY, Nong HY, Huang XX, Lu XX, Pu CH, Huang LH, Zheng XJ, Pan ZL, Huang Y, Ding K, Huang DY. Computed tomography-based deep learning and multi-instance learning for predicting microvascular invasion and prognosis in hepatocellular carcinoma. World J Gastroenterol 2025; 31(30): 109186
- URL: https://www.wjgnet.com/1007-9327/full/v31/i30/109186.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i30.109186