Copyright
©The Author(s) 2025.
World J Gastroenterol. Jul 21, 2025; 31(27): 108200
Published online Jul 21, 2025. doi: 10.3748/wjg.v31.i27.108200
Published online Jul 21, 2025. doi: 10.3748/wjg.v31.i27.108200
Table 3 Performance comparison of each model
Models | Accuracy | Precision | Recall | F1-score |
Random forest | 0.83 (0.7663-0.8804) | 0.82 (0.7518-0.8803) | 0.83 (0.7717-0.8804) | 0.81 (0.7439-0.8692) |
XGBoost | 0.84 (0.7989-0.9076) | 0.82 (0.7987-0.9119) | 0.82 (0.7820-0.8533) | 0.84 (0.7741-0.8450) |
Logistic regression | 0.78 (0.7174-0.8370) | 0.78 (0.7233-0.8379) | 0.78 (0.7120-0.8370) | 0.78 (0.7143-0.8340) |
Support vector machine | 0.78 (0.7227-0.8424) | 0.77 (0.7042-0.8372) | 0.78 (0.7174-0.8424) | 0.78 (0.7100-0.8352) |
- Citation: Tian Y, Zhou HY, Liu ML, Ruan Y, Yan ZX, Hu XH, Du J. Machine learning-based identification of biochemical markers to predict hepatic steatosis in patients at high metabolic risk. World J Gastroenterol 2025; 31(27): 108200
- URL: https://www.wjgnet.com/1007-9327/full/v31/i27/108200.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i27.108200