Minireviews
Copyright ©The Author(s) 2025.
World J Gastroenterol. Jun 21, 2025; 31(23): 105076
Published online Jun 21, 2025. doi: 10.3748/wjg.v31.i23.105076
Figure 2
Figure 2 Integrated data-drive modeling pipeline for esophageal disorders leveraging deep learning and machine learning for improved diagnosis and prognosis. CT: Computed tomography; NLP: Natural language processing; VCF: Variant call format; VGG: Visual geometry group network; YOLO: You only look once; UNet: U-shaped convolutional network; ResNet: Residual neural network; kNN: K-nearest neighbors; LR: Logistic regression; SVM: Support vector machine; RF: Random forest; DT: Decision tree; GERD: Gastroesophageal reflux disease; BE: Barrett’s esophagus; EC: Esophageal carcinoma; EV: Esophageal varices.