Copyright
©The Author(s) 2025.
World J Gastroenterol. Jun 7, 2025; 31(21): 107601
Published online Jun 7, 2025. doi: 10.3748/wjg.v31.i21.107601
Published online Jun 7, 2025. doi: 10.3748/wjg.v31.i21.107601
Table 6 Pairwise comparisons of the models’ overall performances in the training set (P value)
Evaluated metrics | DenseNet121 vs VGG16 | DenseNet121 vs ResNet50 | DenseNet121 vs ViT | VGG16 vs ResNet50 | VGG16 vs ViT | ResNet50 vs ViT |
Accuracy | 0.004 | 0.999 | 0.002 | 0.006 | 0.978 | 0.003 |
Precision | 0.001 | 0.981 | 0.003 | 0.001 | 0.85 | 0.001 |
Recall | 0.001 | 0.995 | 0.002 | 0.001 | 0.212 | 0.003 |
F1-score | 0.001 | 0.999 | 0.001 | 0.001 | 0.421 | 0.001 |
AU-ROC | 0.001 | 0.984 | 0.001 | 0.001 | 0.304 | 0.002 |
- Citation: Huang YH, Lin Q, Jin XY, Chou CY, Wei JJ, Xing J, Guo HM, Liu ZF, Lu Y. Classification of pediatric video capsule endoscopy images for small bowel abnormalities using deep learning models. World J Gastroenterol 2025; 31(21): 107601
- URL: https://www.wjgnet.com/1007-9327/full/v31/i21/107601.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i21.107601