Copyright
©The Author(s) 2025.
World J Gastroenterol. May 21, 2025; 31(19): 105283
Published online May 21, 2025. doi: 10.3748/wjg.v31.i19.105283
Published online May 21, 2025. doi: 10.3748/wjg.v31.i19.105283
Figure 7 Interpretation of the light gradient boosting machine model using SHapley Additive exPlanations.
A: A patient who did not develop anastomotic leakage; B: A patient who developed anastomotic leakage. SHAP: SHapley Additive exPlanations; PoCa: Postoperative calcium ion concentration; rLNs: Positive lymph node count; PrPLT: Preoperative platelet concentration.
- Citation: Kang BY, Qiao YH, Zhu J, Hu BL, Zhang ZC, Li JP, Pei YJ. Serum calcium-based interpretable machine learning model for predicting anastomotic leakage after rectal cancer resection: A multi-center study. World J Gastroenterol 2025; 31(19): 105283
- URL: https://www.wjgnet.com/1007-9327/full/v31/i19/105283.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i19.105283