Minireviews
Copyright ©The Author(s) 2019.
World J Gastroenterol. Apr 14, 2019; 25(14): 1666-1683
Published online Apr 14, 2019. doi: 10.3748/wjg.v25.i14.1666
Table 3 Summary of clinical studies using artificial intelligence in the upper gastrointestinal field
Ref.Published yearAim of studyDesign of studyNumber of subjectsType of AIEndoscopic or ultrasoud modalityOutcomes
Takiyama et al[22]2018Recognition of anatomical locations of EGD imagesRetrospectiveTraining set: 27335 images from 1750 patients. Validation set: 17081 images from 435 patientsCNNWhite-light endoscopyAUROCs: 1.00 for the larynx and esophagus, and 0.99 for the stomach and duodenum recognition
van der Sommen et al[23]2016Discrimination of early neoplastic lesions in Barrett’s esophagusRetrospective100 endoscopic images from 44 patients (leave-one-out cross-validation on a per-patient basis)SVMWhite-light endoscopySensitivity: 83%, specificity: 83% (per-image analysis)
Swager et al[24]2017Identification of early Barrett’s esophagus neoplasia on ex vivo volumetric laser endomicroscopy images.Retrospective60 volumetric laser endomicroscopy imagesCombination of several methods (SVM, discriminant analysis, AdaBoost, random forest, etc)Ex vivo volumetric laser endomicroscopySensitivity: 90%, specificity: 93%
Kodashima et al[25]2007Discrimination between normal and malignant tissue at the cellular level in the esophagusProspective ex vivo pilot10 patientsImageJ programEndocytoscopyDifference in the mean ratio of total nuclei to the entire selected field, 6.4 ± 1.9% in normal tissues and 25.3 ± 3.8% in malignant samples
Shin et al[26]2015Diagnosis of esophageal squamous dysplasiaProspective, multicenter375 sites from 177 patients (training set: 104 sites, test set: 104 sites, validation set: 167 sites)Linear discriminant analysisHRMESensitivity: 87%, specificity: 97%
Quang et al[27]2016Diagnosis of esophageal squamous cell neoplasiaRetrospective, multicenterSame data from reference number 26Linear discriminant analysisTablet-interfaced HRMESensitivity: 95%, specificity: 91%
Horie et al[28]2019Diagnosis of esophageal cancerRetrospectiveTraining set: 8428 images from 384 patients. Test set: 1118 images from 97 patientsCNNWhite-light endoscopy with NBISensitivity 98%
Huang et al[29]2004Diagnosis of H. pylori infectionProspectiveTraining set: 30 patients. Test set: 74 patientsRefined feature selection with neural networkWhite-light endoscopySensitivity: 85.4%, specificity: 90.9%
Shichijo et al[30]2017Diagnosis of H. pylori InfectionRetrospectiveTraining set: CNN1: 32208 images; CNN2: images classified according to 8 different locations in the stomach. Test set: 11481 images from 397 patientsCNNWhite-light endoscopyAccuracy: 87.7%, sensitivity: 88.9%, specificity: 87.4%, diagnostic time: 194 s.
Itoh et al[31]2018Diagnosis of H. pylori infectionProspectiveTraining set: 149 images (596 images through data augmentation. Test set: 30 imagesCNNWhite-light endoscopyAUROC: 0.956, sensitivity: 86.7%, specificity: 86.7%,
Nakashima et al[32]2018Diagnosis of H. pylori infectionProspective pilot222 patients (training set: 162, test set: 60)CNNWhite-light endoscopy and image-enhanced endoscopy, such as blue laser imaging-bright and linked color imagingAUROC: 0.96 (blue laser imaging-bright), 0.95 (linked color imaging)
Kubota et al[33]2012Diagnosis of depth of invasion in gastric cancerRetrospective902 images (10 times cross validation)“backpropagation” ANNWhite-light endoscopyAccuracy: 77.2%, 49.1%, 51.0%, and 55.3% for T1-4 staging, respectively
Hirasawa et al[34]2018Detection of gastric cancersRetrospectiveTraining set: 13584 images. Test set: 2296 images.CNNWhite-light endoscopy, chromoendoscopy, NBISensitivity: 92.2%, detection rate with a diameter of 6 mm or more: 98.6%
Zhu et al[35]2018Diagnosis of depth of invasion in gastric cancer (mucosa/SM1/deeper than SM1)RetrospectiveTraining set: 790 images. Test set: 203 imagesCNNWhite-light endoscopyAccuracy: 89.2%, AUROC: 0.94, sensitivity: 74.5%, specificity: 95.6%
Kanesakaet al[36]2018Diagnosis of early gastric cancer using magnifying NBI imagesRetrospectiveTraining set: 126 images. Test set: 81 imagesSVMMagnifying NBIAccuracy: 96.3%, sensitivity: 96.7%, specificity: 95%, PPV: 98.3%,
Gatos et al[37]2017Diagnosis of chronic liver diseaseRetrospective126 patients (56 healthy controls, 70 with chronic liver diseaseSVMUltrasound shear wave elastography imaging with a stiffness value-clusteringAUROC: 0.87, highest accuracy: 87.3%, sensitivity: 93.5%, specificity: 81.2%
Kuppili et al[38]2017Detection and characterization of fatty liverProspective63 patients who underwent liver biopsy (10 times cross validation)Extreme Learning Machine to train single-layer feed-forward neural networkUltrasound liver imagesAccuracy: 96.75%, AUROC: 0.97 (validation performance)
Liu et al[39]2017Diagnosis of liver cirrhosisRetrospective44 images from controls and 47 images from patients with cirrhosisSVMUltrasound liver capsule imagesAUROC: 0.951