Copyright
©The Author(s) 2021.
Artif Intell Gastrointest Endosc. Aug 28, 2021; 2(4): 185-197
Published online Aug 28, 2021. doi: 10.37126/aige.v2.i4.185
Published online Aug 28, 2021. doi: 10.37126/aige.v2.i4.185
Ref. | Target disease | Prospective/ retrospective | AI | Endoscopy image | Training dataset | Validation dataset | Sensitivity | Specificity | Accuracy1/AUC | |
[1] | Diagnosing ESCC and EAC | Retrospective | CNNs (SSD) | WLI and NBI | 8428 images | 1118 images | 98% | 95% | 98%1 | |
[2] | Diagnosing ESCC | Retrospective | CAD (SegNet) | NBI/videos | 6473 images | 6671 images | 98.04% | 95.03% | 0.989 | |
[3] | Detecting EEC and BE | Retrospective | CAD (ResNet-UNet) | WLI | 494364 images | 1704 images | 90% | 88% | 89%1 | |
[4] | Detecting E/J cancers | Retrospective | CNNs (SSD) | WLI and NBI | 3443 images | 232 images | 94% | 42% | 66%1 | |
[5] | Detecting ESCC | Retrospective | DCNNs-CAD | NBI | 2428 images | 187 images | 97.80% | 85.40% | 91.4%1 | |
[6] | Diagnosing BE and EAC | Retrospective | CAD (ResNet) | WLI and NBI | 148/100 | Leave-one patient-out cross validation | 97%(WLI)/94%(NBI) | 88% (WLI)/80%(NBI) | ||
[7] | Diagnosing ESCC | Retrospective | CAD (FCN) | ME-NBI | 3-fold cross-validation | |||||
[8] | Detecting EAC | Retrospective | CNNs (SSD) | WLI | 100 images | 96% | 92% | |||
[9] | Detecting EGC | Retrospective | CNNs | WLI | 348943 images | 9650 images | 80.00% | 94.80% | ||
[10] | Diagnosing EGC | Retrospective | CNNs | WLI | 21217 images | 1091 images | 36.8 | 91.20% | ||
[11] | Diagnosing EGC | Retrospective | CNNs (Inception-v3) | ME-NBI | 1702 images | 170 images | 91.18% | 90.64% | 90.91%1 | |
[12] | Diagnosing EGC | Retrospective | CNNs (VGG16) | WLI | 896 t1a-EGC and 809 t1b-EGC | 5-fold cross-validation | Detection (0.981) | |||
Depth prediction (0.851) | ||||||||||
[13] | Detecting EGC | Retrospective | CNNs (VGG16 and ResNet-50) | WLI/NBI/BLI | 3170 images | 94.00% | 91.00% | 92.5%1 | ||
[14] | Diagnosing EGC | Retrospective | CNNs (ResNet-50) | WLI | 790 images | 203 images | 76.47% | 95.56% | 89.16%1 | |
[15] | Detecting EGC | Retrospective | CNNs (SSD) | WLI | 13584 images | 2940 images | 58.40% | 87.30% | 0.76 | |
[16] | Classifying EGC | Retrospective | CNNs (Inception-ResNet-v2) | WLI | 5017 images | 5-fold cross-validation | 0.85 | |||
[17] | Diagnosing EGC | Retrospective | CNNs (ResNet-50) | ME-NBI | 4460 images | 1114 images | 98% | 100% | 98.7%1 | |
[18] | Detecting and localizing colonic adenoma | Representative | CNNs (VGG16,19, ResNet50) | WLI and NBI | 8641 images/9 videos, 11 videos | Cross-validation | ||||
[19] | Detecting ECC | Representative | CNNs | WLI | 190 images | 3-fold cross-validation | 67.50% | 89.00% | 81.2%1/0.871 | |
[20] | Classifying ECC | Representative | CNNs (ResNet-152) | WLI | 3-fold cross-validation | 95.40% | 30.10% | |||
[21] | Detecting colonic adenoma | Prospective | Cade | 1058 patients | ADR (29.1% vs 20.3%) | |||||
[22] | Detecting colonic adenoma | Prospective | Cade | 962 patients | ADR (34% vs 28%) |
- Citation: Yang H, Hu B. Early gastrointestinal cancer: The application of artificial intelligence. Artif Intell Gastrointest Endosc 2021; 2(4): 185-197
- URL: https://www.wjgnet.com/2689-7164/full/v2/i4/185.htm
- DOI: https://dx.doi.org/10.37126/aige.v2.i4.185