Minireviews
Copyright ©The Author(s) 2021.
Artif Intell Gastrointest Endosc. Aug 28, 2021; 2(4): 185-197
Published online Aug 28, 2021. doi: 10.37126/aige.v2.i4.185
Table 1 Early gastrointestinal cancer and artificial intelligence
Ref.
Target disease
Prospective/ retrospective
AI
Endoscopy image
Training dataset
Validation dataset
Sensitivity
Specificity
Accuracy1/AUC
[1]Diagnosing ESCC and EACRetrospectiveCNNs (SSD)WLI and NBI8428 images1118 images 98%95%98%1
[2]Diagnosing ESCCRetrospectiveCAD (SegNet)NBI/videos6473 images6671 images98.04%95.03%0.989
[3]Detecting EEC and BERetrospectiveCAD (ResNet-UNet)WLI494364 images1704 images90%88%89%1
[4]Detecting E/J cancersRetrospectiveCNNs (SSD)WLI and NBI3443 images232 images94%42%66%1
[5]Detecting ESCCRetrospectiveDCNNs-CADNBI2428 images187 images97.80%85.40%91.4%1
[6]Diagnosing BE and EACRetrospectiveCAD (ResNet)WLI and NBI148/100Leave-one patient-out cross validation97%(WLI)/94%(NBI)88% (WLI)/80%(NBI)
[7]Diagnosing ESCCRetrospectiveCAD (FCN)ME-NBI3-fold cross-validation
[8]Detecting EACRetrospectiveCNNs (SSD)WLI100 images96%92%
[9]Detecting EGCRetrospectiveCNNsWLI348943 images9650 images80.00%94.80%
[10]Diagnosing EGCRetrospectiveCNNsWLI21217 images1091 images36.891.20%
[11]Diagnosing EGCRetrospectiveCNNs (Inception-v3)ME-NBI1702 images170 images91.18%90.64%90.91%1
[12]Diagnosing EGCRetrospectiveCNNs (VGG16)WLI896 t1a-EGC and 809 t1b-EGC5-fold cross-validationDetection (0.981)
Depth prediction (0.851)
[13]Detecting EGCRetrospectiveCNNs (VGG16 and ResNet-50)WLI/NBI/BLI3170 images 94.00%91.00%92.5%1
[14]Diagnosing EGCRetrospectiveCNNs (ResNet-50)WLI790 images203 images76.47%95.56%89.16%1
[15]Detecting EGCRetrospectiveCNNs (SSD)WLI13584 images2940 images58.40%87.30%0.76
[16]Classifying EGCRetrospectiveCNNs (Inception-ResNet-v2)WLI5017 images5-fold cross-validation0.85
[17]Diagnosing EGCRetrospectiveCNNs (ResNet-50)ME-NBI4460 images 1114 images98%100%98.7%1
[18]Detecting and localizing colonic adenomaRepresentativeCNNs (VGG16,19, ResNet50)WLI and NBI8641 images/9 videos, 11 videosCross-validation
[19]Detecting ECCRepresentativeCNNsWLI190 images3-fold cross-validation 67.50%89.00%81.2%1/0.871
[20]Classifying ECCRepresentativeCNNs (ResNet-152)WLI3-fold cross-validation95.40%30.10%
[21]Detecting colonic adenomaProspectiveCade1058 patientsADR (29.1% vs 20.3%)
[22]Detecting colonic adenomaProspectiveCade962 patientsADR (34% vs 28%)