1
|
Motiwala ZY, Desai A, Bisht R, Lathkar S, Misra S, Carbin DD. Telesurgery: current status and strategies for latency reduction. J Robot Surg 2025; 19:153. [PMID: 40220039 DOI: 10.1007/s11701-025-02333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Telesurgery is a rapidly evolving field in robotic assisted surgery that allows surgeons to operate on patients remotely with the help of robotic systems. This has allowed increased access to specialized care reducing geographic barriers and improving overall surgical outcomes in remote locations. An important challenge that hinders its widespread adoption is latency period which is primarily a delay that exists in data transmission between the surgeon and the robotic system. It is essential to determine strategies that can reduce it to ensure greater precision, dexterity, and patient safety. A literature review was conducted using PubMed, Embase, Google Scholar, and Cochrane Library. After screening the articles for relevance, data were synthesized to present a narrative review on the current challenges and emerging solutions in latency reduction. Those articles were included that discussed telesurgery with latency periods, network infrastructure, AI driven latency compensation, and cybersecurity. After removing 8 duplicates, a total of 238 articles were identified in the literature search out of which 175 articles were excluded after title and abstract screening done by two independent reviewers. 63 full text articles were assessed for eligibility. Latency period greatly impacts telesurgical performance with an ideal value being less than 200 ms. This threshold is essential for effective surgical precision, and safety. The adoption of ultra-low latency 6G wireless networks, quantum computing, and artificial intelligence can enhance telesurgical performance. Ethical, legal, and cybersecurity challenges must be addressed for widespread adoption of telesurgery. Latency in telesurgery arise due to a multitude of factors, including network infrastructure, geographic barriers, cybersecurity protocols, hardware, and software limitations. AI-based algorithms, edge computing, advancements in 5G technology, along with optimum haptic feedback mechanisms are promising solutions in reducing latency.
Collapse
Affiliation(s)
| | | | | | | | - Sidharth Misra
- Armed Forces Medical College, Pune, India.
- Terna Medical College, Maharashtra, India.
| | | |
Collapse
|
2
|
Heemeyer F, Boehler Q, Kim M, Bendok BR, Turcotte EL, Batjer HH, Madder RD, Pereira VM, Nelson BJ. Telesurgery and the importance of context. Sci Robot 2025; 10:eadq0192. [PMID: 40009655 DOI: 10.1126/scirobotics.adq0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025]
Abstract
Telesurgery has the potential to overcome geographical barriers in surgical care, encouraging its deployment in areas with sparse surgical expertise. Despite successful in-human experiments and substantial technological progress, the adoption of telesurgery remains slow. In this Review, we analyze the reasons for this slow adoption. First, we identify various contexts for telesurgery and highlight the vastly different requirements for their realization. We then discuss why procedures with high urgency and skill sparsity are particularly suitable for telesurgery. Last, we summarize key research areas essential for further progress. The goal of this Review is to provide the reader with a comprehensive analysis of the current state of telesurgery research and to provide guidance for faster adoption of this exciting technology.
Collapse
Affiliation(s)
| | | | - Minsoo Kim
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - Bernard R Bendok
- Department of Neurological Surgery, Mayo Clinic, Phoenix, AZ, USA
- Mayo Clinic College of Medicine and Science, Phoenix, AZ, USA
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
- Department of Otolaryngology Head and Neck Surgery/Audiology, Mayo Clinic, Phoenix, AZ, USA
| | - Evelyn L Turcotte
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - H Hunt Batjer
- Department of Neurological Surgery, Mayo Clinic, Phoenix, AZ, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- University of Texas at Tyler School of Medicine, Tyler, TX, USA
| | - Ryan D Madder
- Frederik Meijer Heart and Vascular Institute, Corewell Health West, Grand Rapids, MI, USA
| | - Vitor M Pereira
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- RADIS Lab, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
3
|
Wang Y, Ai Q, Shi T, Gao Y, Jiang B, Zhao W, Jiang C, Liu G, Zhang L, Li H, Gao F, Ma X, Li H, Zhang X. Influence of network latency and bandwidth on robot-assisted laparoscopic telesurgery: A pre-clinical experiment. Chin Med J (Engl) 2025; 138:325-331. [PMID: 39149985 PMCID: PMC11771599 DOI: 10.1097/cm9.0000000000003257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Telesurgery has the potential to overcome spatial limitations for surgeons, which depends on surgical robot and the quality of network communication. However, the influence of network latency and bandwidth on telesurgery is not well understood. METHODS A telesurgery system capable of dynamically adjusting image compression ratios in response to bandwidth changes was established between Beijing and Sanya (Hainan province), covering a distance of 3000 km. In total, 108 animal operations, including 12 surgical procedures, were performed. Total latency ranging from 170 ms to 320 ms and bandwidth from 15-20 Mbps to less than 1 Mbps were explored using designed surgical tasks and hemostasis models for renal vein and internal iliac artery rupture bleeding. Network latency, jitter, frame loss, and bit rate code were systemically measured during these operations. National Aeronautics and Space Administration Task Load Index (NASA-TLX) and a self-designed scale measured the workload and subjective perception of surgeons. RESULTS All 108 animal telesurgeries, conducted from January 2023 to June 2023, were performed effectively over a total duration of 3866 min. The operations were completed with latency up to 320 ms and bandwidths as low as 1-5 Mbps. Hemostasis for vein and artery rupture bleeding models was effectively achieved under these low bandwidth conditions. The NASA-TLX results indicated that latency significantly impacted surgical performance more than bandwidth and image clarity reductions. CONCLUSIONS This telesurgery system demonstrated safety and reliability. A total of 320 ms latency is acceptable for telesurgery operations. Reducing image clarity can effectively mitigate the potential latency increase caused by decreased bandwidth, offering a new method to reduce the impact of latency on telesurgery.
Collapse
Affiliation(s)
- Ye Wang
- Department of Urology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Qing Ai
- Department of Urology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Taoping Shi
- Department of Urology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yu Gao
- Department of Urology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Bin Jiang
- Department of Urology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Wuyi Zhao
- Shenzhen Edge Medical Co., Ltd, Shenzhen, Guangdong 518116, China
| | - Chengjun Jiang
- Shenzhen Edge Medical Co., Ltd, Shenzhen, Guangdong 518116, China
| | - Guojun Liu
- Department of Urology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Lifeng Zhang
- Department of Urology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Huaikang Li
- Department of Urology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Fan Gao
- Department of Urology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Xin Ma
- Department of Urology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Hongzhao Li
- Department of Urology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Xu Zhang
- Department of Urology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
4
|
Falola AF, Singh S, Das U, Oluwagbemi A, Etta R, Adeyeye A. Barriers and recommendations for the implementation of robot-assisted minimally invasive surgery in Africa. J Robot Surg 2024; 19:16. [PMID: 39621167 DOI: 10.1007/s11701-024-02163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/02/2024] [Indexed: 12/13/2024]
Abstract
Robotic surgery offers several advantages to the African setting, including shorter hospital stays, faster return to work, and increased overall productivity. However, its adoption has been limited by several factors. This review aims to present the barriers to implementation, and recommendations for integrating robotic surgery into the African healthcare system. Use of robotic surgery in Africa is primarily limited to Egypt and South Africa. Barriers faced by other countries were categorized into economic, infrastructural, systemic, and training-related. They include limited healthcare budgets, initial costs of robotic systems, patients' inability to afford robotic procedures, out-of-pocket healthcare financing, inadequate power supply, limited internet connectivity, poor healthcare leadership, and insufficient surgeon training facilities. Public-private partnerships, provision of loans and subsidies, introduction of cheaper robotic systems, and local manufacturing of robotic equipment will serve as cost-effective innovations. It is also important to improve healthcare financing and strengthen healthcare leadership across Africa. To address the lack of surgeon training facilities, remote assistance for surgeon training can be used to create a mentor-mentee relationship between robotic surgeons in any part of the world and surgical trainees in Africa to facilitate knowledge transfer. Prior investment in electricity and network infrastructure is however necessary. Establishment of fellowships to provide early exposure to robotic surgery should also be explored. AI-integrated robotic surgery can also enhance precision and safety, and provide tailored training tools for surgeons. Similar barriers to the adoption of surgical robotics are faced across Africa. By implementing the provided recommendations, robotic surgery can still be widely adopted in African settings, despite the delay.
Collapse
Affiliation(s)
| | | | - Upamanyu Das
- Muzaffarnagar Medical College, Bahadarpur, India
| | | | - Rhoda Etta
- University of Ibadan College of Medicine, Ibadan, Nigeria
| | - Ademola Adeyeye
- Significant Polyp and Early Colorectal Cancer Service, King's College Hospital, London, United Kingdom
- Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Nigeria
- Department of Medicine and Surgery, Afe Babalola University Ado-Ekiti, Ado-Ekiti, Nigeria
| |
Collapse
|
5
|
Wanees A, Bhakar R, Tamanna R, Jenny N, Abdelglil M, Ali MA, Pillai GM, Amin A, Sundarraj JK, Abdelmasih H, Mithany RH. Bridging Distances and Enhancing Care: A Comprehensive Review of Telemedicine in Surgery. Cureus 2024; 16:e76099. [PMID: 39711932 PMCID: PMC11662372 DOI: 10.7759/cureus.76099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 12/24/2024] Open
Abstract
Telemedicine in surgical care has undergone rapid advancements in recent years, leveraging technologies such as telerobotics, artificial intelligence (AI) diagnostics, and wearable devices to facilitate remote evaluation and monitoring of patients. These innovations have improved access to care, reduced costs, and enhanced patient satisfaction. However, significant challenges remain, including technical barriers, limited tactile feedback in telesurgery, and inequities arising from digital literacy and infrastructure gaps. The rapid integration of telemedicine in surgical care necessitates a comprehensive understanding of its advancements, challenges, and implications. This review aims to consolidate existing knowledge, identify gaps, and highlight future research directions. The COVID-19 pandemic underscored telemedicine's potential, accelerating its adoption across healthcare systems worldwide. Despite these advancements, issues such as inconsistent reimbursement policies and challenges in integrating telemedicine into existing healthcare systems hinder its widespread adoption. Future research should prioritize the integration of AI, advancements in telepresence, and solutions to socioeconomic barriers to solidify telemedicine's role in global surgical care and enhance patient safety.
Collapse
Affiliation(s)
- Andrew Wanees
- General Surgery, Ain Shams University Hospitals, Cairo, EGY
| | - Ranj Bhakar
- Trauma and Orthopedics, Torbay Hospital, Torbay, GBR
| | | | - Nur Jenny
- General Surgery, Royal Victoria Infirmary, Newcastle upon Tyne, GBR
| | - Momen Abdelglil
- Pediatric Surgery, Mansoura University Children Hospital, Mansoura, EGY
| | - Mohamed A Ali
- Surgical Oncology, National Cancer Institute, Cairo, EGY
- Surgery, Bronglais Hospital, Wales, GBR
| | - Gowri M Pillai
- General Surgery, James Cook University Hospital, Middlesbrough, GBR
| | - Amina Amin
- Vascular Surgery, Birmingham Heartlands Hospital, Birmingham, GBR
| | | | | | - Reda H Mithany
- Colorectal Surgery, Torbay and South Devon NHS Foundation Trust, Torbay, GBR
| |
Collapse
|
6
|
Faris H, Harfouche C, Bandle J, Wisbach G. Surgical tele-mentoring using a robotic platform: initial experience in a military institution. Surg Endosc 2023; 37:9159-9166. [PMID: 37821559 PMCID: PMC10709226 DOI: 10.1007/s00464-023-10484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Surgical tele-mentoring leverages technology by projecting surgical expertise to improve access to care and patient outcomes. We postulate that tele-mentoring will improve surgeon satisfaction, procedural competence, the timeliness of operative intervention, surgical procedure efficiency, and key intra-operative decision-making. As a first step, we performed a pilot study utilizing a proof-of-concept tele-mentoring process during robotic-assisted surgery to determine the effects on the perceptions of all members of the surgical team. METHODS An IRB-approved prospective feasibility study to determine the safety and efficacy of remote surgical consultation to local surgeons utilizing robotic surgery technology in the fields of general, urology, gynecology and thoracic surgery was performed. Surgical teams were provided a pre-operative face-to-face orientation. During the operation, the mentoring surgeon was located at the same institution in a separate tele-mentoring room. An evaluation was completed pre- and post-operatively by the operative team members and mentor. RESULTS Fifteen operative cases were enrolled including seven general surgery, four urology, one gynecology and three thoracic surgery operations. Surveys were collected from 67 paired survey respondents and 15 non-paired mentor respondents. Participation in the operation had a positive effect on participant responses regarding all questions surveyed (p < 0.05) indicating value to tele-mentoring integration. Connectivity remained uninterrupted with clear delivery of audio and visual components and no perceived latency. Participant perception of leadership/administrative support was varied. CONCLUSIONS Surgical tele-mentoring is safe and efficacious in providing remote surgical consultation to local surgeons utilizing robotic surgery technology in a military institution. Operative teams overwhelmingly perceived this capability as beneficial with reliable audio-visual connectivity demonstrated between the main operative room and the Virtual Medical Center. Further study is needed to develop surgical tele-mentoring to improve patient care without geographic limitations during times of peace, war and pandemic outbreaks.
Collapse
Affiliation(s)
- Hunter Faris
- Department of General Surgery, Navy Medicine Readiness & Training Command -San Diego, 34800 Bob Wilson Drive, San Diego, CA, 92134, USA.
| | - Cyril Harfouche
- Department of General Surgery, Navy Medicine Readiness & Training Command -San Diego, 34800 Bob Wilson Drive, San Diego, CA, 92134, USA
| | - Jesse Bandle
- Department of General Surgery, Navy Medicine Readiness & Training Command -San Diego, 34800 Bob Wilson Drive, San Diego, CA, 92134, USA
| | - Gordon Wisbach
- Department of General Surgery, Navy Medicine Readiness & Training Command -San Diego, 34800 Bob Wilson Drive, San Diego, CA, 92134, USA
- Virtual Medical Center, Navy Medicine Readiness & Training Command - San Diego, San Diego, CA, USA
| |
Collapse
|
7
|
Guan B, Zou Y, Zhao J, Pan L, Yi B, Li J. Clean visual field reconstruction in robot-assisted laparoscopic surgery based on dynamic prediction. Comput Biol Med 2023; 165:107472. [PMID: 37713788 DOI: 10.1016/j.compbiomed.2023.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Robot-assisted minimally invasive surgery has been broadly employed in complicated operations. However, the multiple surgical instruments may occupy a large amount of visual space in complex operations performed in narrow spaces, which affects the surgeon's judgment on the shape and position of the lesion as well as the course of its adjacent vessels/lacunae. In this paper, a surgical scene reconstruction method is proposed, which involves the tracking and removal of surgical instruments and the dynamic prediction of the obscured region. For tracking and segmentation of instruments, the image sequences are preprocessed by a modified U-Net architecture composed of a pre-trained ResNet101 encoder and a redesigned decoder. Also, the segmentation boundaries of the instrument shafts are extended using image filtering and a real-time index mask algorithm to achieve precise localization of the obscured elements. For predicting the deformation of soft tissues, a soft tissue deformation prediction algorithm is proposed based on dense optical flow gravitational field and entropy increase, which can achieve local dynamic visualization of the surgical scene by integrating image morphological operations. Finally, the preliminary experiments and the pre-clinical evaluation were presented to demonstrate the performance of the proposed method. The results show that the proposed method can provide the surgeon with a clean and comprehensive surgical scene, reconstruct the course of important vessels/lacunae, and avoid inadvertent injuries.
Collapse
Affiliation(s)
- Bo Guan
- The Key Lab for Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuelin Zou
- The Key Lab for Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jianchang Zhao
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Lizhi Pan
- The Key Lab for Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Bo Yi
- Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, China.
| | - Jianmin Li
- The Key Lab for Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
8
|
Jiang Z, Salcudean SE, Navab N. Robotic ultrasound imaging: State-of-the-art and future perspectives. Med Image Anal 2023; 89:102878. [PMID: 37541100 DOI: 10.1016/j.media.2023.102878] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/27/2023] [Accepted: 06/22/2023] [Indexed: 08/06/2023]
Abstract
Ultrasound (US) is one of the most widely used modalities for clinical intervention and diagnosis due to the merits of providing non-invasive, radiation-free, and real-time images. However, free-hand US examinations are highly operator-dependent. Robotic US System (RUSS) aims at overcoming this shortcoming by offering reproducibility, while also aiming at improving dexterity, and intelligent anatomy and disease-aware imaging. In addition to enhancing diagnostic outcomes, RUSS also holds the potential to provide medical interventions for populations suffering from the shortage of experienced sonographers. In this paper, we categorize RUSS as teleoperated or autonomous. Regarding teleoperated RUSS, we summarize their technical developments, and clinical evaluations, respectively. This survey then focuses on the review of recent work on autonomous robotic US imaging. We demonstrate that machine learning and artificial intelligence present the key techniques, which enable intelligent patient and process-specific, motion and deformation-aware robotic image acquisition. We also show that the research on artificial intelligence for autonomous RUSS has directed the research community toward understanding and modeling expert sonographers' semantic reasoning and action. Here, we call this process, the recovery of the "language of sonography". This side result of research on autonomous robotic US acquisitions could be considered as valuable and essential as the progress made in the robotic US examination itself. This article will provide both engineers and clinicians with a comprehensive understanding of RUSS by surveying underlying techniques. Additionally, we present the challenges that the scientific community needs to face in the coming years in order to achieve its ultimate goal of developing intelligent robotic sonographer colleagues. These colleagues are expected to be capable of collaborating with human sonographers in dynamic environments to enhance both diagnostic and intraoperative imaging.
Collapse
Affiliation(s)
- Zhongliang Jiang
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany.
| | - Septimiu E Salcudean
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nassir Navab
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany; Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Frenkel CH. Telesurgery's Evolution During the Robotic Surgery Renaissance and a Systematic Review of its Ethical Considerations. Surg Innov 2023; 30:595-600. [PMID: 37040578 DOI: 10.1177/15533506231169073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
While robotic-assisted surgery is in a Renaissance, telesurgery, facilitated by robotic technology, is evolving in the space between innovative and mainstream clinical practice. This article outlines the current utilization of robotic telesurgery and barriers to adoption, and it performs a systematic review of relevant ethical concerns. It illustrates how telesurgery can be developed to provide safe, equitable, and high quality surgical care.
Collapse
Affiliation(s)
- Catherine H Frenkel
- Division of Head and Neck Surgical Oncology, Department of Surgery, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
10
|
Moustris G, Tzafestas C, Konstantinidis K. A long distance telesurgical demonstration on robotic surgery phantoms over 5G. Int J Comput Assist Radiol Surg 2023; 18:1577-1587. [PMID: 37095315 PMCID: PMC10124680 DOI: 10.1007/s11548-023-02913-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Using robotic technology and communications infrastructure to remotely perform surgery has been a persistent goal in medical research in the past three decades. The recent deployment of the Fifth-Generation Wireless Networks has revitalized the research efforts in the telesurgery paradigm. Offering low latency and high bandwidth communication, they are well suited for applications that require real-time data transmission and can allow smoother communication between surgeon and patient, making it possible to remotely perform complex surgeries. In this paper, we investigate the effects of the 5 G network on surgical performance during a telesurgical demonstration where the surgeon and the robot are separated by nearly 300 km. METHODS The surgeon performed surgical exercises on a robotic surgery training phantom using a novel telesurgical platform. The master controllers were connected to the local site on a 5 G network, teleoperating the robot remotely in a hospital. A video feed of the remote site was also streamed. The surgeon performed various tasks on the phantom such as cutting, dissection, pick-and-place and ring tower transfer. To assess the usefulness, usability and image quality of the system, the surgeon was subsequently interviewed using three structured questionnaires. RESULTS All tasks were completed successfully. The low latency and high bandwidth of the network resulted into a latency of 18 ms for the motion commands while the video delay was about 350 ms. This enabled the surgeon to operate smoothly with a high-definition video from about 300 km away. The surgeon viewed the system's usability in a neutral to positive way while the video image was rated as of good quality. CONCLUSION 5 G networks provide significant advancement in the field of telecommunications, offering faster speeds and lower latency than previous generations of wireless technology. They can serve as an enabling technology for telesurgery and further advance its application and adoption.
Collapse
Affiliation(s)
- George Moustris
- School of Electrical and Computer Engineering, National Technical University of Athens, Zographou Campus, 15773 Athens, Greece
| | - Costas Tzafestas
- School of Electrical and Computer Engineering, National Technical University of Athens, Zographou Campus, 15773 Athens, Greece
| | | |
Collapse
|
11
|
Cheung HC, De Louche C, Komorowski M. Artificial Intelligence Applications in Space Medicine. Aerosp Med Hum Perform 2023; 94:610-622. [PMID: 37501303 DOI: 10.3357/amhp.6178.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
INTRODUCTION:During future interplanetary space missions, a number of health conditions may arise, owing to the hostile environment of space and the myriad of stressors experienced by the crew. When managing these conditions, crews will be required to make accurate, timely clinical decisions at a high level of autonomy, as telecommunication delays and increasing distances restrict real-time support from the ground. On Earth, artificial intelligence (AI) has proven successful in healthcare, augmenting expert clinical decision-making or enhancing medical knowledge where it is lacking. Similarly, deploying AI tools in the context of a space mission could improve crew self-reliance and healthcare delivery.METHODS: We conducted a narrative review to discuss existing AI applications that could improve the prevention, recognition, evaluation, and management of the most mission-critical conditions, including psychological and mental health, acute radiation sickness, surgical emergencies, spaceflight-associated neuro-ocular syndrome, infections, and cardiovascular deconditioning.RESULTS: Some examples of the applications we identified include AI chatbots designed to prevent and mitigate psychological and mental health conditions, automated medical imaging analysis, and closed-loop systems for hemodynamic optimization. We also discuss at length gaps in current technologies, as well as the key challenges and limitations of developing and deploying AI for space medicine to inform future research and innovation. Indeed, shifts in patient cohorts, space-induced physiological changes, limited size and breadth of space biomedical datasets, and changes in disease characteristics may render the models invalid when transferred from ground settings into space.Cheung HC, De Louche C, Komorowski M. Artificial intelligence applications in space medicine. Aerosp Med Hum Perform. 2023; 94(8):610-622.
Collapse
|
12
|
Alafaleq M. Robotics and cybersurgery in ophthalmology: a current perspective. J Robot Surg 2023; 17:1159-1170. [PMID: 36637738 PMCID: PMC9838251 DOI: 10.1007/s11701-023-01532-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/08/2023] [Indexed: 01/14/2023]
Abstract
Ophthalmology is one of the most enriched fields, allowing the domain of artificial intelligence to be part of its point of interest in scientific research. The requirement of specialized microscopes and visualization systems presents a challenge to adapting robotics in ocular surgery. Cyber-surgery has been used in other surgical specialties aided by Da Vinci robotic system. This study focuses on the current perspective of using robotics and cyber-surgery in ophthalmology and highlights factors limiting their progression. A review of literature was performed with the aid of Google Scholar, Pubmed, CINAHL, MEDLINE (N.H.S. Evidence), Cochrane, AMed, EMBASE, PsychINFO, SCOPUS, and Web of Science. Keywords: Cybersurgery, Telesurgery, ophthalmology robotics, Da Vinci robotic system, artificial intelligence in ophthalmology, training on robotic surgery, ethics of the use of robots in medicine, legal aspects, and economics of cybersurgery and robotics. 150 abstracts were reviewed for inclusion, and 68 articles focusing on ophthalmology were included for full-text review. Da Vinci Surgical System has been used to perform a pterygium repair in humans and was successful in ex vivo corneal, strabismus, amniotic membrane, and cataract surgery. Gamma Knife enabled effective treatment of uveal melanoma. Robotics used in ophthalmology were: Da Vinci Surgical System, Intraocular Robotic Interventional Surgical System (IRISS), Johns Hopkins Steady-Hand Eye Robot and smart instruments, and Preceyes' B.V. Cybersurgery is an alternative to overcome distance and the shortage of surgeons. However, cost, availability, legislation, and ethics are factors limiting the progression of these fields. Robotic and cybersurgery in ophthalmology are still in their niche. Cost-effective studies are needed to overcome the delay. Technologies, such as 5G and Tactile Internet, are required to help reduce resource scheduling problems in cybersurgery. In addition, prototype development and the integration of artificial intelligence applications could further enhance the safety and precision of ocular surgery.
Collapse
Affiliation(s)
- Munirah Alafaleq
- Ophthalmology Department, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
- Artificial Intelligence and Business School, 18 Rue du Dôme, 92100, Boulogne Billancourt, France.
- Ophthalmology Department and Centre for Rare Ophthalmological Diseases OPHTARA, Necker Enfants-Malades University Hospital, AP-HP, University Paris Cité, Paris, France.
| |
Collapse
|
13
|
Pantalone D. Surgery in the Next Space Missions. Life (Basel) 2023; 13:1477. [PMID: 37511852 PMCID: PMC10381631 DOI: 10.3390/life13071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/21/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
In the coming years, missions to the Moon and Mars shall be the new goals of space flight. The complexity of these missions due to the great distance from Earth and the unforeseen obstacles to settle on another planet have given rise to great concerns for crew health and survival. The need for advanced crew autonomy and a different approach to surgical emergency require new protocols and devices to help future crew medical officers and other crew members in a task of unprecedented difficulty. Hence, the increasing variety of schedules, devices, and protocols being developed. A serious health problem, such as an emerging surgical disease or severe trauma, can jeopardize the mission and survival of the entire crew. Many other difficulties are present in deep-space missions or settlements on other planets, such as communication and supply, also medical, delays, and shortage, and the presence of radiation. Progress in advanced technologies as well as the evolution of robotic surgery and the use of artificial intelligence are other topics of this review. In this particular area of research, even if we are still very far from an "intelligent robot", this evolution must be evaluated in the light of legislative and ethical considerations. This topic was presented at the annual meeting of the American College of Surgeons-Italy Chapter in 2021.
Collapse
Affiliation(s)
- Desiree Pantalone
- American College of Surgeons, FACS, Chicago, IL 60611, USA
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Emergency Surgery Unit-Trauma Team, Trauma Center, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
14
|
Scott RT, Sanders LM, Antonsen EL, Hastings JJA, Park SM, Mackintosh G, Reynolds RJ, Hoarfrost AL, Sawyer A, Greene CS, Glicksberg BS, Theriot CA, Berrios DC, Miller J, Babdor J, Barker R, Baranzini SE, Beheshti A, Chalk S, Delgado-Aparicio GM, Haendel M, Hamid AA, Heller P, Jamieson D, Jarvis KJ, Kalantari J, Khezeli K, Komarova SV, Komorowski M, Kothiyal P, Mahabal A, Manor U, Garcia Martin H, Mason CE, Matar M, Mias GI, Myers JG, Nelson C, Oribello J, Parsons-Wingerter P, Prabhu RK, Qutub AA, Rask J, Saravia-Butler A, Saria S, Singh NK, Snyder M, Soboczenski F, Soman K, Van Valen D, Venkateswaran K, Warren L, Worthey L, Yang JH, Zitnik M, Costes SV. Biomonitoring and precision health in deep space supported by artificial intelligence. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00617-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
15
|
Devi DH, Duraisamy K, Armghan A, Alsharari M, Aliqab K, Sorathiya V, Das S, Rashid N. 5G Technology in Healthcare and Wearable Devices: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052519. [PMID: 36904721 PMCID: PMC10007389 DOI: 10.3390/s23052519] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/12/2023]
Abstract
Wearable devices with 5G technology are currently more ingrained in our daily lives, and they will now be a part of our bodies too. The requirement for personal health monitoring and preventive disease is increasing due to the predictable dramatic increase in the number of aging people. Technologies with 5G in wearables and healthcare can intensely reduce the cost of diagnosing and preventing diseases and saving patient lives. This paper reviewed the benefits of 5G technologies, which are implemented in healthcare and wearable devices such as patient health monitoring using 5G, continuous monitoring of chronic diseases using 5G, management of preventing infectious diseases using 5G, robotic surgery using 5G, and 5G with future of wearables. It has the potential to have a direct effect on clinical decision making. This technology could improve patient rehabilitation outside of hospitals and monitor human physical activity continuously. This paper draws the conclusion that the widespread adoption of 5G technology by healthcare systems enables sick people to access specialists who would be unavailable and receive correct care more conveniently.
Collapse
Affiliation(s)
- Delshi Howsalya Devi
- Department of AI & DS, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu 603308, Tamil Nadu, India
| | - Kumutha Duraisamy
- Department of Biomedical Engineering, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu 603308, Tamil Nadu, India
| | - Ammar Armghan
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
| | - Meshari Alsharari
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
| | - Khaled Aliqab
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
| | - Vishal Sorathiya
- Faculty of Engineering and Technology, Parul Institute of Engineering and Technology, Parul University, Waghodia Road, Vadodara 391760, Gujarat, India
| | - Sudipta Das
- Department of Electronics and Communication Engineering, IMPS College of Engineering and Technology, Malda 732103, West Bengal, India
| | - Nasr Rashid
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
16
|
Next in Surgical Data Science: Autonomous Non-Technical Skill Assessment in Minimally Invasive Surgery Training. J Clin Med 2022; 11:jcm11247533. [PMID: 36556148 PMCID: PMC9785657 DOI: 10.3390/jcm11247533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
Background: It is well understood that surgical skills largely define patient outcomes both in Minimally Invasive Surgery (MIS) and Robot-Assisted MIS (RAMIS). Non-technical surgical skills, including stress and distraction resilience, decision-making and situation awareness also contribute significantly. Autonomous, technologically supported objective skill assessment can be efficient tools to improve patient outcomes without the need to involve expert surgeon reviewers. However, autonomous non-technical skill assessments are unstandardized and open for more research. Recently, Surgical Data Science (SDS) has become able to improve the quality of interventional healthcare with big data and data processing techniques (capture, organization, analysis and modeling of data). SDS techniques can also help to achieve autonomous non-technical surgical skill assessments. Methods: An MIS training experiment is introduced to autonomously assess non-technical skills and to analyse the workload based on sensory data (video image and force) and a self-rating questionnaire (SURG-TLX). A sensorized surgical skill training phantom and adjacent training workflow were designed to simulate a complicated Laparoscopic Cholecystectomy task; the dissection of the cholecyst’s peritonial layer and the safe clip application on the cystic artery in an uncomfortable environment. A total of 20 training sessions were recorded from 7 subjects (3 non-medicals, 2 residents, 1 expert surgeon and 1 expert MIS surgeon). Workload and learning curves were studied via SURG-TLX. For autonomous non-technical skill assessment, video image data with tracked instruments based on Channel and Spatial Reliability Tracker (CSRT) and force data were utilized. An autonomous time series classification was achieved by a Fully Convolutional Neural Network (FCN), where the class labels were provided by SURG-TLX. Results: With unpaired t-tests, significant differences were found between the two groups (medical professionals and control) in certain workload components (mental demands, physical demands, and situational stress, p<0.0001, 95% confidence interval, p<0.05 for task complexity). With paired t-tests, the learning curves of the trials were also studied; the task complexity resulted in a significant difference between the first and the second trials. Autonomous non-technical skill classification was based on the FCN by applying the tool trajectories and force data as input. This resulted in a high accuracy (85%) on temporal demands classification based on the z component of the used forces and 75% accuracy for classifying mental demands/situational stress with the x component of the used forces validated with Leave One Out Cross-Validation. Conclusions: Non-technical skills and workload components can be classified autonomously based on measured training data. SDS can be effective via automated non-technical skill assessment.
Collapse
|
17
|
Liu K, Yu Y, Liu Y, Tang J, Liang X, Chu X, Zhou Z. A novel brain-controlled wheelchair combined with computer vision and augmented reality. Biomed Eng Online 2022; 21:50. [PMID: 35883092 PMCID: PMC9327337 DOI: 10.1186/s12938-022-01020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brain-controlled wheelchairs (BCWs) are important applications of brain-computer interfaces (BCIs). Currently, most BCWs are semiautomatic. When users want to reach a target of interest in their immediate environment, this semiautomatic interaction strategy is slow. METHODS To this end, we combined computer vision (CV) and augmented reality (AR) with a BCW and proposed the CVAR-BCW: a BCW with a novel automatic interaction strategy. The proposed CVAR-BCW uses a translucent head-mounted display (HMD) as the user interface, uses CV to automatically detect environments, and shows the detected targets through AR technology. Once a user has chosen a target, the CVAR-BCW can automatically navigate to it. For a few scenarios, the semiautomatic strategy might be useful. We integrated a semiautomatic interaction framework into the CVAR-BCW. The user can switch between the automatic and semiautomatic strategies. RESULTS We recruited 20 non-disabled subjects for this study and used the accuracy, information transfer rate (ITR), and average time required for the CVAR-BCW to reach each designated target as performance metrics. The experimental results showed that our CVAR-BCW performed well in indoor environments: the average accuracies across all subjects were 83.6% (automatic) and 84.1% (semiautomatic), the average ITRs were 8.2 bits/min (automatic) and 8.3 bits/min (semiautomatic), the average times required to reach a target were 42.4 s (automatic) and 93.4 s (semiautomatic), and the average workloads and degrees of fatigue for the two strategies were both approximately 20. CONCLUSIONS Our CVAR-BCW provides a user-centric interaction approach and a good framework for integrating more advanced artificial intelligence technologies, which may be useful in the field of disability assistance.
Collapse
Affiliation(s)
- Kaixuan Liu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Yang Yu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, Hunan, China.
| | - Yadong Liu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Jingsheng Tang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Xinbin Liang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Xingxing Chu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Zongtan Zhou
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, Hunan, China
| |
Collapse
|
18
|
Pantalone D, Chiara O, Henry S, Cimbanassi S, Gupta S, Scalea T. Facing Trauma and Surgical Emergency in Space: Hemorrhagic Shock. Front Bioeng Biotechnol 2022; 10:780553. [PMID: 35845414 PMCID: PMC9283715 DOI: 10.3389/fbioe.2022.780553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Although the risk of trauma in space is low, unpredictable events can occur that may require surgical treatment. Hemorrhage can be a life-threatening condition while traveling to another planet and after landing on it. These exploration missions call for a different approach than rapid return to Earth, which is the policy currently adopted on the International Space Station (ISS) in low Earth orbit (LEO). Consequences are difficult to predict, given the still scarce knowledge of human physiology in such environments. Blood loss in space can deplete the affected astronaut's physiological reserves and all stored crew supplies. In this review, we will describe different aspects of hemorrhage in space, and by comparison with terrestrial conditions, the possible solutions to be adopted, and the current state of the art.
Collapse
Affiliation(s)
- D. Pantalone
- Department of Experimental and Clinical Medicine, Fellow of the American College of Surgeons, Core Board and Head for Studies on Traumatic Events and Surgery in the European Space Agency-Topical Team on “Tissue Healing in Space Techniques for Promoting and Monitoring Tissue Repair and Regeneration” for Life Science Activities Agency, Assistant Professor in General Surgery, Specialist in Vascular Surgery, Emergency Surgery Unit–Trauma Team, Emergency Department–Careggi University Hospital, University of Florence, Florence, Italy
| | - O. Chiara
- Fellow of the American College of Surgeons, Director of General Surgery–Trauma Team, ASST GOM Grande Ospedale Metropolitano Niguarda, Professor of Surgery, University of Milan, Milan, Italy
| | - S. Henry
- Fellow of the American College of Surgeons, Director Division of Wound Healing and Metabolism, R Adams Cowley Shock Trauma Center University of Maryland, Baltimore, MD, United States
| | - S. Cimbanassi
- Fellow of the American College of Surgeons, EMDM, Vice Director of General Surgery-Trauma Team, ASST GOM Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - S. Gupta
- Fellow of the American College of Surgeons, R Adams Cowl y Shock Trauma Center, University of Maryland, Baltimore, MD, United States
| | - T. Scalea
- Fellow of the American College of Surgeons, The Honorable Francis X. Kelly Distinguished Professor of Trauma Surgery.Physician-in-Chief, R Adams Cowley Shock Trauma Center, System Chief for Critical Care Services, University of Maryland Medical System, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
19
|
Cornejo J, Cornejo-Aguilar JA, Vargas M, Helguero CG, Milanezi de Andrade R, Torres-Montoya S, Asensio-Salazar J, Rivero Calle A, Martínez Santos J, Damon A, Quiñones-Hinojosa A, Quintero-Consuegra MD, Umaña JP, Gallo-Bernal S, Briceño M, Tripodi P, Sebastian R, Perales-Villarroel P, De la Cruz-Ku G, Mckenzie T, Arruarana VS, Ji J, Zuluaga L, Haehn DA, Paoli A, Villa JC, Martinez R, Gonzalez C, Grossmann RJ, Escalona G, Cinelli I, Russomano T. Anatomical Engineering and 3D Printing for Surgery and Medical Devices: International Review and Future Exponential Innovations. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6797745. [PMID: 35372574 PMCID: PMC8970887 DOI: 10.1155/2022/6797745] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/26/2022]
Abstract
Three-dimensional printing (3DP) has recently gained importance in the medical industry, especially in surgical specialties. It uses different techniques and materials based on patients' needs, which allows bioprofessionals to design and develop unique pieces using medical imaging provided by computed tomography (CT) and magnetic resonance imaging (MRI). Therefore, the Department of Biology and Medicine and the Department of Physics and Engineering, at the Bioastronautics and Space Mechatronics Research Group, have managed and supervised an international cooperation study, in order to present a general review of the innovative surgical applications, focused on anatomical systems, such as the nervous and craniofacial system, cardiovascular system, digestive system, genitourinary system, and musculoskeletal system. Finally, the integration with augmented, mixed, virtual reality is analyzed to show the advantages of personalized treatments, taking into account the improvements for preoperative, intraoperative planning, and medical training. Also, this article explores the creation of devices and tools for space surgery to get better outcomes under changing gravity conditions.
Collapse
Affiliation(s)
- José Cornejo
- Facultad de Ingeniería, Universidad San Ignacio de Loyola, La Molina, Lima 15024, Peru
- Department of Medicine and Biology & Department of Physics and Engineering, Bioastronautics and Space Mechatronics Research Group, Lima 15024, Peru
| | | | | | | | - Rafhael Milanezi de Andrade
- Robotics and Biomechanics Laboratory, Department of Mechanical Engineering, Universidade Federal do Espírito Santo, Brazil
| | | | | | - Alvaro Rivero Calle
- Department of Oral and Maxillofacial Surgery, Hospital 12 de Octubre, Madrid, Spain
| | - Jaime Martínez Santos
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Aaron Damon
- Department of Neurosurgery, Mayo Clinic, FL, USA
| | | | | | - Juan Pablo Umaña
- Cardiovascular Surgery, Instituto de Cardiología-Fundación Cardioinfantil, Universidad del Rosario, Bogotá DC, Colombia
| | | | - Manolo Briceño
- Villamedic Group, Lima, Peru
- Clínica Internacional, Lima, Peru
| | | | - Raul Sebastian
- Department of Surgery, Northwest Hospital, Randallstown, MD, USA
| | | | - Gabriel De la Cruz-Ku
- Universidad Científica del Sur, Lima, Peru
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jiakai Ji
- Obstetrics and Gynecology, Lincoln Medical and Mental Health Center, Bronx, NY, USA
| | - Laura Zuluaga
- Department of Urology, Fundación Santa Fe de Bogotá, Colombia
| | | | - Albit Paoli
- Howard University Hospital, Washington, DC, USA
| | | | | | - Cristians Gonzalez
- Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut of Image-Guided Surgery (IHU-Strasbourg), Strasbourg, France
| | | | - Gabriel Escalona
- Experimental Surgery and Simulation Center, Department of Digestive Surgery, Catholic University of Chile, Santiago, Chile
| | - Ilaria Cinelli
- Aerospace Human Factors Association, Aerospace Medical Association, VA, USA
| | | |
Collapse
|
20
|
Wheeler DR, Oldani S, Montagna L, Vinci V. Space Medicine: A Spot for Future Plastic Surgeons? Plast Reconstr Surg 2022; 149:180e-181e. [PMID: 34878417 DOI: 10.1097/prs.0000000000008637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | | | - Valeriano Vinci
- Department of Biomedical Sciences, Humanitas University, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| |
Collapse
|
21
|
Pantalone D, Faini GS, Cialdai F, Sereni E, Bacci S, Bani D, Bernini M, Pratesi C, Stefàno P, Orzalesi L, Balsamo M, Zolesi V, Monici M. Robot-assisted surgery in space: pros and cons. A review from the surgeon's point of view. NPJ Microgravity 2021; 7:56. [PMID: 34934056 PMCID: PMC8692617 DOI: 10.1038/s41526-021-00183-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
The target of human flight in space has changed from permanence on the International Space Station to missions beyond low earth orbit and the Lunar Gateway for deep space exploration and Missions to Mars. Several conditions affecting space missions had to be considered: for example the effect of weightlessness and radiations on the human body, behavioral health decrements or communication latency, and consumable resupply. Telemedicine and telerobotic applications, robot-assisted surgery with some hints on experimental surgical procedures carried out in previous missions, had to be considered as well. The need for greater crew autonomy in health issues is related to the increasing severity of medical and surgical interventions that could occur in these missions, and the presence of a highly trained surgeon on board would be recommended. A surgical robot could be a valuable aid but only inasfar as it is provided with multiple functions, including the capability to perform certain procedures autonomously. Space missions in deep space or on other planets present new challenges for crew health. Providing a multi-function surgical robot is the new frontier. Research in this field shall be paving the way for the development of new structured plans for human health in space, as well as providing new suggestions for clinical applications on Earth.
Collapse
Affiliation(s)
- Desirè Pantalone
- Department of Experimental and Clinical Medicine, University of Florence (IT), Emergency SurgeryUnit- TraumaTeam, Emergency Dept-Careggi, University Hospital, Florence, Italy.
| | - Giulia Satu Faini
- Department of Experimental and Clinical Medicine, University of Florence, Careggi University Hospital, Florence, Italy
| | - Francesca Cialdai
- ASAcampus joint laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elettra Sereni
- ASAcampus joint laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Stefano Bacci
- Department of Biology, Research Unit of Histology and Embriology, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology, Research Unit of Histology & Embryology - University of Florence, Florence, Italy
| | - Marco Bernini
- Oncology Department, Breast Unit, Careggi University Hospital, Florence, Italy
| | - Carlo Pratesi
- Department of Experimental and Clinical Medicine-University of Florence, Vascular Surgery Unit, Cardio -Thoracic and Vascular Dept-Careggi University Hospital, Florence, Italy
| | - PierLuigi Stefàno
- Department of Experimental and Clinical Medicine-University of Florence, Cardiovascular Surgery Unit. Cardio-Thoracic and Vascular Dept -Careggi University Hospital, Florence, Italy
| | - Lorenzo Orzalesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Breast Unit, Oncology Department, Careggi University Hospital, Florence, Italy
| | | | | | - Monica Monici
- ASAcampus joint laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
22
|
Abstract
Background: Most healthcare providers are unaware of the extraordinary opportunities for implementation in healthcare which can be enabled by 5G wireless networks. 5G created enormous opportunities for a myriad of new technologies, resulting in an integrated through 5G ‘ecosystem’. Although the new opportunities in healthcare are immense, medicine is slow to change, as manifest by the paucity of new, innovative applications based upon this ecosystem. Thus, emerges the need to “avoid technology surprise” - both laparoscopic and robotic assisted minimally invasive surgery were delayed for years because the surgical community was either unaware or unaccepting of a new technology. Database: PubMed (Medline) and Scopus (Elsevier) databases were searched and all published studies regarding clinical applications of 5G were retrieved. From a total of 40 articles, 13 were finally included in our review. Discussion: The important transformational properties of 5G communications and other innovative technologies are described and compared to healthcare needs, looking for opportunities, limitations, and challenges to implementation of 5G and the ecosystem it has spawned. Furthermore, the needs in the clinical applications, education and research in medicine and surgery, in addition to the administrative infrastructure are addressed. Additionally, we explore the nontechnical challenges, that either support or oppose this new healthcare renovation. Based upon proven advantages of these innovative technologies, current scientific evidence is analyzed for future trends for the transformation of healthcare. By providing awareness of these opportunities and their advantages for patients, it will be possible to decrease the prolonged timeframe for acceptance and implementation for patients.
Collapse
Affiliation(s)
- Konstantinos E Georgiou
- 1 Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Georgiou
- Medical Physics Laboratory Simulation Center (MPLSC), Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Richard M Satava
- Professor Emeritus of Surgery, University of Washington, Seattle, WA
| |
Collapse
|
23
|
Sandoval J, Laribi MA, Faure JP, Breque C, Richer JP, Zeghloul S. Towards an Autonomous Robot-Assistant for Laparoscopy Using Exteroceptive Sensors: Feasibility Study and Implementation. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3094644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Nagyné Elek R, Haidegger T. Non-Technical Skill Assessment and Mental Load Evaluation in Robot-Assisted Minimally Invasive Surgery. SENSORS (BASEL, SWITZERLAND) 2021; 21:2666. [PMID: 33920087 PMCID: PMC8068868 DOI: 10.3390/s21082666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND: Sensor technologies and data collection practices are changing and improving quality metrics across various domains. Surgical skill assessment in Robot-Assisted Minimally Invasive Surgery (RAMIS) is essential for training and quality assurance. The mental workload on the surgeon (such as time criticality, task complexity, distractions) and non-technical surgical skills (including situational awareness, decision making, stress resilience, communication, leadership) may directly influence the clinical outcome of the surgery. METHODS: A literature search in PubMed, Scopus and PsycNet databases was conducted for relevant scientific publications. The standard PRISMA method was followed to filter the search results, including non-technical skill assessment and mental/cognitive load and workload estimation in RAMIS. Publications related to traditional manual Minimally Invasive Surgery were excluded, and also the usability studies on the surgical tools were not assessed. RESULTS: 50 relevant publications were identified for non-technical skill assessment and mental load and workload estimation in the domain of RAMIS. The identified assessment techniques ranged from self-rating questionnaires and expert ratings to autonomous techniques, citing their most important benefits and disadvantages. CONCLUSIONS: Despite the systematic research, only a limited number of articles was found, indicating that non-technical skill and mental load assessment in RAMIS is not a well-studied area. Workload assessment and soft skill measurement do not constitute part of the regular clinical training and practice yet. Meanwhile, the importance of the research domain is clear based on the publicly available surgical error statistics. Questionnaires and expert-rating techniques are widely employed in traditional surgical skill assessment; nevertheless, recent technological development in sensors and Internet of Things-type devices show that skill assessment approaches in RAMIS can be much more profound employing automated solutions. Measurements and especially big data type analysis may introduce more objectivity and transparency to this critical domain as well. SIGNIFICANCE: Non-technical skill assessment and mental load evaluation in Robot-Assisted Minimally Invasive Surgery is not a well-studied area yet; while the importance of this domain from the clinical outcome's point of view is clearly indicated by the available surgical error statistics.
Collapse
Affiliation(s)
- Renáta Nagyné Elek
- Antal Bejczy Center for Intelligent Robotics, University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary;
- Doctoral School of Applied Informatics and Applied Mathematics, Óbuda University, 1034 Budapest, Hungary
| | - Tamás Haidegger
- Antal Bejczy Center for Intelligent Robotics, University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary;
- John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary
- Austrian Center for Medical Innovation and Technology, 2700 Wiener Neustadt, Austria
| |
Collapse
|
25
|
Varma N, Cygankiewicz I, Turakhia M, Heidbuchel H, Hu Y, Chen LY, Couderc J, Cronin EM, Estep JD, Grieten L, Lane DA, Mehra R, Page A, Passman R, Piccini J, Piotrowicz E, Piotrowicz R, Platonov PG, Ribeiro AL, Rich RE, Russo AM, Slotwiner D, Steinberg JS, Svennberg E. 2021 ISHNE/HRS/EHRA/APHRS collaborative statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals: From the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia Pacific Heart Rhythm Society. J Arrhythm 2021; 37:271-319. [PMID: 33850572 PMCID: PMC8022003 DOI: 10.1002/joa3.12461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
This collaborative statement from the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia Pacific Heart Rhythm Society describes the current status of mobile health ("mHealth") technologies in arrhythmia management. The range of digital medical tools and heart rhythm disorders that they may be applied to and clinical decisions that may be enabled are discussed. The facilitation of comorbidity and lifestyle management (increasingly recognized to play a role in heart rhythm disorders) and patient self-management are novel aspects of mHealth. The promises of predictive analytics but also operational challenges in embedding mHealth into routine clinical care are explored.
Collapse
Affiliation(s)
| | | | | | | | - Yufeng Hu
- Taipei Veterans General HospitalTaipeiTaiwan
| | | | | | | | | | | | | | | | - Alex Page
- University of RochesterRochesterNYUSA
| | - Rod Passman
- Northwestern University Feinberg School of MedicineChicagoILUSA
| | | | | | | | | | - Antonio Luiz Ribeiro
- Faculdade de MedicinaCentro de TelessaúdeHospital das Clínicasand Departamento de Clínica MédicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | | | - David Slotwiner
- Cardiology DivisionNewYork‐Presbyterian Queensand School of Health Policy and ResearchWeill Cornell MedicineNew YorkNYUSA
| | | | | |
Collapse
|
26
|
Börner Valdez L, Datta RR, Babic B, Müller DT, Bruns CJ, Fuchs HF. 5G mobile communication applications for surgery: An overview of the latest literature. Artif Intell Gastrointest Endosc 2021; 2:1-11. [DOI: 10.37126/aige.v2.i1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Fifth-generation wireless network, 5G, is expected to bring surgery to a next level. Remote surgery and telementoring could be enabled and be brought into routine medical care due to 5G characteristics, such as extreme high bandwidth, ultra-short latency, multiconnectivity, high mobility, high availability, and high reliability. This work explores the benefits, applications and demands of 5G for surgery. Therefore, the development of previous surgical procedures from using older networks to 5G is outlined. The current state of 5G in surgical research studies is discussed, as well as future aspects and requirements of 5G in surgery are presented.
Collapse
Affiliation(s)
| | - Rabi R Datta
- Department of Surgery, University of Cologne, Cologne 50937, Germany
| | - Benjamin Babic
- Department of Surgery, University of Cologne, Cologne 50937, Germany
| | - Dolores T Müller
- Department of Surgery, University of Cologne, Cologne 50937, Germany
| | | | - Hans F Fuchs
- Department of Surgery, University of Cologne, Cologne 50937, Germany
| |
Collapse
|
27
|
Abstract
Traditionally, advances in robotic technology have been in the manufacturing industry due to the need for collaborative robots. However, this is not the case in the service sectors, especially in the healthcare sector. The lack of emphasis put on the healthcare sector has led to new opportunities in developing service robots that aid patients with illnesses, cognition challenges and disabilities. Furthermore, the COVID-19 pandemic has acted as a catalyst for the development of service robots in the healthcare sector in an attempt to overcome the difficulties and hardships caused by this virus. The use of service robots are advantageous as they not only prevent the spread of infection, and reduce human error but they also allow front-line staff to reduce direct contact, focusing their attention on higher priority tasks and creating separation from direct exposure to infection. This paper presents a review of various types of robotic technologies and their uses in the healthcare sector. The reviewed technologies are a collaboration between academia and the healthcare industry, demonstrating the research and testing needed in the creation of service robots before they can be deployed in real-world applications and use cases. We focus on how robots can provide benefits to patients, healthcare workers, customers, and organisations during the COVID-19 pandemic. Furthermore, we investigate the emerging focal issues of effective cleaning, logistics of patients and supplies, reduction of human errors, and remote monitoring of patients to increase system capacity, efficiency, resource equality in hospitals, and related healthcare environments.
Collapse
|
28
|
Varma N, Cygankiewicz I, Turakhia M, Heidbuchel H, Hu Y, Chen LY, Couderc J, Cronin EM, Estep JD, Grieten L, Lane DA, Mehra R, Page A, Passman R, Piccini J, Piotrowicz E, Piotrowicz R, Platonov PG, Ribeiro AL, Rich RE, Russo AM, Slotwiner D, Steinberg JS, Svennberg E. 2021 ISHNE/ HRS/ EHRA/ APHRS collaborative statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals: From the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia Pacific Heart Rhythm Society. Ann Noninvasive Electrocardiol 2021; 26:e12795. [PMID: 33513268 PMCID: PMC7935104 DOI: 10.1111/anec.12795] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
This collaborative statement from the International Society for Holter and Noninvasive Electrocardiology/ Heart Rhythm Society/ European Heart Rhythm Association/ Asia Pacific Heart Rhythm Society describes the current status of mobile health ("mHealth") technologies in arrhythmia management. The range of digital medical tools and heart rhythm disorders that they may be applied to and clinical decisions that may be enabled are discussed. The facilitation of comorbidity and lifestyle management (increasingly recognized to play a role in heart rhythm disorders) and patient self-management are novel aspects of mHealth. The promises of predictive analytics but also operational challenges in embedding mHealth into routine clinical care are explored.
Collapse
Affiliation(s)
| | | | | | | | - Yufeng Hu
- Taipei Veterans General HospitalTaipeiTaiwan
| | | | | | | | | | | | | | | | - Alex Page
- University of RochesterRochesterNYUSA
| | - Rod Passman
- Northwestern University Feinberg School of MedicineChicagoILUSA
| | | | | | | | | | - Antonio Luiz Ribeiro
- Faculdade de MedicinaCentro de Telessaúde, Hospital das Clínicas, and Departamento de Clínica MédicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | | | - David Slotwiner
- Cardiology DivisionNewYork‐Presbyterian Queens, and School of Health Policy and ResearchWeill Cornell MedicineNew YorkNYUSA
| | | | | |
Collapse
|
29
|
Varma N, Cygankiewicz I, Turakhia M, Heidbuchel H, Hu Y, Chen LY, Couderc J, Cronin EM, Estep JD, Grieten L, Lane DA, Mehra R, Page A, Passman R, Piccini J, Piotrowicz E, Piotrowicz R, Platonov PG, Ribeiro AL, Rich RE, Russo AM, Slotwiner D, Steinberg JS, Svennberg E. 2021 ISHNE / HRS / EHRA / APHRS Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals: From the International Society for Holter and Noninvasive Electrocardiology / Heart Rhythm Society / European Heart Rhythm Association / Asia Pacific Heart Rhythm Society. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2021; 2:7-48. [PMID: 36711170 PMCID: PMC9708018 DOI: 10.1093/ehjdh/ztab001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This collaborative statement from the International Society for Holter and Noninvasive Electrocardiology / Heart Rhythm Society / European Heart Rhythm Association / Asia Pacific Heart Rhythm Society describes the current status of mobile health ("mHealth") technologies in arrhythmia management. The range of digital medical tools and heart rhythm disorders that they may be applied to and clinical decisions that may be enabled are discussed. The facilitation of comorbidity and lifestyle management (increasingly recognized to play a role in heart rhythm disorders) and patient self-management are novel aspects of mHealth. The promises of predictive analytics but also operational challenges in embedding mHealth into routine clinical care are explored.
Collapse
Affiliation(s)
| | | | | | - Hein Heidbuchel
- Antwerp University and University Hospital, Antwerp, Belgium
| | - Yufeng Hu
- Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | - Alex Page
- University of Rochester, Rochester, NY, USA
| | - Rod Passman
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | - Antonio Luiz Ribeiro
- Faculdade de Medicina, Centro de Telessaúde, Hospital das Clínicas, and Departamento de Clínica Médica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Andrea M Russo
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - David Slotwiner
- Cardiology Division, NewYork-Presbyterian Queens, and School of Health, Policy and Research, Weill Cornell Medicine, New York, NY, USA
| | | | | |
Collapse
|
30
|
Varma N, Cygankiewicz I, Turakhia MP, Heidbuchel H, Hu Y, Chen LY, Couderc JP, Cronin EM, Estep JD, Grieten L, Lane DA, Mehra R, Page A, Passman R, Piccini JP, Piotrowicz E, Piotrowicz R, Platonov PG, Ribeiro AL, Rich RE, Russo AM, Slotwiner D, Steinberg JS, Svennberg E. 2021 ISHNE/HRS/EHRA/APHRS Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals: From the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia Pacific Heart Rhythm Society. CARDIOVASCULAR DIGITAL HEALTH JOURNAL 2021; 2:4-54. [PMID: 35265889 PMCID: PMC8890358 DOI: 10.1016/j.cvdhj.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This collaborative statement from the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia Pacific Heart Rhythm Society describes the current status of mobile health ("mHealth") technologies in arrhythmia management. The range of digital medical tools and heart rhythm disorders that they may be applied to and clinical decisions that may be enabled are discussed. The facilitation of comorbidity and lifestyle management (increasingly recognized to play a role in heart rhythm disorders) and patient self-management are novel aspects of mHealth. The promises of predictive analytics but also operational challenges in embedding mHealth into routine clinical care are explored.
Collapse
Key Words
- ACC, American College of Cardiology
- ACS, acute coronary syndrome
- AED, automated external defibrillator
- AF, atrial fibrillation
- AHA, American Heart Association
- AHRE, atrial high-rate episode
- AI, artificial intelligence
- APHRS, Asia Pacific Heart Rhythm Society
- BP, blood pressure
- CIED, cardiovascular implantable electronic device
- CPR, cardiopulmonary resuscitation
- EHR A, European Heart Rhythm Association
- EMR, electronic medical record
- ESUS, embolic stroke of unknown source
- FDA (U.S.), Food and Drug Administration
- GPS, global positioning system
- HCP, healthcare professional
- HF, heart failure
- HR, heart rate
- HRS, Heart Rhythm Society
- ICD, implantable cardioverter-defibrillator
- ILR, implantable loop recorder
- ISHNE, International Society for Holter and Noninvasive Electrocardiology
- JITAI, just-in-time adaptive intervention
- MCT, mobile cardiac telemetry
- OAC, oral anticoagulant
- PAC, premature atrial complex
- PPG, photoplethysmography
- PVC, premature ventricular complexes
- SCA, sudden cardiac arrest
- TADA, Technology Assissted Dietary Assessment
- VT, ventricular tachycardia
- arrhythmias
- atrial fibrillation
- comorbidities
- digital medicine
- heart rhythm
- mHealth
Collapse
Affiliation(s)
| | | | | | - Hein Heidbuchel
- Antwerp University and University Hospital, Antwerp, Belgium
| | - Yufeng Hu
- Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | - Alex Page
- University of Rochester, Rochester, NY, USA
| | - Rod Passman
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | - Antonio Luiz Ribeiro
- Faculdade de Medicina, Centro de Telessaúde, Hospital das Clínicas, and Departamento de Clínica Médica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - David Slotwiner
- Cardiology Division, NewYork-Presbyterian Queens, and School of Health Policy and Research, Weill Cornell Medicine, New York, NY, USA
| | | | | |
Collapse
|
31
|
Varma N, Cygankiewicz I, Turakhia MP, Heidbuchel H, Hu YF, Chen LY, Couderc JP, Cronin EM, Estep JD, Grieten L, Lane DA, Mehra R, Page A, Passman R, Piccini JP, Piotrowicz E, Piotrowicz R, Platonov PG, Ribeiro AL, Rich RE, Russo AM, Slotwiner D, Steinberg JS, Svennberg E. 2021 ISHNE/HRS/EHRA/APHRS Expert Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals: From the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia-Pacific Heart Rhythm Society. Circ Arrhythm Electrophysiol 2021; 14:e009204. [PMID: 33573393 PMCID: PMC7892205 DOI: 10.1161/circep.120.009204] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This collaborative statement from the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia-Pacific Heart Rhythm Society describes the current status of mobile health technologies in arrhythmia management. The range of digital medical tools and heart rhythm disorders that they may be applied to and clinical decisions that may be enabled are discussed. The facilitation of comorbidity and lifestyle management (increasingly recognized to play a role in heart rhythm disorders) and patient self-management are novel aspects of mobile health. The promises of predictive analytics but also operational challenges in embedding mobile health into routine clinical care are explored.
Collapse
Affiliation(s)
- Niraj Varma
- Cleveland Clinic, OH (N.V., J.D.E., R.M., R.E.R.)
| | | | | | | | - Yu-Feng Hu
- Taipei Veterans General Hospital, Taiwan (Y.-F.H.)
| | | | | | | | | | | | | | - Reena Mehra
- Cleveland Clinic, OH (N.V., J.D.E., R.M., R.E.R.)
| | - Alex Page
- University of Rochester, NY (J.-P.C., A.P., J.S.S.)
| | - Rod Passman
- Northwestern University Feinberg School of Medicine, Chicago, IL (R. Passman)
| | | | - Ewa Piotrowicz
- National Institute of Cardiology, Warsaw, Poland (E.P., R. Piotrowicz)
| | | | | | - Antonio Luiz Ribeiro
- Faculdade de Medicina, Centro de Telessaúde, Hospital das Clínicas, and Departamento de Clínica Médica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (A.L.R.)
| | | | - Andrea M. Russo
- Cooper Medical School of Rowan University, Camden, NJ (A.M.R.)
| | - David Slotwiner
- Cardiology Division, New York-Presbyterian Queens, NY (D.S.)
| | | | - Emma Svennberg
- Karolinska University Hospital, Stockholm, Sweden (E.S.)
| |
Collapse
|
32
|
Mishra V, Sharma MG. Telemedicine as frugal intervention to health care: A case of diabetes management. INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT 2021. [DOI: 10.1080/20479700.2020.1870348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Lee S, Hitt WC. Clinical Applications of Telemedicine in Gynecology and Women's Health. Obstet Gynecol Clin North Am 2021; 47:259-270. [PMID: 32451017 DOI: 10.1016/j.ogc.2020.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Telemedicine and telehealth (TM/TH) are the 2 terms used interchangeably focusing on the delivery of health care services at a long distance using telecommunication technology. TM/TH has several gynecologic applications, including the well-woman visits, preventive care, preconception counseling, family planning including contraception and medical abortion, infertility workup, teleradiology, cervical cancer screening and colposcopy, mental health, and telesurgery. The goals of TM/TH are not only improving quality of health care in patients and building a virtual community of physicians but also increasing convenience, efficacy, and decreasing medical cost. In gynecology, TM/TH plays an important role, especially in well-woman care.
Collapse
Affiliation(s)
- Siwon Lee
- Department of Obstetrics and Gynecology, Mount Sinai Medical Center, 4302 Alton Road, Suite 920, Miami Beach, FL 33140, USA
| | - Wilbur C Hitt
- Department of Obstetrics and Gynecology, Mount Sinai Medical Center, 4302 Alton Road, Suite 920, Miami Beach, FL 33140, USA.
| |
Collapse
|
34
|
Rogers MP, DeSantis AJ, Janjua H, Barry TM, Kuo PC. The future surgical training paradigm: Virtual reality and machine learning in surgical education. Surgery 2020; 169:1250-1252. [PMID: 33280858 DOI: 10.1016/j.surg.2020.09.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 10/22/2022]
Abstract
Surgical training has undergone substantial change in the last few decades. As technology and patient complexity continues to increase, demands for novel approaches to ensure competency have arisen. Virtual reality systems augmented with machine learning represents one such approach. The ability to offer on-demand training, integrate checklists, and provide personalized, surgeon-specific feedback is paving the way to a new era of surgical training. Machine learning algorithms that improve over time as they acquire more data will continue to refine the education they provide. Further, fully immersive simulated environments coupled with machine learning analytics provide real-world training opportunities in a safe atmosphere away from the potential to harm patients. Careful implementation of these technologies has the potential to increase access and improve quality of surgical training and patient care and are poised to change the landscape of current surgical training. Herein, we describe the current state of virtual reality coupled with machine learning for surgical training, future directions, and existing limitations of this technology.
Collapse
Affiliation(s)
- Michael P Rogers
- OnetoMAP Data Analytics and Machine Learning, Department of General Surgery, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Anthony J DeSantis
- OnetoMAP Data Analytics and Machine Learning, Department of General Surgery, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Haroon Janjua
- OnetoMAP Data Analytics and Machine Learning, Department of General Surgery, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Tara M Barry
- OnetoMAP Data Analytics and Machine Learning, Department of General Surgery, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Paul C Kuo
- OnetoMAP Data Analytics and Machine Learning, Department of General Surgery, University of South Florida Morsani College of Medicine, Tampa, FL.
| |
Collapse
|
35
|
Rahman MM, Balakuntala MV, Gonzalez G, Agarwal M, Kaur U, Venkatesh VLN, Sanchez-Tamayo N, Xue Y, Voyles RM, Aggarwal V, Wachs J. SARTRES: a semi-autonomous robot teleoperation environment for surgery. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2020. [DOI: 10.1080/21681163.2020.1834878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Md Masudur Rahman
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | | | - Glebys Gonzalez
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Mridul Agarwal
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Upinder Kaur
- School of Engineering Technology, Purdue University, West Lafayette, IN, USA
| | | | | | - Yexiang Xue
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Richard M. Voyles
- School of Engineering Technology, Purdue University, West Lafayette, IN, USA
| | - Vaneet Aggarwal
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Juan Wachs
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
36
|
Zheng J, Wang Y, Zhang J, Guo W, Yang X, Luo L, Jiao W, Hu X, Yu Z, Wang C, Zhu L, Yang Z, Zhang M, Xie F, Jia Y, Li B, Li Z, Dong Q, Niu H. 5G ultra-remote robot-assisted laparoscopic surgery in China. Surg Endosc 2020; 34:5172-5180. [PMID: 32700149 DOI: 10.1007/s00464-020-07823-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/10/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND 5G communication technology has been applied to several fields in telemedicine, but its effectiveness, safety, and stability in remote laparoscopic telesurgery have not been established. Here, we conducted four ultra-remote laparoscopic surgeries on a swine model under the 5G network. The aim of the study was to investigate the effectiveness, safety, and stability of the 5G network in remote laparoscopic telesurgery. METHODS Four ultra-remote laparoscopic surgeries (network communication distance of nearly 3000 km), including left nephrectomy, partial hepatectomy, cholecystectomy, and cystectomy, were performed on a swine model with a 5G wireless network connection using a domestically produced "MicroHand" surgical robot. The average network delay, operative time, blood loss, and intraoperative complications were recorded. RESULTS Four laparoscopic telesurgeries were safely performed through a 5G network, with an average network delay of 264 ms (including a mean round-trip transporting delay of 114 ms and a 1.20% data packet loss ratio). The total operation time was 2 h. The total blood loss was 25 ml, and no complications occurred during the procedures. CONCLUSIONS Ultra-remote laparoscopic surgery can be performed safely and smoothly with 5G wireless network connection using domestically produced equipment. More importantly, our model can provide insights for promoting the future development of telesurgery, especially in areas where Internet cables are difficult to lay or cannot be laid.
Collapse
Affiliation(s)
- Jilu Zheng
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Jian Zhang
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Weidong Guo
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xuecheng Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Lei Luo
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Wei Jiao
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Xiao Hu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zongyi Yu
- Department of Information Management, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chen Wang
- The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ling Zhu
- Qingdao Hisense Medical Equipment Corporation, Ltd, No. 399, Songling Road, Laoshan District, Qingdao, 266000, China
| | - Ziyi Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Mingxin Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Fei Xie
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Yuefeng Jia
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Bin Li
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
37
|
Li R, Yang Y, Wu S, Huang K, Chen W, Liu Y, Lin H. Using artificial intelligence to improve medical services in China. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:711. [PMID: 32617331 PMCID: PMC7327308 DOI: 10.21037/atm.2019.11.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Artificial intelligence (AI) is one hotspot of research in the field of modern medical technology. Medical AI has been applied to various areas and has two main branches including virtual and physical. Recently, Chinese State Council issued a guideline on developing AI and indicated that the widespread application of AI will improve the level of precision in medical services and achieve the intelligent medical care. Medical resources, especially the high-quality resources, are deficient across the entire health service system in China. AI technologies, such that virtual AI and telemedical technology, are expected to overcome the current limitations of the distribution of medical resources and relieve the pressure associated with obtaining high-quality health care.
Collapse
Affiliation(s)
- Ruiyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yahan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shaolong Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Kai Huang
- School of Data and Computer Science, Sun Yet-sen University, Guangzhou, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Brinne Roos J, Bergenzaun P, Groth K, Lundell L, Arnelo U. Telepresence-teleguidance to facilitate training and quality assurance in ERCP: a health economic modeling approach. Endosc Int Open 2020; 8:E326-E337. [PMID: 32118106 PMCID: PMC7035055 DOI: 10.1055/a-1068-9153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023] Open
Abstract
Background and study aims The aims of this study was to document the clinical and training relevance of endoscopic retrograde cholangiopancreaticography (ERCP) teleguidance (as a clinical model for applied telemedicine) with health economic modeling methodologies. Methods Probabilities and consequences of complications after ERCP performed by either a novice-trainee or supported through teleguidance (TM) by an expert formed the basis of the health economic model. Results The main clinical and economic outcomes originated from the base case scenario representing a low-volume center. In the cohort the patient age was 62 years, 58 % were females, the expert was doing ≥ 250 ERCPs per year and 50 for the novice-trainee. The expert knowledge transferred was set to 50 % and the average complexity grade to 1.98. Given a willingness to pay threshold of 56,180 USD/ quality-adjusted life years (QALY), the probability of cost-effectiveness of TM assistance was 98.9 %. The probability of a QALY gain for patients having an ERCP, to which was added TM, was 91.6 %. Adding TM saved on an average 111.2 USD (95 % CI 959 to 1021 SEK) per patient, and remained cost-effective basically insensitive to the level of willingness to pay. Conclusion Teleguidance during an ERCP procedure has the potential to be the prefered option in many low- to medium-volume hospitals. The main mechanisms behind these effects are positive impact on several adverse patient outcomes, QALY increase, and decreased costs. TM should be considered for integration into future teaching curriculums in advanced upper gastrointestinal endoscopy.
Collapse
Affiliation(s)
- Johanna Brinne Roos
- Innovation Centre, Division of Innovation and Development, Karolinska University Hospital, Stockholm, Sweden
| | - Per Bergenzaun
- Department of Surgery, Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Groth
- Innovation Centre, Division of Innovation and Development, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Lundell
- Department of Surgery, Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
- CLINTEC, Karolinska Institutet, Stockholm Sweden
- Department of Surgery, Odense University Hospital, J.B. Winsloews Vej 4, 5000 Odense, Denmark
| | - Urban Arnelo
- Department of Surgery, Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
- CLINTEC, Karolinska Institutet, Stockholm Sweden
| |
Collapse
|
39
|
Resuscitation and Evacuation from Low Earth Orbit: A Systematic Review. Prehosp Disaster Med 2019; 34:521-531. [PMID: 31462335 DOI: 10.1017/s1049023x19004734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Provision of critical care and resuscitation was not practical during early missions into space. Given likely advancements in commercial spaceflight and increased human presence in low Earth orbit (LEO) in the coming decades, development of these capabilities should be considered as the likelihood of emergent medical evacuation increases. METHODS PubMed, Web of Science, Google Scholar, National Aeronautics and Space Administration (NASA) Technical Server, and Defense Technical Information Center were searched from inception to December 2018. Articles specifically addressing critical care and resuscitation during emergency medical evacuation from LEO were selected. Evidence was graded using Oxford Centre for Evidence-Based Medicine guidelines. RESULTS The search resulted in 109 articles included in the review with a total of 2,177 subjects. There were two Level I systematic reviews, 33 Level II prospective studies with 647 subjects, seven Level III retrospective studies with 1,455 subjects, and two Level IV case series with four subjects. There were two Level V case reports and 63 pertinent review articles. DISCUSSION The development of a medical evacuation capability is an important consideration for future missions. This review revealed potential hurdles in the design of a dedicated LEO evacuation spacecraft. The ability to provide critical care and resuscitation during transport is likely to be limited by mass, volume, cost, and re-entry forces. Stabilization and treatment of the patient should be performed prior to departure, if possible, and emphasis should be on a rapid and safe return to Earth for definitive care.
Collapse
|
40
|
Luck ES, Gillespie BM. Technological Advancements in the OR: Do We Need to Redefine Intraoperative Nursing Roles? AORN J 2019; 106:280-282. [PMID: 28958313 DOI: 10.1016/j.aorn.2017.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/22/2017] [Indexed: 10/18/2022]
|
41
|
Shen L, Wang S, Dai W, Zhang Z. Detecting the Interdisciplinary Nature and Topic Hotspots of Robotics in Surgery: Social Network Analysis and Bibliometric Study. J Med Internet Res 2019; 21:e12625. [PMID: 30912752 PMCID: PMC6454338 DOI: 10.2196/12625] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 01/06/2023] Open
Abstract
Background With the widespread application of a robot to surgery, growing literature related to robotics in surgery (RS) documents widespread concerns from scientific researchers worldwide. Although such application is helpful to considerably improve the accuracy of surgery, we still lack the understanding of the multidiscipline-crossing status and topic distribution related to RS. Objective The aim of this study was to detect the interdisciplinary nature and topic hotspots on RS by analyzing the current publication outputs related to RS. Methods The authors collected publications related to RS in the last 21 years, indexed by the Web of Science Core Collection. Various bibliometric methods and tools were used, including literature distribution analysis at the country and institution level and interdisciplinary collaboration analysis in the different periods of time. Co-word analysis was performed based on the keywords with high frequency. The temporal visualization bar presented the evolution of topics over time. Results A total of 7732 bibliographic records related to RS were identified. The United States plays a leading role in the publication output related to RS, followed by Italy and Germany. It should be noted that the Yonsei University in South Korea published the highest number of RS-related publications. Furthermore, the interdisciplinary collaboration is uneven; the number of disciplines involved in each paper dropped from the initial 1.60 to the current 1.31. Surgery; Engineering; Radiology, Nuclear Medicine, and Medical Imaging; and Neurosciences and Neurology are the 4 core disciplines in the field of RS, all of which have extensive cooperation with other disciplines. The distribution of topic hotspots is in imbalanced status, which can be categorized into 7 clusters. Moreover, 3 areas about the evolution of topic were identified, namely (1) the exploration of techniques that make RS implemented, (2) rapid development of robotic systems and related applications in surgery, and (3) application of a robot to excision of tissues or organs targeted at various specific diseases. Conclusions This study provided important insights into the interdisciplinary nature related to RS, which indicates that the researchers with different disciplinary backgrounds should strengthen cooperation to publish a high-quality output. The research topic hotspots related to RS are relatively scattered, which has begun to turn to the application of RS targeted at specific diseases. Our study is helpful to provide a potential guide to the direction of the field of RS for future research in the field of RS.
Collapse
Affiliation(s)
- Lining Shen
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Institute of Smart Health, Huazhong University of Science & Technology, Wuhan, China.,Hubei Provincial Research Center for Health Technology Assessment, Wuhan, China
| | - Shimin Wang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Institute of Smart Health, Huazhong University of Science & Technology, Wuhan, China
| | - Wei Dai
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zhiguo Zhang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Hubei Provincial Research Center for Health Technology Assessment, Wuhan, China
| |
Collapse
|
42
|
Abstract
There is an almost innate urge in human beings to represent reality in a visual form. From rock art in the Paleolithic to images of galaxies, the quotidian and the extraordinary have been visually represented through the ages. Medical and scientific disciplines are no exception. Accurate representation of the human body structures and anatomy based on cadaver dissections was almost not possible up to the Renaissance due to ethical, social, and religious beliefs and objections. The works of Leonardo da Vinci (1452-1519) and others and, later, Andreas Vesalius (1514-1564), who produced De Humanis Corporis Fabrica, are considered landmarks in the history of medicine. During the following centuries medical and scientific illustration relied upon the expertise of physician-artists and scientist-artists until a new paradigm appeared in the realm of scientific (medical) illustration: the invention of photography in the 19th century. Two of the medical disciplines most rapidly influenced by photography were dermatology and pathology, both macro- and microscopic. Physicians rapidly started to use photographs as a tool for consultation, documentation, and education, and large collections of images were amassed by individuals and institutions for these purposes. Photographic images are produced by visible light impressing a light-sensitive material such as a silver halide plate, and nowadays a silicon chip. But photons are reflected by nontransparent objects, including the human skin. Developments in science and technology allowed the use of other types of radiation to reveal internal structures in the human body and, most interestingly, noninvasively. Thus today much of the medical diagnosis and treatment is guided by the so-called medical imaging with the use of these techniques, that is, medical photography, endoscopy, x-ray radiography, computer-aided tomography, magnetic resonance imaging, ultrasonography, thermography, and nuclear medicine functional imaging techniques as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some of these techniques are being applied at the microscopic level to study cell structure and even functional changes in real time. All these advancements in science and technology applied to medicine and other disciplines pose the question as to what extent physicians are trading their capabilities as clinicians. Ethics issues add to the complexity of this new era governed by constant changes in scientific paradigms.
Collapse
Affiliation(s)
- Fabian Michelangeli
- Biophysics and Biochemistry, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| |
Collapse
|
43
|
Telemedicine and telerobotics: from science fiction to reality. Updates Surg 2018; 70:357-362. [PMID: 30056519 DOI: 10.1007/s13304-018-0574-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/22/2018] [Indexed: 12/22/2022]
Abstract
Advances in communication technologies have paved the way for telemedicine to transform the delivery of medical care throughout the world. Coinciding developments in minimally invasive surgery and in particular teleoperated robotic surgical systems will allow the surgeon to deliver expert care in remote locations. This study presents a systematic review of telemedicine, focusing on telerobotic surgical systems. A brief historical review of telemedicine and telerobotics is provided, including a description of the various subtypes of telemedicine. Currently available systems and recent experimental utilization, including long-distance remote telesurgery, are discussed. Experimental telerobotic surgical systems and future developments in the field are reviewed and the potential applications are considered. Future challenges to the implementation and opinions on the future direction of telerobotics are provided in this review.
Collapse
|
44
|
Aaltonen IE, Wahlström M. Envisioning robotic surgery: Surgeons' needs and views on interacting with future technologies and interfaces. Int J Med Robot 2018; 14:e1941. [PMID: 29971897 DOI: 10.1002/rcs.1941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND The development of technology in robotic surgery is typically presented from a technical perspective. This study considers the user perspective as an input to the development of technology by exploring potential solutions within and beyond the field of robotic surgery. METHODS Advanced technological solution concepts were selected based on a technology review and an ethnographic study. Using a future workshop method, these were rated and discussed by a group of surgeons from three perspectives: enhancing operation outcome, user experience and learning in the operating theatre. RESULTS Diverse technologies were considered to offer potential for supporting the surgeons' work. User experience and learning could be improved especially via solutions novel to robotic surgery. Robotic surgery technologies currently under development were mainly considered to support a good operation outcome. Suitability for practical work was elaborated upon, and related concerns were identified. CONCLUSIONS The results can support development of robotic surgery to enhance surgeons' work.
Collapse
Affiliation(s)
- Iina E Aaltonen
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | | |
Collapse
|
45
|
Dietrich D, Dekova R, Davy S, Fahrni G, Geissbühler A. Applications of Space Technologies to Global Health: Scoping Review. J Med Internet Res 2018; 20:e230. [PMID: 29950289 PMCID: PMC6041558 DOI: 10.2196/jmir.9458] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/21/2018] [Accepted: 04/22/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Space technology has an impact on many domains of activity on earth, including in the field of global health. With the recent adoption of the United Nations' Sustainable Development Goals that highlight the need for strengthening partnerships in different domains, it is useful to better characterize the relationship between space technology and global health. OBJECTIVE The aim of this study was to identify the applications of space technologies to global health, the key stakeholders in the field, as well as gaps and challenges. METHODS We used a scoping review methodology, including a literature review and the involvement of stakeholders, via a brief self-administered, open-response questionnaire. A distinct search on several search engines was conducted for each of the four key technological domains that were previously identified by the UN Office for Outer Space Affairs' Expert Group on Space and Global Health (Domain A: remote sensing; Domain B: global navigation satellite systems; Domain C: satellite communication; and Domain D: human space flight). Themes in which space technologies are of benefit to global health were extracted. Key stakeholders, as well as gaps, challenges, and perspectives were identified. RESULTS A total of 222 sources were included for Domain A, 82 sources for Domain B, 144 sources for Domain C, and 31 sources for Domain D. A total of 3 questionnaires out of 16 sent were answered. Global navigation satellite systems and geographic information systems are used for the study and forecasting of communicable and noncommunicable diseases; satellite communication and global navigation satellite systems for disaster response; satellite communication for telemedicine and tele-education; and global navigation satellite systems for autonomy improvement, access to health care, as well as for safe and efficient transportation. Various health research and technologies developed for inhabited space flights have been adapted for terrestrial use. CONCLUSIONS Although numerous examples of space technology applications to global health exist, improved awareness, training, and collaboration of the research community is needed.
Collapse
Affiliation(s)
- Damien Dietrich
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Ralitza Dekova
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Stephan Davy
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Guillaume Fahrni
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Antoine Geissbühler
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| |
Collapse
|
46
|
Panesar SS, Ashkan K. Surgery in space. Br J Surg 2018; 105:1234-1243. [DOI: 10.1002/bjs.10908] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/12/2018] [Accepted: 05/11/2018] [Indexed: 01/17/2023]
Abstract
Abstract
Background
There has been renewed public interest in manned space exploration owing to novel initiatives by private and governmental bodies. Long-term goals include manned missions to, and potential colonization of, nearby planets. Travel distances and mission length required for these would render Earth-based treatment and telemedical solutions unfeasible. These issues present an anticipatory challenge to planners, and novel or adaptive medical technologies must therefore be devised to diagnose and treat the range of medical issues that future space travellers will encounter.
Methods
The aim was to conduct a search of the literature pertaining to human physiology, pathology, trauma and surgery in space.
Results
Known physiological alterations include fluid redistribution, cardiovascular changes, bone and muscle atrophy, and effects of ionizing radiation. Potential pathological mechanisms identified include trauma, cancer and common surgical conditions, such as appendicitis.
Conclusion
Potential surgical treatment modalities must consist of self-sufficient and adaptive technology, especially in the face of uncertain pathophysiological mechanisms and logistical concerns.
Collapse
Affiliation(s)
- S S Panesar
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - K Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
47
|
Roda A, Mirasoli M, Guardigli M, Zangheri M, Caliceti C, Calabria D, Simoni P. Advanced biosensors for monitoring astronauts' health during long-duration space missions. Biosens Bioelectron 2018; 111:18-26. [PMID: 29631159 DOI: 10.1016/j.bios.2018.03.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Long-duration space missions pose important health concerns for astronauts, especially regarding the adverse effects of microgravity and exposure to high-energy cosmic rays. The long-term maintenance of crew health and performance mainly relies on prevention, early diagnoses, condition management, and medical interventions in situ. In-flight biosensor diagnostic devices and medical procedures must use few resources and operate in a microgravity environment, which complicates the collection and management of biological samples. Moreover, the biosensors must be certified for in-flight operation according to strict design and safety regulations. Herein, we report on the state of the art and recent advances in biosensing diagnostic instrumentation for monitoring astronauts' health during long-duration space missions, including portable and wearable biosensors. We discuss perspectives on new-format biosensors in autonomous space clinics. We also describe our own work in developing biosensing devices for non-invasively diagnosing space-related diseases, and how they are used in long-duration missions. Finally, we discuss the benefits of space exploration for Earth-based medicine.
Collapse
Affiliation(s)
- Aldo Roda
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Mara Mirasoli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Cristiana Caliceti
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Interdepartmental Center of Industrial Research (CIRI) - Energy and Environment, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Donato Calabria
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Interdepartmental Center of Industrial Research (CIRI) - Energy and Environment, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Patrizia Simoni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
48
|
Siddaiah-Subramanya M, Tiang KW, Nyandowe M. A New Era of Minimally Invasive Surgery: Progress and Development of Major Technical Innovations in General Surgery Over the Last Decade. Surg J (N Y) 2017; 3:e163-e166. [PMID: 29134202 PMCID: PMC5680046 DOI: 10.1055/s-0037-1608651] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022] Open
Abstract
Minimally invasive surgery (MIS) continues to play an important role in general surgery as an alternative to traditional open surgery as well as traditional laparoscopic techniques. Since the 1980s, technological advancement and innovation have seen surgical techniques in MIS rapidly grow as it is viewed as more desirable. MIS, which includes natural orifice transluminal endoscopic surgery (NOTES) and single-incision laparoscopic surgery (SILS), is less invasive and has better cosmetic results. The technological growth and adoption of NOTES and SILS by clinicians in the last decade has however not been uniform. We look at the differences in new developments and advancement in the different techniques in the last 10 years. We also aim to explain these differences as well as the implications in general surgery for the future.
Collapse
Affiliation(s)
- Manjunath Siddaiah-Subramanya
- Department of Surgery, Logan Hospital, Brisbane, Queensland, Australia.,Department of Medicine, Griffith University, Queensland, Australia.,Department of Medicine, University of Queensland, Queensland, Australia
| | - Kor Woi Tiang
- Department of Surgery, Logan Hospital, Brisbane, Queensland, Australia.,Department of Medicine, Griffith University, Queensland, Australia.,Department of Medicine, University of Queensland, Queensland, Australia
| | - Masimba Nyandowe
- Department of Surgery, Townsville Hospital, Townsville, Queensland, Australia
| |
Collapse
|
49
|
Abstract
Minimally invasive surgery is slowly taking over as the preferred operative approach for colorectal diseases. However, many of the procedures remain technically difficult. This article will give an overview of the state of minimally invasive surgery and the many advances that have been made over the last two decades. Specifically, we discuss the introduction of the robotic platform and some of its benefits and limitations. We also describe some newer techniques related to robotics.
Collapse
Affiliation(s)
- Matthew Whealon
- Department of Surgery, University of California, Irvine, Orange, California
| | - Alessio Vinci
- Department of Surgery, University of California, Irvine, Orange, California
| | - Alessio Pigazzi
- Department of Surgery, University of California, Irvine, Orange, California
| |
Collapse
|
50
|
Avgousti S, Christoforou EG, Panayides AS, Voskarides S, Novales C, Nouaille L, Pattichis CS, Vieyres P. Medical telerobotic systems: current status and future trends. Biomed Eng Online 2016; 15:96. [PMID: 27520552 PMCID: PMC4983067 DOI: 10.1186/s12938-016-0217-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/02/2016] [Indexed: 01/27/2023] Open
Abstract
Teleoperated medical robotic systems allow procedures such as surgeries, treatments, and diagnoses to be conducted across short or long distances while utilizing wired and/or wireless communication networks. This study presents a systematic review of the relevant literature between the years 2004 and 2015, focusing on medical teleoperated robotic systems which have witnessed tremendous growth over the examined period. A thorough insight of telerobotics systems discussing design concepts, enabling technologies (namely robotic manipulation, telecommunications, and vision systems), and potential applications in clinical practice is provided, while existing limitations and future trends are also highlighted. A representative paradigm of the short-distance case is the da Vinci Surgical System which is described in order to highlight relevant issues. The long-distance telerobotics concept is exemplified through a case study on diagnostic ultrasound scanning. Moreover, the present review provides a classification into short- and long-distance telerobotic systems, depending on the distance from which they are operated. Telerobotic systems are further categorized with respect to their application field. For the reviewed systems are also examined their engineering characteristics and the employed robotics technology. The current status of the field, its significance, the potential, as well as the challenges that lie ahead are thoroughly discussed.
Collapse
Affiliation(s)
- Sotiris Avgousti
- Nursing Department, School of Health and Science, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036 Limassol, Cyprus
| | - Eftychios G. Christoforou
- Department of Electrical and Computer Engineering, University of Cyprus, 75 Kalipoleos Street, P.O.BOX 20537, 1678 Nicosia, Cyprus
| | - Andreas S. Panayides
- Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London, SW7 2AZ UK
- Department of Computer Science, University of Cyprus, 75 Kalipoleos Street, P.O.BOX 20537, 1678 Nicosia, Cyprus
| | - Sotos Voskarides
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036 Lemesos, Cyprus
| | - Cyril Novales
- Laboratoire PRISME-Universite d’Orleans, 63 Avenue de Lattre de Tassigny, 18020 Bourges, France
| | - Laurence Nouaille
- Laboratoire PRISME-Universite d’Orleans, 63 Avenue de Lattre de Tassigny, 18020 Bourges, France
| | - Constantinos S. Pattichis
- Department of Computer Science, University of Cyprus, 75 Kalipoleos Street, P.O.BOX 20537, 1678 Nicosia, Cyprus
| | - Pierre Vieyres
- Laboratoire PRISME-Universite d’Orleans, 63 Avenue de Lattre de Tassigny, 18020 Bourges, France
| |
Collapse
|