1
|
Ran X, Li H, Wang Z, Wu F, Deng Z, Zhou Q, Dai C, Peng J, Lu L, Zhou K, Ran P, Zhou Y. Increased plasma interleukin-1β is associated with accelerated lung function decline in non-smokers. Pulmonology 2025; 31:2411811. [PMID: 39883490 DOI: 10.1080/25310429.2024.2411811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/26/2024] [Indexed: 01/31/2025] Open
Abstract
Interleukin-1β is one of the major cytokines involved in the initiation and persistence of airway inflammation in chronic obstructive pulmonary disease (COPD). However, the association between plasma interleukin-1β and lung function decline remains unclear. We aimed to explore the association between plasma interleukin-1β and lung function decline. This longitudinal evaluation of data from the Early COPD study analysed the association between the plasma interleukin-1β concentration, lung function decline, and COPD exacerbation. Overall, 1,328 participants were included in the baseline analysis, and 1,135 (85%) completed the 1-year follow-up. Increased plasma interleukin-1β was associated with accelerated lung function decline in non-smokers (forced expiratory volume in 1 s: per unit natural log-transformed increase, adjusted unstandardised β [95% confidence interval] 101.46 [16.73-186.18] mL/year, p=0.019; forced vital capacity: per unit natural log-transformed increase, adjusted unstandardised β [95% confidence interval] 146.20 [93.65-198.75] mL/year, p<0.001), but not in smokers. In non-smokers, participants with an interleukin-1β concentration in the top 30% (>5.02 pg/mL) had more respiratory symptoms, more severe emphysema and air trapping, and higher levels of inflammation-related biomarkers. In this study, a subgroup with increased plasma interleukin-1β was identified among non-smokers, and increased plasma interleukin-1β was associated with lung function accelerated decline.
Collapse
Affiliation(s)
- Xinru Ran
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International BioIsland, Guangzhou, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaorui Zhou
- The First Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International BioIsland, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Zhou K, Wu F, Zhao N, Zheng Y, Deng Z, Yang H, Wen X, Xiao S, Yang C, Chen S, Zhou Y, Ran P. Association of pectoralis muscle area on computed tomography with airflow limitation severity and respiratory outcomes in COPD: A population-based prospective cohort study. Pulmonology 2025; 31:2416782. [PMID: 36907812 DOI: 10.1016/j.pulmoe.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Previous studies have shown that patients with chronic obstructive pulmonary disease (COPD) of severe or very severe airflow limitation have a reduced pectoralis muscle area (PMA), which is associated with mortality. However, whether patients with COPD of mild or moderate airflow limitation also have a reduced PMA remains unclear. Additionally, limited evidence is available regarding the associations between PMA and respiratory symptoms, lung function, computed tomography (CT) imaging, lung function decline, and exacerbations. Therefore, we conducted this study to evaluate the presence of PMA reduction in COPD and to clarify its associations with the referred variables. METHODS This study was based on the subjects enrolled from July 2019 to December 2020 in the Early Chronic Obstructive Pulmonary Disease (ECOPD) study. Data including questionnaire, lung function, and CT imaging were collected. The PMA was quantified on full-inspiratory CT at the aortic arch level using predefined -50 and 90 Hounsfield unit attenuation ranges. Multivariate linear regression analyses were performed to assess the association between the PMA and airflow limitation severity, respiratory symptoms, lung function, emphysema, air trapping, and the annual decline in lung function. Cox proportional hazards analysis and Poisson regression analysis were used to evaluate the PMA and exacerbations after adjustment. RESULTS We included 1352 subjects at baseline (667 with normal spirometry, 685 with spirometry-defined COPD). The PMA was monotonically lower with progressive airflow limitation severity of COPD after adjusting for confounders (vs. normal spirometry; Global Initiative for Chronic Obstructive Lung Disease [GOLD] 1: β=-1.27, P=0.028; GOLD 2: β=-2.29, P<0.001; GOLD 3: β=-4.88, P<0.001; GOLD 4: β=-6.47, P=0.014). The PMA was negatively associated with the modified British Medical Research Council dyspnea scale (β=-0.005, P=0.026), COPD Assessment Test score (β=-0.06, P=0.001), emphysema (β=-0.07, P<0.001), and air trapping (β=-0.24, P<0.001) after adjustment. The PMA was positively associated with lung function (all P<0.05). Similar associations were discovered for the pectoralis major muscle area and pectoralis minor muscle area. After the 1-year follow-up, the PMA was associated with the annual decline in the post-bronchodilator forced expiratory volume in 1 s percent of predicted value (β=0.022, P=0.002) but not with the annual rate of exacerbations or the time to first exacerbation. CONCLUSION Patients with mild or moderate airflow limitation exhibit a reduced PMA. The PMA is associated with airflow limitation severity, respiratory symptoms, lung function, emphysema, and air trapping, suggesting that PMA measurement can assist with COPD assessment.
Collapse
Affiliation(s)
- K Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - F Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-island, Guangzhou, China
| | - N Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Y Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Z Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - H Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - X Wen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - S Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - C Yang
- Department of Pulmonary and Critical Care Medicine, Wengyuan County People's Hospital, Shaoguan, China
| | - S Chen
- Medical Imaging Center, Wengyuan County People's Hospital, Shaoguan, China
| | - Y Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-island, Guangzhou, China
| | - P Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-island, Guangzhou, China
| |
Collapse
|
3
|
Wan Q, Deng Z, Wu F, Zheng Y, Yang H, Zhao N, Dai C, Xiao S, Wen X, Peng J, Lu L, Zhou K, Wu X, Tang G, Yang C, Chen S, Huang J, Huang Y, Yu S, Hong W, Zhou Y, Ran P. Association of Exercise Tolerance with Respiratory Health Outcomes in Mild-to-Moderate Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2025; 22:669-678. [PMID: 39586034 DOI: 10.1513/annalsats.202404-408oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024] Open
Abstract
Rationale: Previous studies have identified exercise intolerance in patients with mild-to-moderate chronic obstructive pulmonary disease (COPD). The association of exercise tolerance with lung function decline and acute exacerbation risk in mild-to-moderate COPD is unclear, especially in the community population. Objectives: We evaluated exercise tolerance in patients with mild-to-moderate COPD and analyzed its associations with respiratory health outcomes. Methods: We analyzed data from the community-based ECOPD (Early Chronic Obstructive Pulmonary Disease) study of patients with mild-to-moderate COPD (postbronchodilator forced expiratory volume in 1 second (FEV1):forced vital capacity < 0.70 and FEV1 ≥ 50% predicted). Patients who completed questionnaires, spirometry, and cardiopulmonary exercise testing at baseline were included. Annual exacerbation assessment and spirometry were conducted for 2 years consecutively. Exercise tolerance was defined as the percentage of predicted peak oxygen uptake ([Formula: see text]o2peak% predicted). We analyzed the association between exercise tolerance, annual lung function decline, and acute exacerbation risk. Results: Overall, 338 patients were included in the baseline analysis, and 319 completed the 2-year follow up. The mean ± standard deviation of [Formula: see text]o2peak% predicted was 79.8 ± 13.7%. Low [Formula: see text]o2peak% predicted was associated with more chronic respiratory symptoms, worse lung function, severer emphysema, and air trapping at baseline. During the 2-year follow up, a decrease of 13.7% (1 standard deviation) in [Formula: see text]o2peak% predicted was associated with a decline in prebronchodilator FEV1:forced vital capacity (difference, 0.4% [95% confidence interval, 0.1-0.7%]; P = 0.003) and higher total exacerbation risk (relative risk, 1.25 [95% confidence interval, 1.08-1.46]; P = 0.004) after adjustment. Conclusions: Patients with mild-to-moderate COPD and exercise intolerance have worse respiratory health outcomes, for which low exercise tolerance is a prognostic marker. Clinical trial registered with www.chictr.org.cn (ChiCTR1900024643).
Collapse
Affiliation(s)
- Qi Wan
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Youlan Zheng
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huajing Yang
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningning Zhao
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Xiao
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Wen
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Wu
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gaoying Tang
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changli Yang
- Department of Pulmonary and Critical Care Medicine and
| | - Shengtang Chen
- Medical Imaging Center, Wengyuan People's Hospital, Shaoguan, China
| | - Jianhui Huang
- Department of Internal Medicine, Lianping County People's Hospital, Heyuan, China; and
| | - Yongqing Huang
- Department of Internal Medicine, Lianping County People's Hospital, Heyuan, China; and
| | - Shuqing Yu
- Department of Internal Medicine, Lianping County People's Hospital, Heyuan, China; and
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease and National Center for Respiratory Medicine and Guangzhou Institute of Respiratory Health and The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| |
Collapse
|
4
|
Lu L, Wu F, Tang G, Wan Q, Deng Z, Peng J, Dai C, Zhou K, Wu X, Yu S, Huang Y, Yang C, Chen S, Ran P, Zhou Y. Associations of small airway dysfunction assessed by impulse oscillometry with lung function decline and exacerbations in participants with chronic obstructive pulmonary disease: A prospective cohort study in China. Respir Med 2025; 241:108075. [PMID: 40174657 DOI: 10.1016/j.rmed.2025.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
INTRODUCTION Small airway dysfunction (SAD) assessed by impulse oscillometry (IOS) was common in patients with chronic obstructive pulmonary disease (COPD). However, little is known about the associations between IOS-defined small airway dysfunction (SAD) and the long-term prognosis of COPD. This study aimed to explore the associations between IOS-defined SAD, lung function decline and exacerbations in patients with COPD. METHODS We analyzed baseline and 2-year follow-up data from the prospective cohort study in China. We defined SAD using IOS parameters Z-score greater than the 1.645 or less than -1.645. Subsequently, these patients were divided into three groups based on the different criteria defined SAD using IOS (normal group [none IOS parameters abnormalities], inconsistent SAD [any IOS parameters abnormalities, but not all], consistent SAD [all of IOS parameters abnormalities]). Negative binomial regression was conducted to analyze the associations between SAD and exacerbations, while a multivariable linear regression model was utilized to identify associations between SAD and lung function decline. RESULTS 833 patients with COPD were enrolled in our study. SAD (defined by X5, AX, and Fres z-score) was associated with a faster decline in lung function and higher risk of exacerbation. Meanwhile, for inconsistent diagnosis of SAD, we observed that patients with consistent SAD and inconsistent SAD experienced a faster decline in FEV1 and higher risk of exacerbations than those with normal group. CONCLUSIONS IOS-defined SAD was associated with worse outcomes in patients with COPD, and further clinical trials are needed to clarify whether early intervention to reduce the severity of small airway lesions can delay the progress of COPD. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR1900024643. Registered on 19 July 2019.
Collapse
Affiliation(s)
- Lifei Lu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gaoying Tang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Wan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhishan Deng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieqi Peng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China
| | - Cuiqiong Dai
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kunning Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Wu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuqing Yu
- Lianping County People's Hospital, Heyuan, China
| | | | - Changli Yang
- Wengyuan County People's Hospital, Shaoguan, China
| | | | - Pixin Ran
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| | - Yumin Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
5
|
Deng Z, Wu F, Wan Q, Dai C, Lu L, Wang Z, Zhou K, Wu X, Tang G, Yang H, Peng J, Huang S, Cai G, Wu F, Lin J, Wang X, Yang C, Huang Y, Chen R, Zhong N, Zhou Y, Ran P. Impaired Ventilatory Efficiency Identifies High-Risk Mild-to-Moderate Chronic Obstructive Pulmonary Disease. Arch Bronconeumol 2025:S0300-2896(25)00141-3. [PMID: 40360367 DOI: 10.1016/j.arbres.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
OBJECTIVES Identifying high-risk patients is fundamental to slowing disease progression in mild-to-moderate COPD. Over one-fifth of these patients have impaired ventilatory efficiency, strongly associated with advanced disease severity, while its unclear prognostic value for high-risk case identification persists. METHODS This was a prospective cohort study conducted from July 2019 to September 2024 (encompassing the COVID-19 pandemic period) in China. Non-COPD subjects and mild-to-moderate COPD patients who completed questionnaires, lung function tests and cardiopulmonary exercise tests at baseline were annually followed up over 3 years. Subjects with predefined high-risk criteria, including CAT score≥10, mMRC score≥2, postbronchodilator FEV1<60% predicted, and frequent exacerbations, were further excluded. Impaired ventilatory efficiency was defined as a nadir minute ventilation/CO2 output≥the upper limit of normal. Outcomes included annual lung function decline, exacerbation risks, and symptom scores. RESULTS A total of 780 subjects were included, with 684 (88%) completing follow-up. Patients with impaired ventilatory efficiency displayed a greater annual decline in postbronchodilator FEV1 (54 [95% CI: 32-76]mL/year) than patients with normal ventilatory efficiency (31 [15-47] mL/year, adjusted P=0.008) and non-COPD subjects (31 [22-40]mL/year, adjusted P=0.001). However, no significant difference existed between patients with normal ventilatory efficiency and non-COPD subjects (adjusted P=0.756). Similar results were observed for exacerbation risks and symptom scores. CONCLUSIONS Impaired ventilatory efficiency can identify high-risk mild-to-moderate COPD patients with poor prognosis independently of established risk factors. Further studies are needed to explore effective interventions for patients with impaired ventilatory efficiency.
Collapse
Affiliation(s)
- Zhishan Deng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qi Wan
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China
| | - Gaoying Tang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Huajing Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China
| | - Suyin Huang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China
| | - Guannan Cai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Fangyan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Junfeng Lin
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China
| | - Xiaoyu Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China
| | - Changli Yang
- Wengyuan County People's Hospital, Shaoguan, China
| | | | - Rongchang Chen
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
6
|
Yi E, Li H, Liu Y, Li Q, Xie C, Sun R, Wu F, Deng Z, Zhou K, Wang H, Ran X, Zhou Y, Ran P. An integrated machine learning model of transcriptomic genes in multi-center chronic obstructive pulmonary disease reveals the causal role of TIMP4 in airway epithelial cell. Respir Res 2025; 26:158. [PMID: 40269868 PMCID: PMC12020095 DOI: 10.1186/s12931-025-03238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome, resulting in inconsistent findings across studies. Identifying a core set of genes consistently involved in COPD pathogenesis, independent of patient variability, is essential. METHODS We integrated lung tissue sequencing data from patients with COPD across two centers. We used weighted gene co-expression network analysis and machine learning to identify 13 potential pathogenic genes common to both centers. Additionally, a gene-based model was constructed to distinguish COPD at the molecular level and validated in independent cohorts. Gene expression in specific cell types was analyzed, and Mendelian randomization was used to confirm associations between candidate genes and lung function/COPD. Preliminary in vitro functional validation was performed on prioritized core candidate genes. RESULTS Tissue inhibitor of metalloproteinase 4 (TIMP4) was identified as a key pathogenic gene and validated in COPD cohorts. Further analysis using single-cell sequencing from mice and patients with COPD revealed that TIMP4 is involved in ciliated cells. In primary human airway epithelial cells cultured at the air-liquid interface, TIMP4 overexpression reduced ciliated cell numbers. CONCLUSIONS We developed a 13-gene model for distinguishing COPD at the molecular level and identified TIMP4 as a potential hub pathogenic gene. This finding provides insights into shared disease mechanisms and positions TIMP4 as a promising therapeutic target for further investigation.
Collapse
Affiliation(s)
- Erkang Yi
- Guangzhou National Laboratory, No.9 Xing Dao Huan Bei Road, Guangzhou International BioIsland, Guangzhou, 510005, Guangdong, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Yu Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Qingyang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Chengshu Xie
- Guangzhou National Laboratory, No.9 Xing Dao Huan Bei Road, Guangzhou International BioIsland, Guangzhou, 510005, Guangdong, China
| | - Ruining Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Hairong Wang
- Guangzhou National Laboratory, No.9 Xing Dao Huan Bei Road, Guangzhou International BioIsland, Guangzhou, 510005, Guangdong, China
| | - Xinru Ran
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China.
- Guangzhou National Laboratory, No.9 Xing Dao Huan Bei Road, Guangzhou International BioIsland, Guangzhou, 510005, Guangdong, China.
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China.
- Guangzhou National Laboratory, No.9 Xing Dao Huan Bei Road, Guangzhou International BioIsland, Guangzhou, 510005, Guangdong, China.
| |
Collapse
|
7
|
Huang S, Wu F, Deng Z, Peng J, Dai C, Lu L, Zhou K, Wu X, Wan Q, Tang G, Chen S, Yang C, Huang Y, Yu S, Ran P, Zhou Y. Comparing spirometry, impulse oscillometry with computed tomography for assessing small airway dysfunction in subjects with and without chronic obstructive pulmonary disease. BMC Pulm Med 2025; 25:45. [PMID: 39875840 PMCID: PMC11773755 DOI: 10.1186/s12890-025-03507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Studies on consistency among spirometry, impulse oscillometry (IOS), and histology for detecting small airway dysfunction (SAD) remain scarce. Considering invasiveness of lung histopathology, we aimed to compare spirometry and IOS with chest computed tomography (CT) for SAD detection, and evaluate clinical characteristics of subjects with SAD assessed by these three techniques. METHODS We collected baseline data from the Early COPD (ECOPD) study. CT-defined SAD was defined as parametric response mapping quantifying SAD (PRMfSAD) ≥ 15%. Spirometry-defined SAD was defined as at least two of maximal mid-expiratory flow (MMEF), forced expiratory flow 50% (FEF50), and forced expiratory flow 75% (FEF75) less than 65% of predicted. IOS-defined SAD was defined as peripheral airway resistance R5 - R20 > 0.07 kPa/L/s. The consistency of spirometry, IOS and CT for diagnosing SAD was assessed using Kappa coefficient. Correlations among the three techniques-measured small airway function parameters were assessed by Spearman correlation analysis. RESULTS 2055 subjects were included in the final analysis. There was low agreement in SAD assessment between spirometry and CT (Kappa = 0.126, 95% confidence interval [CI]: 0.106 to 0.146, p < 0.001), between IOS and CT (Kappa = 0.266, 95% CI: 0.219 to 0.313, p < 0.001), as well as among spirometry, IOS, and CT (Kappa = 0.056, 95% CI: 0.029 to 0.082, p < 0.001). The correlation was moderate (|r|: 0.5 to 0.7, p < 0.05) between spirometry and CT-measured small airway function parameters, and weak (|r|< 0.4, p < 0.05) between IOS and CT-measured small airway function parameters. Only spirometry-defined SAD group had more lower lung function (FEV1/FVC: adjusted difference=-10.7%, 95% CI: -13.5% to -7.8%, p < 0.001) and increased airway wall thickness (Pi 10: adjusted difference = 0.3 mm, 95% CI: 0 to 0.6 mm, p = 0.046) than only CT-defined SAD group. Only IOS-defined SAD group had better lung function (FEV1/FVC: adjusted difference = 3.9%, 95% CI: 1.9 to 5.8%, p < 0.001), less emphysema (inspiratory LAA- 950: adjusted difference=-2.1%, 95% CI:-3.1% to -1.1%, P < 0.001; PRMEmph: adjusted difference=-2.3%, 95% CI: -3.2% to -1.4%, p < 0.001), and thicker airway wall (Pi 10: adjusted difference = 0.2 mm, 95% CI: 0.1 mm to 0.4 mm, p = 0.005) than only CT-defined SAD group. CONCLUSIONS There was low consistency in the assessment of SAD between spirometry and CT, between IOS and CT, as well as among spirometry, IOS, and CT. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Suyin Huang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou National Laboratory, Guangzhou, 510000, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou National Laboratory, Guangzhou, 510000, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou National Laboratory, Guangzhou, 510000, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaohui Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Qi Wan
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Gaoying Tang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | | | - Changli Yang
- Wengyuan People's Hospital, Shaoguan, 512699, China
| | - Yongqing Huang
- Lianping County People's Hospital, Heyuan, 517199, China
| | - Shuqing Yu
- Lianping County People's Hospital, Heyuan, 517199, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou National Laboratory, Guangzhou, 510000, China.
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou National Laboratory, Guangzhou, 510000, China.
| |
Collapse
|
8
|
Zhou K, Wu F, Lu L, Tang G, Deng Z, Dai C, Zhao N, Wan Q, Peng J, Wu X, Zeng X, Cui J, Yang C, Chen S, Huang Y, Yu S, Zhou Y, Ran P. Association between impaired diffusion capacity and small airway dysfunction: a cross-sectional study. ERJ Open Res 2025; 11:00910-2023. [PMID: 39811543 PMCID: PMC11726590 DOI: 10.1183/23120541.00910-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/10/2024] [Indexed: 01/16/2025] Open
Abstract
Background Small airway dysfunction (SAD) and impaired diffusion capacity of the lungs for carbon monoxide (D LCO) are positively associated with a worse prognosis. Individuals with both dysfunctions have been identified in clinical practice and it is unknown whether they have worse health status or need management. We conducted this study to explore the association between SAD and impaired D LCO, and the difference between the groups with two dysfunctions, with either one dysfunction and with no dysfunction. Methods This study involved subjects partly from those who had returned for the third-year follow-up (up to December 2022) of the Early Chronic Obstructive Pulmonary Disease study and those who newly participated. We assessed diffusion capacity, questionnaire, exacerbations, spirometry, impulse oscillometry (IOS) and computed tomography (CT). Impaired D LCO was defined as D LCO <80% predicted. Spirometry-defined SAD was defined using the percent predicted values of maximal mid-expiratory flow, and forced expiratory flow at 50% and 75% of forced vital capacity, at least two of these three values being <65% predicted after the use of a bronchodilator. IOS-defined SAD was defined when the difference in resistance at 5 and 20 Hz was >0.07 kPa·L-1·s. CT-defined SAD was defined when the percentage of expiratory low-attenuation areas <-856 HU comprised ≥15% of the total lung volume. Covariate analyses and logistic regression were performed to assess the association between impaired D LCO and SAD. Results This study involved 581 subjects. The occurrence of both spirometry- and CT-defined SAD was significantly higher in subjects with impaired D LCO than normal D LCO. Subjects with two dysfunctions were associated with worse preceding year's exacerbations than controls. Conclusions Impaired diffusion capacity is positively associated with SAD. Subjects with impaired diffusion capacity and SAD may have a worse health status and need additional management.
Collapse
Affiliation(s)
- Kunning Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- K. Zhou and F. Wu contributed equally as joint first authors
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- K. Zhou and F. Wu contributed equally as joint first authors
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gaoying Tang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ningning Zhao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qi Wan
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Xiaohui Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xianliang Zeng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiangyu Cui
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changli Yang
- Department of Pulmonary and Critical Care Medicine, Wengyuan County People's Hospital, Shaoguan, China
| | - Shengtang Chen
- Medical Imaging Center, Wengyuan County People's Hospital, Shaoguan, China
| | | | - Shuqing Yu
- Lianping County People's Hospital, Heyuan, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- Y. Zhou and P. Ran contributed equally as lead authors and supervised the work
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine & Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- Y. Zhou and P. Ran contributed equally as lead authors and supervised the work
| |
Collapse
|
9
|
Lu L, Wan Q, Tang G, Wu F, Deng Z, Peng J, Dai C, Zhou K, Wu X, Yu S, Huang Y, Yang C, Chen S, Ran P, Zhou Y. New Classifications of COPD Severity Based on Impulse Oscillometry: A SAIO Grade Base on ECOPD Cohort in China. Arch Bronconeumol 2024:S0300-2896(24)00408-3. [PMID: 39667982 DOI: 10.1016/j.arbres.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Recently, the severities of chronic obstructive pulmonary disease (COPD) can also be assessed by impulse oscillometry (IOS). This study aimed to explore a new classification of severity of COPD based on IOS and associations with acute exacerbations (AE) in patients with COPD. METHODS The data of our study were based on the baseline and 2-year follow-up data of a prospective cohort in China. COPD was defined as post-bronchodilator FEV1/FVC <0.70. A new severity classification (staging of airflow obstruction by IOS, SAIO) was evaluated based on IOS parameters (R5, R5-R20, and X5 z-scores). We quantified using the weighted Bangdiwala B for agreement of severities of COPD between IOS parameters and FEV1%pred. The differences among SAIO stages were performed in symptom scores and imaging using analysis of covariance, and in the AE using Poisson regression. RESULTS Overall, 833 patients with COPD were included in this study. The weighted Bangdiwala B of R5, R5-R20, X5 z-scores, and FEV1%pred for evaluating agreement of the severities of COPD was 0.68, 0.70 and 0.83, respectively. The SAIO classifications system identified a greater number of patients with stage III-IV. SAIO provided significant discrimination between the stage I and stage III, IV for symptom scores, emphysema, and air trapping. SAIO provided significant discrimination between the stage I and other stages for AE. CONCLUSIONS The SAIO classifications provide discrimination between the stage I and stage III, IV for symptom scores, emphysema, air trapping, and AE, similar to the GOLD classifications. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR1900024643. Registered on 19 July, 2019.
Collapse
Affiliation(s)
- Lifei Lu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Wan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gaoying Tang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhishan Deng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieqi Peng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China
| | - Cuiqiong Dai
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kunning Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Wu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuqing Yu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Changli Yang
- Wengyuan County People's Hospital, Shaoguan, China
| | | | - Pixin Ran
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| | - Yumin Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
10
|
Wen X, Wu X, Deng Z, Wu F, Yang H, Xiao S, Dai C, Yang C, Yu S, Sun R, Ran P, Zhou Y. The Nonlinear Relationship Between High-Density Lipoprotein and Changes in Pulmonary Structure Function and Pulmonary Function in COPD Patients in China. Int J Chron Obstruct Pulmon Dis 2024; 19:1801-1812. [PMID: 39129965 PMCID: PMC11316472 DOI: 10.2147/copd.s467976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Background The previous findings on the correlation between spirometry and high-density lipoprotein (HDL) cholesterol are intriguing yet conflicting. The aim of this research is to evaluate the relationship between HDL levels and spirometry as well as imaging parameters in patients with chronic obstructive pulmonary disease (COPD) in China. Methods This study encompasses a total of 907 COPD patients. Participants with complete data from questionnaire interviews, lipid profile examinations, spirometry testing, and computed tomography (CT) scans were included in the analysis. A generalized additive model was employed to identify the non-linear relationship between HDL levels and both spirometry and imaging parameters. In the presence of non-linear correlations, segmented linear regression model was applied to ascertain threshold effects. Results After adjusting for various factors, we found a non-linear correlation between HDL levels and spirometry/imaging parameters, with an inflection point at 4.2 (66 mg/dL). When Ln (HDL) was below 4.2, each unit increase correlated significantly with reduced post-bronchodilator FEV1 (0.32L, 95% CI: 0.09-0.55), decreased predicted FEV1% (11.0%, 95% CI: 2.7-19.3), and lowered FEV1/FVC (8.0%, 95% CI: 4.0-12.0), along with notable increases in Ln (LAA-950) by 1.20 (95% CI: 0.60-1.79) and Ln (LAA-856) by 0.77 (95% CI: 0.37-1.17). However, no significant associations were observed when Ln (HDL) was greater than or equal to 4.2. Conclusion A non-linear correlation existed between HDL levels with lung function and CT imaging in COPD patients. Prior to reaching 66 mg/dL, an elevation in HDL was significantly associated with impaired lung function, more severe gas trapping and emphysema.
Collapse
Affiliation(s)
- Xiang Wen
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaohui Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, Guangdong, People’s Republic of China
| | - Huajing Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Shan Xiao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Changli Yang
- Wengyuan County People’s Hospital, Shaoguan, People’s Republic of China
| | - Shuqing Yu
- Lianping County People’s Hospital, Heyuan, People’s Republic of China
| | - Ruiting Sun
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, Guangdong, People’s Republic of China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
11
|
Deng Z, Wu F, Wan Q, Dai C, Lu L, Peng J, Zhou K, Wu X, Tang G, Huang S, Cai G, Huang P, Wang Z, Zheng Y, Yang H, Zhao N, Xiao S, Wen X, Sun R, Yang C, Huang Y, Chen R, Zhou Y, Ran P. Clinical features and associated factors of impaired ventilatory efficiency: findings from the ECOPD study in China. BMJ Open Respir Res 2024; 11:e002320. [PMID: 39032939 PMCID: PMC11261676 DOI: 10.1136/bmjresp-2024-002320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Impaired ventilatory efficiency during exercise is a predictor of mortality in chronic obstructive pulmonary disease. However, little is known about the clinical features and associated factors of impaired ventilatory efficiency in China. METHODS We conducted a cross-sectional community-based study in China and collected demographic and clinical information, cardiopulmonary exercise testing, spirometry, and CT data. Impaired ventilatory efficiency was defined by a nadir ventilatory equivalent for CO2 production above the upper limit of normal. Multivariable linear and logistic regression models were used to explore the clinical features and associated factors of impaired ventilatory efficiency. RESULTS The final analyses included 941 subjects, 702 (74.6%) of whom had normal ventilatory efficiency and 239 (25.4%) had impaired ventilatory efficiency. Participants with impaired ventilatory efficiency had more chronic respiratory symptoms, poorer lung function and exercise capacity, and more severe emphysema (natural logarithm transformation of the low-attenuation area of the lung with attenuation values below -950 Hounsfield units, logLAA-950: 0.19±0.65 vs -0.28±0.63, p<0.001) and air trapping (logLAA-856: 1.03±0.65 vs 0.68±0.70, p<0.001) than those with normal ventilatory efficiency. Older age (60-69 years, OR 3.10 (95% CI 1.33 to 7.21), p=0.009 and 70-80 years, OR 6.48 (95% CI 2.56 to 16.43), p<0.001 vs 40-49 years) and smoking (former, OR 3.19 (95% CI 1.29 to 7.86), p=0.012; current, OR 4.27 (95% CI 1.78 to 10.24), p=0.001 vs never) were identified as high risk factors of impaired ventilatory efficiency. CONCLUSIONS Impaired ventilatory efficiency was associated with poorer respiratory characteristics. Longitudinal studies are warranted to explore the progression of individuals with impaired ventilatory efficiency.
Collapse
Affiliation(s)
- Zhishan Deng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Qi Wan
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Gaoying Tang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Suyin Huang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Guannan Cai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peiyu Huang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Youlan Zheng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huajing Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ningning Zhao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shan Xiao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiang Wen
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruiting Sun
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changli Yang
- Department of Pulmonary and Critical Care Medicine, Wengyuan County People’s Hospital, Shaoguan, Guangdong, China
| | - Yongqing Huang
- Lianping County People’s Hospital, Heyuan, Guangdong, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & Guangzhou Institute of Respiratory Health & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Wu X, Deng Z, Wu F, Zheng Y, Huang P, Yang H, Zhao N, Dai C, Peng J, Lu L, Zhou K, Wan Q, Tang G, Chen S, Huang Y, Yang C, Yu S, Ran P, Zhou Y. Clinical Characteristics and 2-Year Outcomes of Chronic Obstructive Pulmonary Disease Patients With High Blood Eosinophil Counts: A Population-based Prospective Cohort Study in China. Arch Bronconeumol 2024; 60:402-409. [PMID: 38749856 DOI: 10.1016/j.arbres.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND High blood eosinophil count (BEC) is a useful biomarker for guiding inhaled corticosteroid therapy in patients with chronic obstructive pulmonary disease (COPD), yet its implications in a community setting remain underexplored. This study aimed to elucidate the clinical characteristics and outcomes of COPD patients with high BEC within the Chinese community. METHODS We obtained baseline and 2-year follow-up data from COPD patients (post-bronchodilator forced expiratory volume in 1 second/forced vital capacity <0.70) in the early COPD study. Patients with a BEC ≥300cells/μL were classified as the high BEC group. We assessed differences in the clinical characteristics and outcomes between high and low BEC patients. Subgroup analyses were conducted on COPD patients without a history of corticosteroid use or asthma. RESULTS Of the 897 COPD patients, 205 (22.9%) had high BEC. At baseline, high BEC patients exhibited a higher proportion of chronic respiratory symptoms, lower lung function, and more severe small airway dysfunction than low BEC patients. Over the 2-year period, high BEC patients experienced a significantly higher risk of acute exacerbations (relative risk: 1.28, 95% confidence interval: 1.09-1.49; P=0.002), even after adjusting for confounders. No significant difference was observed in lung function decline rates. The subgroup analysis yielded consistent results. CONCLUSIONS COPD patients with high BEC in a Chinese community exhibited poorer health status, more severe small airway dysfunction, and a higher risk of exacerbations. Future research should explore the pathological mechanisms underlying the poorer prognosis in patients with high BEC.
Collapse
Affiliation(s)
- Xiaohui Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China
| | - Youlan Zheng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peiyu Huang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huajing Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningning Zhao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Wan
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gaoying Tang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | | - Changli Yang
- Wengyuan County People's Hospital, Shaoguan, China
| | - Shuqing Yu
- Lianping County People's Hospital, Heyuan, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
13
|
Wu F, Li H, Deng Z, Yang H, Zheng Y, Zhao N, Dai C, Peng J, Lu L, Wang Z, Wen X, Xiao S, Zhou K, Wu X, Tang G, Wan Q, Sun R, Cui J, Yang C, Chen S, Huang J, Yu S, Zhou Y, Ran P. Clinical features and 1-year outcomes of variable obstruction in participants with preserved spirometry: results from the ECOPD study in China. BMJ Open Respir Res 2024; 11:e002210. [PMID: 38789282 PMCID: PMC11129023 DOI: 10.1136/bmjresp-2023-002210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND There are limited data on the clinical features and longitudinal prognosis of variable obstruction, particularly among never smokers and different variable obstruction types. Therefore, we aimed to evaluate the clinical characteristics of the participants with variable obstruction and determine the relationship between variable obstruction and the development of chronic obstructive pulmonary disease (COPD) and the decline of lung function in a community-dwelling study of Chinese, especially among never smokers and different variable obstruction subtypes. METHODS Participants with preserved spirometry (postbronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ≥0.70) at baseline from the Early COPD cohort were included in our analysis. Participants with variable obstruction (prebronchodilator FEV1/FVC <0.70) were compared with those without variable obstruction (prebronchodilator FEV1/FVC ≥0.70). We performed subgroup analyses in never smokers, former and current smokers, and different variable obstruction types (postbronchodilator FVC RESULTS The final analysis included 1140 participants with preserved spirometry (169 in the variable obstruction group) at baseline. Participants with variable obstruction were older, had lower lung function and had greater severe emphysema and computed tomography-defined air trapping than participants without variable obstruction. Participants with variable obstruction had a significantly increased risk of incident spirometry-defined COPD (relative risk: 3.22, 95% confidence interval 2.23 to 4.64, p <0.001) than those without variable obstruction after adjustment for covariates. These findings remained consistent among both former and current smokers, never smokers, and different variable obstruction types. Additionally, participants with variable obstruction had a faster decline in postbronchodilator FEV1/FVC (2.3±0.5%/year vs 0.9±0.4%/year, mean difference: 1.4 (95% confidence interval 0.5 to 2.3), p=0.002) than participants without variable obstruction after adjustment for covariates. CONCLUSIONS The results of our study revealed that variable obstruction can identify individuals who are at risk for the development of COPD and accelerated postbronchodilator FEV1/FVC decline in preserved spirometry.
Collapse
Affiliation(s)
- Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huajing Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Youlan Zheng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Ningning Zhao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiang Wen
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shan Xiao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gaoying Tang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qi Wan
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruiting Sun
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiangyu Cui
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changli Yang
- Wengyuan County People's Hospital, Shaoguan, Guangdong, China
| | - Shengtang Chen
- Wengyuan County People's Hospital, Shaoguan, Guangdong, China
| | - Jianhui Huang
- Lianping County People's Hospital, Heyuan, Guangdong, China
| | - Shuqing Yu
- Lianping County People's Hospital, Heyuan, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Lu L, Wu F, Peng J, Wu X, Hou X, Zheng Y, Yang H, Deng Z, Dai C, Zhao N, Zhou K, Wan Q, Tang G, Cui J, Yu S, Luo X, Yang C, Chen S, Ran P, Zhou Y. Clinical characterization and outcomes of impulse oscillometry-defined bronchodilator response: an ECOPD cohort-based study. Respir Res 2024; 25:149. [PMID: 38555433 PMCID: PMC10981824 DOI: 10.1186/s12931-024-02765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND The clinical significance of the impulse oscillometry-defined small airway bronchodilator response (IOS-BDR) is not well-known. Accordingly, this study investigated the clinical characteristics of IOS-BDR and explored the association between lung function decline, acute respiratory exacerbations, and IOS-BDR. METHODS Participants were recruited from an Early Chronic Obstructive Pulmonary Disease (ECOPD) cohort subset and were followed up for two years with visits at baseline, 12 months, and 24 months. Chronic obstructive pulmonary disease (COPD) was defined as a post-bronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio < 0.70. IOS-BDR was defined as meeting any one of the following criteria: an absolute change in respiratory system resistance at 5 Hz ≤ - 0.137 kPa/L/s, an absolute change in respiratory system reactance at 5 Hz ≥ 0.055 kPa/L/s, or an absolute change in reactance area ≤ - 0.390 kPa/L. The association between IOS-BDR and a decline in lung function was explored with linear mixed-effects model. The association between IOS-BDR and the risk of acute respiratory exacerbations at the two-year follow-up was analyzed with the logistic regression model. RESULTS This study involved 466 participants (92 participants with IOS-BDR and 374 participants without IOS-BDR). Participants with IOS-BDR had higher COPD assessment test and modified Medical Research Council dyspnea scale scores, more severe emphysema, air trapping, and rapid decline in FVC than those without IOS-BDR over 2-year follow-up. IOS-BDR was not associated with the risk of acute respiratory exacerbations at the 2-year follow-up. CONCLUSIONS The participants with IOS-BDR had more respiratory symptoms, radiographic structural changes, and had an increase in decline in lung function than those without IOS-BDR. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR1900024643. Registered on 19 July, 2019.
Collapse
Affiliation(s)
- Lifei Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Xiaohui Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | | - Huajing Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningning Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Wan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gaoying Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiangyu Cui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuqing Yu
- Lianping County People's Hospital, Heyuan, China
| | - Xiangwen Luo
- Lianping County People's Hospital, Heyuan, China
| | - Changli Yang
- Wengyuan County People's Hospital, Shaoguan, China
| | | | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
15
|
Wen X, Deng Z, Peng J, Yang H, Wu F, Dai C, Zheng Y, Zhao N, Wang Z, Xiao S, Xu J, Lu L, Wu X, Zhou K, Dai J, Li B, Ran P, Zhou Y. Characteristics of inflammatory phenotypes in patients with chronic obstructive pulmonary disease: a cross-sectional study. BMJ Open Respir Res 2023; 10:e001454. [PMID: 38035712 PMCID: PMC10689359 DOI: 10.1136/bmjresp-2022-001454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The relationship between airway inflammation in chronic obstructive pulmonary disease (COPD) and clinical characteristics remains unclear. This study aimed to investigate the airway inflammatory phenotypes in COPD and their association with clinical characteristics. METHODS 895 patients with COPD were recruited from Guangdong Province, China in this study. Each patient underwent questionnaire interviews, spirometry testing, CT scans and induced sputum examination. Classification of airway inflammation phenotypes was based on sputum inflammatory cell counts. Covariance analysis was applied to assess associations with airway inflammation phenotypes. RESULTS In this study, we found that neutrophilic phenotype (NP, 58.0%) was the most common airway inflammation phenotype in patients with COPD, followed by mixed granulocytic phenotype (MGP, 32.6%), eosinophilic phenotype (EP, 5.4%) and paucigranulocytic phenotype (PP, 4.0%). Compared with NP patients, those with MGP exhibited more frequent chronic respiratory symptoms, and a higher proportion of individuals classified under Global Initiative for Chronic Obstructive Lung Disease stages 3 and 4. After adjusting for confounding factors, MGP patients had lower lung function, and more severe emphysema and air trapping. On the contrary, patients with PP had the best pulmonary function and less emphysema and air trapping. CONCLUSIONS NP was the most common airway inflammation phenotype in patients with COPD. Patients with MGP had more respiratory symptoms, greater loss of lung function, and more severe emphysema and gas trapping compared with those with NP. Meanwhile, PP may be a phenotype of mild damage to lung structure in patients with COPD.
Collapse
Affiliation(s)
- Xiang Wen
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Shenzhen Institute of Respiratory Disease & Department of Pulmonary and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Huajing Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Youlan Zheng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ningning Zhao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shan Xiao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Pulmonary and Critical Care Medicine, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Jianwu Xu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianwei Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Yang H, Wen X, Wu F, Zheng Y, Dai C, Zhao N, Deng Z, Wang Z, Peng J, Xiao S, Lu L, Huang J, Yu S, Yang C, Chen S, Zhou Y, Ran P. Inter-relationships among neutrophilic inflammation, air trapping and future exacerbation in COPD: an analysis of ECOPD study. BMJ Open Respir Res 2023; 10:10/1/e001597. [PMID: 37028910 PMCID: PMC10083880 DOI: 10.1136/bmjresp-2022-001597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND The inter-relationships among neutrophilic airway inflammation, air trapping and future exacerbation in chronic obstructive pulmonary disease (COPD) remain unclear. OBJECTIVE To evaluate the associations between sputum neutrophil proportions and future exacerbation in COPD and to determine whether these associations are modified by significant air trapping. METHODS Participants with completed data were included and followed up to the first year in the Early Chronic Obstructive Pulmonary Disease study (n=582). Sputum neutrophil proportions and high-resolution CT-related markers were measured at baseline. Sputum neutrophil proportions were dichotomised based on their median (86.2%) to low and high levels. In addition, subjects were divided into the air trapping or non-air trapping group. Outcomes of interest included COPD exacerbation (separately any, severe and frequent exacerbation, occurring in the first year of follow-up). Multivariable logistic regressions were performed to examine the risk of severe exacerbation and frequent exacerbation with either neutrophilic airway inflammation groups or air trapping groups. RESULTS There was no significant difference between high and low levels of sputum neutrophil proportions in the exacerbation in the preceding year. After the first year of follow-up, subjects with high sputum neutrophil proportions had increased risks of severe exacerbation (OR=1.68, 95% CI: 1.09 to 2.62, p=0.020). Subjects with high sputum neutrophil proportions and significant air trapping had increased odds of having frequent exacerbation (OR=3.29, 95% CI: 1.30 to 9.37, p=0.017) and having severe exacerbation (OR=2.72, 95% CI: 1.42 to 5.43, p=0.003) when compared with those who had low sputum neutrophil proportions and non-air trapping. CONCLUSIONS We found that subjects with high sputum neutrophil proportions and significant air trapping are prone to future exacerbation of COPD. It may be a helpful predictor of future exacerbation.
Collapse
Affiliation(s)
- Huajing Yang
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiang Wen
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Fan Wu
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Youlan Zheng
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Cuiqiong Dai
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ningning Zhao
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhishan Deng
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zihui Wang
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jieqi Peng
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Shan Xiao
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Lifei Lu
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jianhui Huang
- Department of internal medicine, Lianping County People's Hospital, Heyuan, Guangdong, China
| | - Shuqing Yu
- Department of internal medicine, Lianping County People's Hospital, Heyuan, Guangdong, China
- Department of internal medicine, Lianping County Hospital of Traditional Chinese Medicine, Heyuan, Guangdong, China
| | - Changli Yang
- Department of Pulmonary and Critical Care Medicine, Wengyuan County People's Hospital, Shaoguan, Guangdong, China
| | - Shengtang Chen
- Department of Pulmonary and Critical Care Medicine, Wengyuan County People's Hospital, Shaoguan, Guangdong, China
| | - Yumin Zhou
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Pixin Ran
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Wu F, Zheng Y, Zhao N, Peng J, Deng Z, Yang H, Tian H, Xiao S, Wen X, Huang P, Dai C, Lu L, Zhou K, Wu X, Fan H, Li H, Sun R, Yang C, Chen S, Huang J, Yu S, Zhou Y, Ran P. Clinical features and 1-year outcomes of chronic bronchitis in participants with normal spirometry: results from the ECOPD study in China. BMJ Open Respir Res 2023; 10:10/1/e001449. [PMID: 37028909 PMCID: PMC10083876 DOI: 10.1136/bmjresp-2022-001449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Evidence regarding clinical features and outcomes of individuals with non-obstructive chronic bronchitis (NOCB) remains scarce, especially in never-smokers. We aimed to investigate the clinical features and 1-year outcomes of individuals with NOCB in the Chinese population. METHODS We obtained data on participants in the Early Chronic Obstructive Pulmonary Disease Study who had normal spirometry (post-bronchodilator forced expiratory volume in 1 s/forced vital capacity ≥0.70). NOCB was defined as chronic cough and sputum production for at least 3 months for two consecutive years or more at baseline in participants with normal spirometry. We assessed the differences in demographics, risk factors, lung function, impulse oscillometry, CT imaging and frequency of acute respiratory events between participants with and without NOCB. RESULTS NOCB was present in 13.1% (149/1140) of participants with normal spirometry at baseline. Compared with participants without NOCB, those with NOCB had a higher proportion of men and participants with smoke exposure, occupational exposure, family history of respiratory diseases and worse respiratory symptoms (all p<0.05), but there was no significant difference in lung function. Never-smokers with NOCB had higher rates of emphysema than those without NOCB, but airway resistance was similar. Ever-smokers with NOCB had greater airway resistance than those without NOCB, but emphysema rates were similar. During 1-year follow-up, participants with NOCB had a significantly increased risk of acute respiratory events compared with participants who did not have NOCB, after adjustment for confounders (risk ratio 2.10, 95% CI 1.32 to 3.33; p=0.002). These results were robust in never-smokers and ever-smokers. CONCLUSIONS Never-smokers and ever-smokers with NOCB had more chronic obstructive pulmonary disease-related risk factors, evidence of airway disease and greater risk of acute respiratory events than those without NOCB. Our findings support expanding the criteria defining pre-COPD to include NOCB.
Collapse
Affiliation(s)
- Fan Wu
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, People's Republic of China
| | - Youlan Zheng
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ningning Zhao
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jieqi Peng
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, People's Republic of China
| | - Zhishan Deng
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huajing Yang
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Heshen Tian
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shan Xiao
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiang Wen
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Peiyu Huang
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Cuiqiong Dai
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lifei Lu
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kunning Zhou
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaohui Wu
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huanhuan Fan
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Haiqing Li
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ruiting Sun
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Changli Yang
- Department of Pulmonary and Critical Care Medicine, Wengyuan County People's Hospital, Shaoguan, People's Republic of China
| | - Shengtang Chen
- Medical Imaging Center, Wengyuan County People's Hospital, Shaogguan, People's Republic of China
| | - Jianhui Huang
- Department of Internal Medicine, Lianping County People's Hospital, Heyuan, People's Republic of China
| | - Shuqing Yu
- Lianping County Hospital of Traditional Chinese Medicine, Heyuan, People's Republic of China
| | - Yumin Zhou
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, People's Republic of China
| | - Pixin Ran
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, People's Republic of China
| |
Collapse
|
18
|
Lu L, Peng J, Wu F, Yang H, Zheng Y, Deng Z, Zhao N, Dai C, Xiao S, Wen X, Xu J, Wu X, Zhou K, Ran P, Zhou Y. Clinical characteristics of airway impairment assessed by impulse oscillometry in patients with chronic obstructive pulmonary disease: findings from the ECOPD study in China. BMC Pulm Med 2023; 23:52. [PMID: 36737731 PMCID: PMC9896683 DOI: 10.1186/s12890-023-02311-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The role of airway impairment assessed by impulse oscillometry (IOS) in patients with chronic obstructive pulmonary disease (COPD) remains unclear. Therefore, this study aimed to analyze the proportion and clinical characteristics of airway impairment assessed by IOS across COPD severities, and explore whether airway impairment is a subtype of COPD. METHODS This study was based on cross-sectional data from the ECOPD cohort in Guangdong, China. Subjects were consecutively recruited from July 2019 to August 2021. They filled out questionnaires and underwent lung function tests, IOS and computed tomography (CT). COPD was defined as post-bronchodilator forced expiratory volume in one second/forced vital capacity < lower limit of normal (LLN). Meanwhile, airway impairment was defined as IOS parameters > upper limit of normal or < LLN. On the one hand, Poisson regression was employed to analyze the associations between acute exacerbations of COPD (AECOPD) in the previous year and airway impairment. On the other hand, logistic regression was used to assess differences in CT imaging between patients with IOS parameters' abnormalities and patients with normal IOS parameters. RESULTS 768 COPD subjects were finally enrolled in the study. The proportion of airway impairment assessed by R5, R20, R5-R20, X5, AX, and Fres was 59.8%, 29.7%, 62.5%, 52.9%, 60.9% and 67.3%, respectively. Airway impairment assessed by IOS parameters (R5, R5-R20, X5, AX, and Fres) in patients with COPD was present across all severities of COPD, particularly in GOLD 3-4 patients. Compared with patients with normal IOS parameters, patients with IOS parameters' abnormalities had more respiratory symptoms, more severe airway obstruction and imaging structural abnormalities. Patients with IOS parameters' abnormalities assessed by R5 [risk ratio (RR): 1.58, 95% confidential interval (CI): 1.13-2.19, P = 0.007], R5-R20 [RR: 1.73, 95%CI: 1.22-2.45, P = 0.002], X5 [RR: 2.11, 95%CI: 1.51-2.95, P < 0.001], AX [RR: 2.20, 95%CI: 1.53-3.16, P < 0.001], and Fres [RR: 2.13, 95%CI: 1.44-3.15, P < 0.001] had a higher risk of AECOPD in the previous year than patients with normal IOS parameters. CONCLUSIONS Airway impairment assessed by IOS may be a subtype of COPD. Future studies are warranted to identify the underlying mechanisms and longitudinal progression of airway impairment.
Collapse
Affiliation(s)
- Lifei Lu
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Jieqi Peng
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China ,Guangzhou Laboratory, Guangzhou, China
| | - Fan Wu
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China ,Guangzhou Laboratory, Guangzhou, China
| | - Huajing Yang
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Youlan Zheng
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Zhishan Deng
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Ningning Zhao
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Cuiqiong Dai
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Shan Xiao
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Xiang Wen
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Jianwu Xu
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Xiaohui Wu
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Kunning Zhou
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China
| | - Pixin Ran
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China ,Guangzhou Laboratory, Guangzhou, China
| | - Yumin Zhou
- grid.470124.4State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, China ,Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
19
|
Dai C, Wu F, Wang Z, Peng J, Yang H, Zheng Y, Lu L, Zhao N, Deng Z, Xiao S, Wen X, Xu J, Huang P, Zhou K, Wu X, Zhou Y, Ran P. The association between small airway dysfunction and aging: a cross-sectional analysis from the ECOPD cohort. Respir Res 2022; 23:229. [PMID: 36058907 PMCID: PMC9441095 DOI: 10.1186/s12931-022-02148-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aging has been evidenced to bring about some structural and functional lung changes, especially in COPD. However, whether aging affects SAD, a possible precursor of COPD, has not been well characterized. OBJECTIVE We aimed to comprehensively assess the relationship between aging and SAD from computed tomography, impulse oscillometry, and spirometry perspectives in Chinese. METHODS We included 1859 participants from ECOPD, and used a linear-by-linear association test for evaluating the prevalence of SAD across various age subgroups, and multivariate regression models for determining the impact of age on the risk and severity of SAD. We then repeated the analyses in these subjects stratified by airflow limitation. RESULTS The prevalence of SAD increases over aging regardless of definitional methods. After adjustment for other confounding factors, per 10-yrs increase in age was significantly associated with the risk of CT-defined SAD (OR 2.57, 95% CI 2.13 to 3.10) and the increase in the severity of air trapping (β 2.09, 95% CI - 0.06 to 4.25 for LAA-856), airway reactance (β - 0.02, 95% CI - 0.04 to - 0.01 for X5; β 0.30, 95% CI 0.13 to 0.47 for AX; β 1.75, 95% CI 0.85 to 2.66 for Fres), as well as the decrease in expiratory flow rates (β - 3.95, 95% CI - 6.19 to - 1.71 for MMEF%predicted; β - 5.42, 95% CI - 7.88 to - 2.95 for FEF50%predicted) for SAD. All these associations were generally maintained in SAD defined by IOS or spirometry. After stratification of airflow limitation, we further found that the effect of age on LAA-856 was the most significant among almost all subgroups. CONCLUSIONS Aging is significantly associated with the prevalence, increased risk, as well as worse severity of SAD. CT may be a more optimal measure to assess aging-related SAD. The molecular mechanisms for the role of aging in SAD need to be explored in the future. Trial registration Chinese Clinical Trial Registry ChiCTR1900024643. Registered on 19 July 2019.
Collapse
Affiliation(s)
- Cuiqiong Dai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China.,Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, People's Republic of China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Huajing Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Youlan Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Ningning Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Shan Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Xiang Wen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Jianwu Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Peiyu Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Xiaohui Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China. .,Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, People's Republic of China.
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, Guangdong, China. .,Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
20
|
Wen X, Peng J, Zheng Y, Liu J, Tian H, Wu F, Wang Z, Yang H, Deng Z, Xiao S, Huang P, Xu J, Dai C, Zhao N, Lu L, Dai J, Li B, Ran P, Zhou Y. Predictors of High Sputum Eosinophils in Chronic Obstructive Pulmonary Disease. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2022; 9:413-426. [PMID: 35797445 PMCID: PMC9448012 DOI: 10.15326/jcopdf.2022.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Eosinophils are involved in the development of chronic obstructive pulmonary disease (COPD) and inhaled corticosteroid responsiveness. We evaluated clinical predictors of high sputum eosinophil levels in a COPD cohort in China. METHODS We conducted an observational, prospective, population-based, cross-sectional study. Participants were tested for COPD and underwent spirometry, computed tomography scans, and a blood test. Participants also produced induced sputum and responded to an information-gathering questionnaire. High sputum eosinophils were defined as ≥3.0%. Multivariate logistic regression was used to identify predictors of high sputum eosinophil levels. RESULTS We recruited 895 patients with complete and quality control data. The median percentage of sputum eosinophil abundance was 2.00% (interquartile range: 0.75-5.00) and the prevalence of COPD with high sputum eosinophils was 38.0%. Covariance analysis indicated that the high sputum eosinophil group had lower lung function, more severe emphysema, and air trapping. Multivariate logistic regression indicated that high blood eosinophil levels, severe respiratory symptoms, being a former smoker, and a family history of respiratory diseases were associated with high sputum eosinophil levels. CONCLUSION High blood eosinophil levels, severe respiratory symptoms, being a former smoker, and a family history of respiratory diseases may be predictors of high sputum eosinophil levels in Chinese COPD patients. High sputum eosinophils were associated with lower lung function, more emphysema, and gas trapping.
Collapse
Affiliation(s)
- Xiang Wen
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Co-first authors, both authors contributed equally to the work
| | - Jieqi Peng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Co-first authors, both authors contributed equally to the work
| | - Youlan Zheng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Co-first authors, both authors contributed equally to the work
| | - Jiaxing Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Heshen Tian
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihui Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huajing Yang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhishan Deng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Xiao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peiyu Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianwu Xu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuiqiong Dai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningning Zhao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lifei Lu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianwei Dai
- Guangzhou Medical University , Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bing Li
- Guangzhou Medical University , Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-Island, Guangzhou, China
| | - Yumin Zhou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-Island, Guangzhou, China
| |
Collapse
|
21
|
Lu L, Peng J, Zhao N, Wu F, Tian H, Yang H, Deng Z, Wang Z, Xiao S, Wen X, Zheng Y, Dai C, Wu X, Zhou K, Ran P, Zhou Y. Discordant Spirometry and Impulse Oscillometry Assessments in the Diagnosis of Small Airway Dysfunction. Front Physiol 2022; 13:892448. [PMID: 35812310 PMCID: PMC9257410 DOI: 10.3389/fphys.2022.892448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/13/2022] [Indexed: 01/28/2023] Open
Abstract
Background and objective: Spirometry is commonly used to assess small airway dysfunction (SAD). Impulse oscillometry (IOS) can complement spirometry. However, discordant spirometry and IOS in the diagnosis of SAD were not uncommon. We examined the association between spirometry and IOS within a large cohort of subjects to identify variables that may explain discordant spirometry and IOS findings. Methods: 1,836 subjects from the ECOPD cohort underwent questionnaires, symptom scores, spirometry, and IOS, and 1,318 subjects were examined by CT. We assessed SAD with R5-R20 > the upper limit of normal (ULN) by IOS and two of the three spirometry indexes (maximal mid-expiratory flow (MMEF), forced expiratory flow (FEF)50%, and FEF75%) < 65% predicted. Multivariate regression analysis was used to analyze factors associated with SAD diagnosed by only spirometry but not IOS (spirometry-only SAD) and only IOS but not spirometry (IOS-only SAD), and line regression was used to assess CT imaging differences. Results: There was a slight agreement between spirometry and IOS in the diagnosis of SAD (kappa 0.322, p < 0.001). Smoking status, phlegm, drug treatment, and family history of respiratory disease were factors leading to spirometry-only SAD. Spirometry-only SAD had more severe emphysema and gas-trapping than IOS-only SAD in abnormal lung function. However, in normal lung function subjects, there was no statistical difference in emphysema and gas-trapping between discordant groups. The number of IOS-only SAD was nearly twice than that of spirometry. Conclusion: IOS may be more sensitive than spirometry in the diagnosis of SAD in normal lung function subjects. But in patients with abnormal lung function, spirometry may be more sensitive than IOS to detect SAD patients with clinical symptoms and CT lesions.
Collapse
Affiliation(s)
- Lifei Lu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieqi Peng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningning Zhao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangzhou Laboratory, Guangzhou, China
| | - Heshen Tian
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huajing Yang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhishan Deng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihui Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Xiao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Wen
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Youlan Zheng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuiqiong Dai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Wu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kunning Zhou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangzhou Laboratory, Guangzhou, China,*Correspondence: Pixin Ran, , orcid.org/0000-0001-6651-634X; Yumin Zhou, , orcid.org/0000-0002-0555-8391
| | - Yumin Zhou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangzhou Laboratory, Guangzhou, China,*Correspondence: Pixin Ran, , orcid.org/0000-0001-6651-634X; Yumin Zhou, , orcid.org/0000-0002-0555-8391
| |
Collapse
|
22
|
Zhao N, Wu F, Peng J, Zheng Y, Tian H, Yang H, Deng Z, Wang Z, Li H, Wen X, Xiao S, Huang P, Dai C, Lu L, Zhou K, Chen S, Zhou Y, Ran P. Preserved ratio impaired spirometry is associated with small airway dysfunction and reduced total lung capacity. Respir Res 2022; 23:298. [PMID: 36316732 PMCID: PMC9620623 DOI: 10.1186/s12931-022-02216-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Preserved ratio impaired spirometry (PRISm) refers to decreased forced expiratory volume in 1 s (FEV1) in the setting of preserved ratio. Little is known about the role of PRISm and its complex relation with small airway dysfunction (SAD) and lung volume. Therefore, we aimed to investigate the associations between PRISm and SAD and lung volume. METHODS We conducted a cross-sectional community-dwelling study in China. Demographic data, standard respiratory epidemiology questionnaire, spirometry, impulse oscillometry (IOS) and computed tomography (CT) data were collected. PRISm was defined as post-bronchodilator FEV1/FVC ≥ 0.70 and FEV1 < 80% predicted. Spirometry-defined SAD was defined as at least two of three of the post-bronchodilator maximal mid-expiratory flow (MMEF), forced expiratory flow 50% (FEF50), and forced expiratory flow 75% (FEF75) less than 65% of predicted. IOS-defined SAD and CT-defined gas trapping were defined by the fact that the cutoff value of peripheral airway resistance R5-R20 > 0.07 kPa/L/s and LAA- 856>20%, respectively. Analysis of covariance and logistic regression were used to determine associations between PRISm and SAD and lung volume. We then repeated the analysis with a lower limit of normal definition of spirometry criteria and FVC definition of PRISm. Moreover, we also performed subgroup analyses in ever smoker, never smoker, subjects without airway reversibility or self-reported diagnosed asthma, and subjects with CT-measured total lung capacity ≥70% of predicted. RESULTS The final analysis included 1439 subjects. PRISm had higher odds and more severity in spirometry-defined SAD (pre-bronchodilator: odds ratio [OR]: 5.99, 95% confidence interval [95%CI]: 3.87-9.27, P < 0.001; post-bronchodilator: OR: 14.05, 95%CI: 8.88-22.24, P < 0.001), IOS-defined SAD (OR: 2.89, 95%CI: 1.82-4.58, P < 0.001), and CT-air trapping (OR: 2.01, 95%CI: 1.08-3.72, P = 0.027) compared with healthy control after adjustment for confounding factors. CT-measured total lung capacity in PRISm was lower than that in healthy controls (4.15 ± 0.98 vs. 4.78 ± 1.05 L, P < 0.05), after adjustment. These results were robust in repeating analyses and subgroup analyses. CONCLUSION Our finding revealed that PRISm was associated with SAD and reduced total lung capacity. Future studies to identify the underlying mechanisms and longitudinal progression of PRISm are warranted.
Collapse
Affiliation(s)
- Ningning Zhao
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Fan Wu
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Jieqi Peng
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Youlan Zheng
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Heshen Tian
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Huajing Yang
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Zhishan Deng
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Zihui Wang
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Haiqing Li
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Xiang Wen
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Shan Xiao
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Peiyu Huang
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Cuiqiong Dai
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Lifei Lu
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Kunning Zhou
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Shengtang Chen
- Medical Imaging Center, Wengyuan County People’s Hospital, Shaoguan, China
| | - Yumin Zhou
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| | - Pixin Ran
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang west Road, Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|