1
|
Zimna K, Sobiecka M, Wakuliński J, Wyrostkiewicz D, Jankowska E, Szturmowicz M, Tomkowski WZ. Lung Ultrasonography in the Evaluation of Late Sequelae of COVID-19 Pneumonia-A Comparison with Chest Computed Tomography: A Prospective Study. Viruses 2024; 16:905. [PMID: 38932196 PMCID: PMC11209275 DOI: 10.3390/v16060905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The onset of the COVID-19 pandemic allowed physicians to gain experience in lung ultrasound (LUS) during the acute phase of the disease. However, limited data are available on LUS findings during the recovery phase. The aim of this study was to evaluate the utility of LUS to assess lung involvement in patients with post-COVID-19 syndrome. This study prospectively enrolled 72 patients who underwent paired LUS and chest CT scans (112 pairs including follow-up). The most frequent CT findings were ground glass opacities (83.3%), subpleural lines (72.2%), traction bronchiectasis (37.5%), and consolidations (31.9%). LUS revealed irregular pleural lines as a common abnormality initially (56.9%), along with subpleural consolidation >2.5 mm ≤10 mm (26.5%) and B-lines (26.5%). A strong correlation was found between LUS score, calculated by artificial intelligence percentage involvement in ground glass opacities described in CT (r = 0.702, p < 0.05). LUS score was significantly higher in the group with fibrotic changes compared to the non-fibrotic group with a mean value of 19.4 ± 5.7 to 11 ± 6.6, respectively (p < 0.0001). LUS might be considered valuable for examining patients with persistent symptoms after recovering from COVID-19 pneumonia. Abnormalities identified through LUS align with CT scan findings; thus, LUS might potentially reduce the need for frequent chest CT examinations.
Collapse
Affiliation(s)
- Katarzyna Zimna
- I Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Małgorzata Sobiecka
- I Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Jacek Wakuliński
- Department of Radiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Dorota Wyrostkiewicz
- I Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Ewa Jankowska
- I Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Monika Szturmowicz
- I Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Witold Z. Tomkowski
- I Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland
| |
Collapse
|
2
|
Han L, Gladkoff S, Erofeev G, Sorokina I, Galiano B, Nenadic G. Neural machine translation of clinical text: an empirical investigation into multilingual pre-trained language models and transfer-learning. Front Digit Health 2024; 6:1211564. [PMID: 38468693 PMCID: PMC10926203 DOI: 10.3389/fdgth.2024.1211564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/12/2024] [Indexed: 03/13/2024] Open
Abstract
Clinical text and documents contain very rich information and knowledge in healthcare, and their processing using state-of-the-art language technology becomes very important for building intelligent systems for supporting healthcare and social good. This processing includes creating language understanding models and translating resources into other natural languages to share domain-specific cross-lingual knowledge. In this work, we conduct investigations on clinical text machine translation by examining multilingual neural network models using deep learning such as Transformer based structures. Furthermore, to address the language resource imbalance issue, we also carry out experiments using a transfer learning methodology based on massive multilingual pre-trained language models (MMPLMs). The experimental results on three sub-tasks including (1) clinical case (CC), (2) clinical terminology (CT), and (3) ontological concept (OC) show that our models achieved top-level performances in the ClinSpEn-2022 shared task on English-Spanish clinical domain data. Furthermore, our expert-based human evaluations demonstrate that the small-sized pre-trained language model (PLM) outperformed the other two extra-large language models by a large margin in the clinical domain fine-tuning, which finding was never reported in the field. Finally, the transfer learning method works well in our experimental setting using the WMT21fb model to accommodate a new language space Spanish that was not seen at the pre-training stage within WMT21fb itself, which deserves more exploitation for clinical knowledge transformation, e.g. to investigate into more languages. These research findings can shed some light on domain-specific machine translation development, especially in clinical and healthcare fields. Further research projects can be carried out based on our work to improve healthcare text analytics and knowledge transformation. Our data is openly available for research purposes at: https://github.com/HECTA-UoM/ClinicalNMT.
Collapse
Affiliation(s)
- Lifeng Han
- Department of Computer Science, The University of Manchester, Manchester, United Kingom
| | - Serge Gladkoff
- AI Lab, Logrus Global, Translation & Localization, Philadelphia, PA, United States
| | - Gleb Erofeev
- AI Lab, Logrus Global, Translation & Localization, Philadelphia, PA, United States
| | - Irina Sorokina
- AI Lab, Logrus Global, Translation & Localization, Philadelphia, PA, United States
| | - Betty Galiano
- Management Department, Ocean Translations, Rosario, Argentina
| | - Goran Nenadic
- Department of Computer Science, The University of Manchester, Manchester, United Kingom
| |
Collapse
|
3
|
Ghassemi N, Shoeibi A, Khodatars M, Heras J, Rahimi A, Zare A, Zhang YD, Pachori RB, Gorriz JM. Automatic diagnosis of COVID-19 from CT images using CycleGAN and transfer learning. Appl Soft Comput 2023; 144:110511. [PMID: 37346824 PMCID: PMC10263244 DOI: 10.1016/j.asoc.2023.110511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/23/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
The outbreak of the corona virus disease (COVID-19) has changed the lives of most people on Earth. Given the high prevalence of this disease, its correct diagnosis in order to quarantine patients is of the utmost importance in the steps of fighting this pandemic. Among the various modalities used for diagnosis, medical imaging, especially computed tomography (CT) imaging, has been the focus of many previous studies due to its accuracy and availability. In addition, automation of diagnostic methods can be of great help to physicians. In this paper, a method based on pre-trained deep neural networks is presented, which, by taking advantage of a cyclic generative adversarial net (CycleGAN) model for data augmentation, has reached state-of-the-art performance for the task at hand, i.e., 99.60% accuracy. Also, in order to evaluate the method, a dataset containing 3163 images from 189 patients has been collected and labeled by physicians. Unlike prior datasets, normal data have been collected from people suspected of having COVID-19 disease and not from data from other diseases, and this database is made available publicly. Moreover, the method's reliability is further evaluated by calibration metrics, and its decision is interpreted by Grad-CAM also to find suspicious regions as another output of the method and make its decisions trustworthy and explainable.
Collapse
Affiliation(s)
- Navid Ghassemi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jonathan Heras
- Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
| | - Alireza Rahimi
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
| | - Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester, LE1 7RH, UK
| | - Ram Bilas Pachori
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - J Manuel Gorriz
- Department of Signal Theory, Networking and Communications, Universidad de Granada, Spain
- Department of Psychiatry, University of Cambridge, UK
| |
Collapse
|
4
|
Santosh KC, GhoshRoy D, Nakarmi S. A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022. Healthcare (Basel) 2023; 11:2388. [PMID: 37685422 PMCID: PMC10486542 DOI: 10.3390/healthcare11172388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The emergence of the COVID-19 pandemic in Wuhan in 2019 led to the discovery of a novel coronavirus. The World Health Organization (WHO) designated it as a global pandemic on 11 March 2020 due to its rapid and widespread transmission. Its impact has had profound implications, particularly in the realm of public health. Extensive scientific endeavors have been directed towards devising effective treatment strategies and vaccines. Within the healthcare and medical imaging domain, the application of artificial intelligence (AI) has brought significant advantages. This study delves into peer-reviewed research articles spanning the years 2020 to 2022, focusing on AI-driven methodologies for the analysis and screening of COVID-19 through chest CT scan data. We assess the efficacy of deep learning algorithms in facilitating decision making processes. Our exploration encompasses various facets, including data collection, systematic contributions, emerging techniques, and encountered challenges. However, the comparison of outcomes between 2020 and 2022 proves intricate due to shifts in dataset magnitudes over time. The initiatives aimed at developing AI-powered tools for the detection, localization, and segmentation of COVID-19 cases are primarily centered on educational and training contexts. We deliberate on their merits and constraints, particularly in the context of necessitating cross-population train/test models. Our analysis encompassed a review of 231 research publications, bolstered by a meta-analysis employing search keywords (COVID-19 OR Coronavirus) AND chest CT AND (deep learning OR artificial intelligence OR medical imaging) on both the PubMed Central Repository and Web of Science platforms.
Collapse
Affiliation(s)
- KC Santosh
- 2AI: Applied Artificial Intelligence Research Lab, Vermillion, SD 57069, USA
| | - Debasmita GhoshRoy
- School of Automation, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
| | - Suprim Nakarmi
- Department of Computer Science, University of South Dakota, Vermillion, SD 57069, USA;
| |
Collapse
|
5
|
Lee MH, Shomanov A, Kudaibergenova M, Viderman D. Deep Learning Methods for Interpretation of Pulmonary CT and X-ray Images in Patients with COVID-19-Related Lung Involvement: A Systematic Review. J Clin Med 2023; 12:jcm12103446. [PMID: 37240552 DOI: 10.3390/jcm12103446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
SARS-CoV-2 is a novel virus that has been affecting the global population by spreading rapidly and causing severe complications, which require prompt and elaborate emergency treatment. Automatic tools to diagnose COVID-19 could potentially be an important and useful aid. Radiologists and clinicians could potentially rely on interpretable AI technologies to address the diagnosis and monitoring of COVID-19 patients. This paper aims to provide a comprehensive analysis of the state-of-the-art deep learning techniques for COVID-19 classification. The previous studies are methodically evaluated, and a summary of the proposed convolutional neural network (CNN)-based classification approaches is presented. The reviewed papers have presented a variety of CNN models and architectures that were developed to provide an accurate and quick automatic tool to diagnose the COVID-19 virus based on presented CT scan or X-ray images. In this systematic review, we focused on the critical components of the deep learning approach, such as network architecture, model complexity, parameter optimization, explainability, and dataset/code availability. The literature search yielded a large number of studies over the past period of the virus spread, and we summarized their past efforts. State-of-the-art CNN architectures, with their strengths and weaknesses, are discussed with respect to diverse technical and clinical evaluation metrics to safely implement current AI studies in medical practice.
Collapse
Affiliation(s)
- Min-Ho Lee
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Adai Shomanov
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Madina Kudaibergenova
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Dmitriy Viderman
- School of Medicine, Nazarbayev University, 5/1 Kerey and Zhanibek Khandar Str., Astana 010000, Kazakhstan
| |
Collapse
|
6
|
Robust Classification and Detection of Big Medical Data Using Advanced Parallel K-Means Clustering, YOLOv4, and Logistic Regression. Life (Basel) 2023; 13:life13030691. [PMID: 36983845 PMCID: PMC10056696 DOI: 10.3390/life13030691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Big-medical-data classification and image detection are crucial tasks in the field of healthcare, as they can assist with diagnosis, treatment planning, and disease monitoring. Logistic regression and YOLOv4 are popular algorithms that can be used for these tasks. However, these techniques have limitations and performance issue with big medical data. In this study, we presented a robust approach for big-medical-data classification and image detection using logistic regression and YOLOv4, respectively. To improve the performance of these algorithms, we proposed the use of advanced parallel k-means pre-processing, a clustering technique that identified patterns and structures in the data. Additionally, we leveraged the acceleration capabilities of a neural engine processor to further enhance the speed and efficiency of our approach. We evaluated our approach on several large medical datasets and showed that it could accurately classify large amounts of medical data and detect medical images. Our results demonstrated that the combination of advanced parallel k-means pre-processing, and the neural engine processor resulted in a significant improvement in the performance of logistic regression and YOLOv4, making them more reliable for use in medical applications. This new approach offers a promising solution for medical data classification and image detection and may have significant implications for the field of healthcare.
Collapse
|
7
|
Jiang Y, Huang J, Luo W, Chen K, Yu W, Zhang W, Huang C, Yang J, Huang Y. Prediction for odor gas generation from domestic waste based on machine learning. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 156:264-271. [PMID: 36508910 DOI: 10.1016/j.wasman.2022.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/03/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Domestic waste is prone to produce a variety of volatile organic compounds (VOCs), which often has unpleasant odors. A key process in treating odor gases is predicting the production of odors from domestic waste. In this study, four factors of domestic waste (weight, wet composition, temperature, and fermentation time) were adopted to be the prediction indicators in the prediction for domestic waste odor gases. Machine learning models (Random Forest, XGBoost, LightGBM) were established using the odor intensity values of 512 odor gases from domestic waste. Based on these data, the regression prediction with supervised machine learning was achieved, in which three different algorithmic models were evaluated for prediction performance. A Random Forest model with a R2 value of 0.8958 demonstrated the most accurate prediction of the production of domestic waste odor gas based on our data. Furthermore, the prediction results in the Random Forest model were further discussed based on the microbial fermentation of domestic waste. In addition to enhancing our knowledge of the production of odor from domestic waste, we also explore the application of machine learning to odor pollution in our study.
Collapse
Affiliation(s)
- Yuanyan Jiang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jiawei Huang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wei Luo
- CITIC Environmental Technology Investment (China) Co., Ltd, Guangzhou 510000, China
| | - Kejin Chen
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wenrou Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wenjun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chuan Huang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Junjun Yang
- College of Physics, Chongqing University, Chongqing, 400044, China
| | - Yingzhou Huang
- College of Physics, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
8
|
Sejuti ZA, Islam MS. A hybrid CNN-KNN approach for identification of COVID-19 with 5-fold cross validation. SENSORS INTERNATIONAL 2023; 4:100229. [PMID: 36742993 PMCID: PMC9886434 DOI: 10.1016/j.sintl.2023.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
The novel coronavirus is the new member of the SARS family, which can cause mild to severe infection in the lungs and other vital organs like the heart, kidney and liver. For detecting COVID-19 from images, traditional ANN can be employed. This method begins by extracting the features and then feeding the features into a suitable classifier. The classification rate is not so high as feature extraction is dependent on the experimenters' expertise. To solve this drawback, a hybrid CNN-KNN-based model with 5-fold cross-validation is proposed to classify covid-19 or non-covid19 from CT scans of patients. At first, some pre-processing steps like contrast enhancement, median filtering, data augmentation, and image resizing are performed. Secondly, the entire dataset is divided into five equal sections or folds for training and testing. By doing 5-fold cross-validation, the generalization of the dataset is ensured and the overfitting of the network is prevented. The proposed CNN model consists of four convolutional layers, four max-pooling layers, and two fully connected layers combined with 23 layers. The CNN architecture is used as a feature extractor in this case. The features are taken from the CNN model's fourth convolutional layer and finally, the features are classified using K Nearest Neighbor rather than softmax for better accuracy. The proposed method is conducted over an augmented dataset of 4085 CT scan images. The average accuracy, precision, recall and F1 score of the proposed method after performing a 5-fold cross-validation is 98.26%, 99.42%,97.2% and 98.19%, respectively. The proposed method's accuracy is comparable with the existing works described further, where the state of the art and the custom CNN models were used. Hence, this proposed method can diagnose the COVID-19 patients with higher efficiency.
Collapse
|
9
|
Nguyen-Trong K, Nguyen-Hoang K. Multi-modal approach for COVID-19 detection using coughs and self-reported symptoms. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-222863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
COVID-19 (Coronavirus Disease of 2019) is one of the most challenging healthcare crises of the twenty-first century. The pandemic causes many negative impacts on all aspects of life and livelihoods. Although recent developments of relevant vaccines, such as Pfizer/BioNTech mRNA, AstraZeneca, or Moderna, the emergence of new virus mutations and their fast infection rate yet pose significant threats to public health. In this context, early detection of the disease is an important factor to reduce its effect and quickly control the spread of pandemic. Nevertheless, many countries still rely on methods that are either expensive and time-consuming (i.e., Reverse-transcription polymerase chain reaction) or uncomfortable and difficult for self-testing (i.e., Rapid Antigen Test Nasal). Recently, deep learning methods have been proposed as a potential solution for COVID-19 analysis. However, previous works usually focus on a single symptom, which can omit critical information for disease diagnosis. Therefore, in this study, we propose a multi-modal method to detect COVID-19 using cough sounds and self-reported symptoms. The proposed method consists of five neural networks to deal with different input features, including CNN-biLSTM for MFCC features, EfficientNetV2 for Mel spectrogram images, MLP for self-reported symptoms, C-YAMNet for cough detection, and RNNoise for noise-canceling. Experimental results demonstrated that our method outperformed the other state-of-the-art methods with a high AUC, accuracy, and F1-score of 98.6%, 96.9%, and 96.9% on the testing set.
Collapse
Affiliation(s)
- Khanh Nguyen-Trong
- Faculty of Information Technology, Posts and Telecommunications Institute of Technology, Hanoi, Viet Nam
| | - Khoi Nguyen-Hoang
- Faculty of Information Technology, Posts and Telecommunications Institute of Technology, Hanoi, Viet Nam
| |
Collapse
|
10
|
Wang Q, Ma J, Zhang L, Xie L. Diagnostic performance of corona virus disease 2019 chest computer tomography image recognition based on deep learning: Systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e31346. [PMID: 36281129 PMCID: PMC9592148 DOI: 10.1097/md.0000000000031346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To analyze the diagnosis performance of deep learning model used in corona virus disease 2019 (COVID-19) computer tomography(CT) chest scans. The included sample contains healthy people, confirmed COVID-19 patients and unconfirmed suspected patients with corresponding symptoms. METHODS PubMed, Web of Science, Wiley, China National Knowledge Infrastructure, WAN FANG DATA, and Cochrane Library were searched for articles. Three researchers independently screened the literature, extracted the data. Any differences will be resolved by consulting the third author to ensure that a highly reliable and useful research paper is produced. Data were extracted from the final articles, including: authors, country of study, study type, sample size, participant demographics, type and name of AI software, results (accuracy, sensitivity, specificity, ROC, and predictive values), other outcome(s) if applicable. RESULTS Among the 3891 searched results, 32 articles describing 51,392 confirmed patients and 7686 non-infected individuals met the inclusion criteria. The pooled sensitivity, the pooled specificity, positive likelihood ratio, negative likelihood ratio and the pooled diagnostic odds ratio (OR) is 0.87(95%CI [confidence interval]: 0.85, 0.89), 0.85(95%CI: 0.82, 0.87), 6.7(95%CI: 5.7, 7.8), 0.14(95%CI: 0.12, 0.16), and 49(95%CI: 38, 65). Further, the AUROC (area under the receiver operating characteristic curve) is 0.94(95%CI: 0.91, 0.96). Secondary outcomes are specific sensitivity and specificity within subgroups defined by different models. Resnet has the best diagnostic performance, which has the highest sensitivity (0.91[95%CI: 0.87, 0.94]), specificity (0.90[95%CI: 0.86, 0.93]) and AUROC (0.96[95%CI: 0.94, 0.97]), according to the AUROC, we can get the rank Resnet > Densenet > VGG > Mobilenet > Inception > Effficient > Alexnet. CONCLUSIONS Our study findings show that deep learning models have immense potential in accurately stratifying COVID-19 patients and in correctly differentiating them from patients with other types of pneumonia and normal patients. Implementation of deep learning-based tools can assist radiologists in correctly and quickly detecting COVID-19 and, consequently, in combating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Qiaolan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Jingxuan Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Luoning Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
- *Correspondence: Linshen Xie, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, China (e-mail: )
| |
Collapse
|
11
|
Sarv Ahrabi S, Momenzadeh A, Baccarelli E, Scarpiniti M, Piazzo L. How much BiGAN and CycleGAN-learned hidden features are effective for COVID-19 detection from CT images? A comparative study. THE JOURNAL OF SUPERCOMPUTING 2022; 79:2850-2881. [PMID: 36042937 PMCID: PMC9411851 DOI: 10.1007/s11227-022-04775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Bidirectional generative adversarial networks (BiGANs) and cycle generative adversarial networks (CycleGANs) are two emerging machine learning models that, up to now, have been used as generative models, i.e., to generate output data sampled from a target probability distribution. However, these models are also equipped with encoding modules, which, after weakly supervised training, could be, in principle, exploited for the extraction of hidden features from the input data. At the present time, how these extracted features could be effectively exploited for classification tasks is still an unexplored field. Hence, motivated by this consideration, in this paper, we develop and numerically test the performance of a novel inference engine that relies on the exploitation of BiGAN and CycleGAN-learned hidden features for the detection of COVID-19 disease from other lung diseases in computer tomography (CT) scans. In this respect, the main contributions of the paper are twofold. First, we develop a kernel density estimation (KDE)-based inference method, which, in the training phase, leverages the hidden features extracted by BiGANs and CycleGANs for estimating the (a priori unknown) probability density function (PDF) of the CT scans of COVID-19 patients and, then, in the inference phase, uses it as a target COVID-PDF for the detection of COVID diseases. As a second major contribution, we numerically evaluate and compare the classification accuracies of the implemented BiGAN and CycleGAN models against the ones of some state-of-the-art methods, which rely on the unsupervised training of convolutional autoencoders (CAEs) for attaining feature extraction. The performance comparisons are carried out by considering a spectrum of different training loss functions and distance metrics. The obtained classification accuracies of the proposed CycleGAN-based (resp., BiGAN-based) models outperform the corresponding ones of the considered benchmark CAE-based models of about 16% (resp., 14%).
Collapse
Affiliation(s)
- Sima Sarv Ahrabi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Alireza Momenzadeh
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Enzo Baccarelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Michele Scarpiniti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Lorenzo Piazzo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| |
Collapse
|
12
|
Gomes R, Kamrowski C, Langlois J, Rozario P, Dircks I, Grottodden K, Martinez M, Tee WZ, Sargeant K, LaFleur C, Haley M. A Comprehensive Review of Machine Learning Used to Combat COVID-19. Diagnostics (Basel) 2022; 12:1853. [PMID: 36010204 PMCID: PMC9406981 DOI: 10.3390/diagnostics12081853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease (COVID-19) has had a significant impact on global health since the start of the pandemic in 2019. As of June 2022, over 539 million cases have been confirmed worldwide with over 6.3 million deaths as a result. Artificial Intelligence (AI) solutions such as machine learning and deep learning have played a major part in this pandemic for the diagnosis and treatment of COVID-19. In this research, we review these modern tools deployed to solve a variety of complex problems. We explore research that focused on analyzing medical images using AI models for identification, classification, and tissue segmentation of the disease. We also explore prognostic models that were developed to predict health outcomes and optimize the allocation of scarce medical resources. Longitudinal studies were conducted to better understand COVID-19 and its effects on patients over a period of time. This comprehensive review of the different AI methods and modeling efforts will shed light on the role that AI has played and what path it intends to take in the fight against COVID-19.
Collapse
Affiliation(s)
- Rahul Gomes
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Connor Kamrowski
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Jordan Langlois
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Papia Rozario
- Department of Geography and Anthropology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA;
| | - Ian Dircks
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Keegan Grottodden
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Matthew Martinez
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Wei Zhong Tee
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Kyle Sargeant
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Corbin LaFleur
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Mitchell Haley
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| |
Collapse
|
13
|
Filchakova O, Dossym D, Ilyas A, Kuanysheva T, Abdizhamil A, Bukasov R. Review of COVID-19 testing and diagnostic methods. Talanta 2022; 244:123409. [PMID: 35390680 PMCID: PMC8970625 DOI: 10.1016/j.talanta.2022.123409] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/09/2023]
Abstract
More than six billion tests for COVID-19 has been already performed in the world. The testing for SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) virus and corresponding human antibodies is essential not only for diagnostics and treatment of the infection by medical institutions, but also as a pre-requisite for major semi-normal economic and social activities such as international flights, off line work and study in offices, access to malls, sport and social events. Accuracy, sensitivity, specificity, time to results and cost per test are essential parameters of those tests and even minimal improvement in any of them may have noticeable impact on life in the many countries of the world. We described, analyzed and compared methods of COVID-19 detection, while representing their parameters in 22 tables. Also, we compared test performance of some FDA approved test kits with clinical performance of some non-FDA approved methods just described in scientific literature. RT-PCR still remains a golden standard in detection of the virus, but a pressing need for alternative less expensive, more rapid, point of care methods is evident. Those methods that may eventually get developed to satisfy this need are explained, discussed, quantitatively compared. The review has a bioanalytical chemistry prospective, but it may be interesting for a broader circle of readers who are interested in understanding and improvement of COVID-19 testing, helping eventually to leave COVID-19 pandemic in the past.
Collapse
Affiliation(s)
- Olena Filchakova
- Biology Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Dina Dossym
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Aisha Ilyas
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Tamila Kuanysheva
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Altynay Abdizhamil
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Rostislav Bukasov
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| |
Collapse
|
14
|
Chowdhury NK, Kabir MA, Rahman MM, Islam SMS. Machine learning for detecting COVID-19 from cough sounds: An ensemble-based MCDM method. Comput Biol Med 2022; 145:105405. [PMID: 35318171 PMCID: PMC8926945 DOI: 10.1016/j.compbiomed.2022.105405] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
This research aims to analyze the performance of state-of-the-art machine learning techniques for classifying COVID-19 from cough sounds and to identify the model(s) that consistently perform well across different cough datasets. Different performance evaluation metrics (precision, sensitivity, specificity, AUC, accuracy, etc.) make selecting the best performance model difficult. To address this issue, in this paper, we propose an ensemble-based multi-criteria decision making (MCDM) method for selecting top performance machine learning technique(s) for COVID-19 cough classification. We use four cough datasets, namely Cambridge, Coswara, Virufy, and NoCoCoDa to verify the proposed method. At first, our proposed method uses the audio features of cough samples and then applies machine learning (ML) techniques to classify them as COVID-19 or non-COVID-19. Then, we consider a multi-criteria decision-making (MCDM) method that combines ensemble technologies (i.e., soft and hard) to select the best model. In MCDM, we use the technique for order preference by similarity to ideal solution (TOPSIS) for ranking purposes, while entropy is applied to calculate evaluation criteria weights. In addition, we apply the feature reduction process through recursive feature elimination with cross-validation under different estimators. The results of our empirical evaluations show that the proposed method outperforms the state-of-the-art models. We see that when the proposed method is used for analysis using the Extra-Trees classifier, it has achieved promising results (AUC: 0.95, Precision: 1, Recall: 0.97).
Collapse
Affiliation(s)
- Nihad Karim Chowdhury
- Department of Computer Science and Engineering, University of Chittagong, Bangladesh,Corresponding author
| | - Muhammad Ashad Kabir
- Data Science Research Unit, School of Computing, Mathematics and Engineering, Charles Sturt University, NSW, Australia
| | - Md. Muhtadir Rahman
- Department of Computer Science and Engineering, University of Chittagong, Bangladesh
| | | |
Collapse
|
15
|
Awassa L, Jdey I, Dhahri H, Hcini G, Mahmood A, Othman E, Haneef M. Study of Different Deep Learning Methods for Coronavirus (COVID-19) Pandemic: Taxonomy, Survey and Insights. SENSORS (BASEL, SWITZERLAND) 2022; 22:1890. [PMID: 35271037 PMCID: PMC8915023 DOI: 10.3390/s22051890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
COVID-19 has evolved into one of the most severe and acute illnesses. The number of deaths continues to climb despite the development of vaccines and new strains of the virus have appeared. The early and precise recognition of COVID-19 are key in viably treating patients and containing the pandemic on the whole. Deep learning technology has been shown to be a significant tool in diagnosing COVID-19 and in assisting radiologists to detect anomalies and numerous diseases during this epidemic. This research seeks to provide an overview of novel deep learning-based applications for medical imaging modalities, computer tomography (CT) and chest X-rays (CXR), for the detection and classification COVID-19. First, we give an overview of the taxonomy of medical imaging and present a summary of types of deep learning (DL) methods. Then, utilizing deep learning techniques, we present an overview of systems created for COVID-19 detection and classification. We also give a rundown of the most well-known databases used to train these networks. Finally, we explore the challenges of using deep learning algorithms to detect COVID-19, as well as future research prospects in this field.
Collapse
Affiliation(s)
- Lamia Awassa
- Faculty of Sciences and Technology of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia; (L.A.); (I.J.); (G.H.)
| | - Imen Jdey
- Faculty of Sciences and Technology of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia; (L.A.); (I.J.); (G.H.)
| | - Habib Dhahri
- Faculty of Sciences and Technology of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia; (L.A.); (I.J.); (G.H.)
- Department of Information Science, College of Applied Computer Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (E.O.)
| | - Ghazala Hcini
- Faculty of Sciences and Technology of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia; (L.A.); (I.J.); (G.H.)
| | - Awais Mahmood
- Department of Information Science, College of Applied Computer Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (E.O.)
| | - Esam Othman
- Department of Information Science, College of Applied Computer Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (E.O.)
| | - Muhammad Haneef
- Department of Electrical Engineering, Foundation University Islamabad, Islamabad 44000, Pakistan;
| |
Collapse
|
16
|
Sarv Ahrabi S, Piazzo L, Momenzadeh A, Scarpiniti M, Baccarelli E. Exploiting probability density function of deep convolutional autoencoders' latent space for reliable COVID-19 detection on CT scans. THE JOURNAL OF SUPERCOMPUTING 2022; 78:12024-12045. [PMID: 35228777 PMCID: PMC8867464 DOI: 10.1007/s11227-022-04349-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 05/04/2023]
Abstract
We present a probabilistic method for classifying chest computed tomography (CT) scans into COVID-19 and non-COVID-19. To this end, we design and train, in an unsupervised manner, a deep convolutional autoencoder (DCAE) on a selected training data set, which is composed only of COVID-19 CT scans. Once the model is trained, the encoder can generate the compact hidden representation (the hidden feature vectors) of the training data set. Afterwards, we exploit the obtained hidden representation to build up the target probability density function (PDF) of the training data set by means of kernel density estimation (KDE). Subsequently, in the test phase, we feed a test CT into the trained encoder to produce the corresponding hidden feature vector, and then, we utilise the target PDF to compute the corresponding PDF value of the test image. Finally, this obtained value is compared to a threshold to assign the COVID-19 label or non-COVID-19 to the test image. We numerically check our approach's performance (i.e. test accuracy and training times) by comparing it with those of some state-of-the-art methods.
Collapse
Affiliation(s)
- Sima Sarv Ahrabi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Lorenzo Piazzo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Alireza Momenzadeh
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Michele Scarpiniti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Enzo Baccarelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| |
Collapse
|
17
|
Attallah O. ECG-BiCoNet: An ECG-based pipeline for COVID-19 diagnosis using Bi-Layers of deep features integration. Comput Biol Med 2022; 142:105210. [PMID: 35026574 PMCID: PMC8730786 DOI: 10.1016/j.compbiomed.2022.105210] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/01/2022] [Accepted: 01/01/2022] [Indexed: 12/29/2022]
Abstract
The accurate and speedy detection of COVID-19 is essential to avert the fast propagation of the virus, alleviate lockdown constraints and diminish the burden on health organizations. Currently, the methods used to diagnose COVID-19 have several limitations, thus new techniques need to be investigated to improve the diagnosis and overcome these limitations. Taking into consideration the great benefits of electrocardiogram (ECG) applications, this paper proposes a new pipeline called ECG-BiCoNet to investigate the potential of using ECG data for diagnosing COVID-19. ECG-BiCoNet employs five deep learning models of distinct structural design. ECG-BiCoNet extracts two levels of features from two different layers of each deep learning technique. Features mined from higher layers are fused using discrete wavelet transform and then integrated with lower-layers features. Afterward, a feature selection approach is utilized. Finally, an ensemble classification system is built to merge predictions of three machine learning classifiers. ECG-BiCoNet accomplishes two classification categories, binary and multiclass. The results of ECG-BiCoNet present a promising COVID-19 performance with an accuracy of 98.8% and 91.73% for binary and multiclass classification categories. These results verify that ECG data may be used to diagnose COVID-19 which can help clinicians in the automatic diagnosis and overcome limitations of manual diagnosis.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 1029, Egypt.
| |
Collapse
|
18
|
Mahmood AF, Mahmood SW. Auto informing COVID-19 detection result from x-ray/CT images based on deep learning. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:084102. [PMID: 34470404 DOI: 10.1063/5.0059829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
It is no secret to all that the corona pandemic has caused a decline in all aspects of the world. Therefore, offering an accurate automatic diagnostic system is very important. This paper proposed an accurate COVID-19 system by testing various deep learning models for x-ray/computed tomography (CT) medical images. A deep preprocessing procedure was done with two filters and segmentation to increase classification results. According to the results obtained, 99.94% of accuracy, 98.70% of sensitivity, and 100% of specificity scores were obtained by the Xception model in the x-ray dataset and the InceptionV3 model for CT scan images. The compared results have demonstrated that the proposed model is proven to be more successful than the deep learning algorithms in previous studies. Moreover, it has the ability to automatically notify the examination results to the patients, the health authority, and the community after taking any x-ray or CT images.
Collapse
Affiliation(s)
| | - Saja Waleed Mahmood
- University of Mosul, College of Engineering, Computer Engineering, Mosul, Iraq
| |
Collapse
|
19
|
Yasar H, Ceylan M. Deep Learning-Based Approaches to Improve Classification Parameters for Diagnosing COVID-19 from CT Images. Cognit Comput 2021:1-28. [PMID: 34306240 PMCID: PMC8280590 DOI: 10.1007/s12559-021-09915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/07/2021] [Indexed: 11/10/2022]
Abstract
Patients infected with the COVID-19 virus develop severe pneumonia, which generally leads to death. Radiological evidence has demonstrated that the disease causes interstitial involvement in the lungs and lung opacities, as well as bilateral ground-glass opacities and patchy opacities. In this study, new pipeline suggestions are presented, and their performance is tested to decrease the number of false-negative (FN), false-positive (FP), and total misclassified images (FN + FP) in the diagnosis of COVID-19 (COVID-19/non-COVID-19 and COVID-19 pneumonia/other pneumonia) from CT lung images. A total of 4320 CT lung images, of which 2554 were related to COVID-19 and 1766 to non-COVID-19, were used for the test procedures in COVID-19 and non-COVID-19 classifications. Similarly, a total of 3801 CT lung images, of which 2554 were related to COVID-19 pneumonia and 1247 to other pneumonia, were used for the test procedures in COVID-19 pneumonia and other pneumonia classifications. A 24-layer convolutional neural network (CNN) architecture was used for the classification processes. Within the scope of this study, the results of two experiments were obtained by using CT lung images with and without local binary pattern (LBP) application, and sub-band images were obtained by applying dual-tree complex wavelet transform (DT-CWT) to these images. Next, new classification results were calculated from these two results by using the five pipeline approaches presented in this study. For COVID-19 and non-COVID-19 classification, the highest sensitivity, specificity, accuracy, F-1, and AUC values obtained without using pipeline approaches were 0.9676, 0.9181, 0.9456, 0.9545, and 0.9890, respectively; using pipeline approaches, the values were 0.9832, 0.9622, 0.9577, 0.9642, and 0.9923, respectively. For COVID-19 pneumonia/other pneumonia classification, the highest sensitivity, specificity, accuracy, F-1, and AUC values obtained without using pipeline approaches were 0.9615, 0.7270, 0.8846, 0.9180, and 0.9370, respectively; using pipeline approaches, the values were 0.9915, 0.8140, 0.9071, 0.9327, and 0.9615, respectively. The results of this study show that classification success can be increased by reducing the time to obtain per-image results through using the proposed pipeline approaches.
Collapse
Affiliation(s)
- Huseyin Yasar
- Ministry of Health of Republic of Turkey, Ankara, Turkey
| | - Murat Ceylan
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey
| |
Collapse
|
20
|
Moezzi M, Shirbandi K, Shahvandi HK, Arjmand B, Rahim F. The diagnostic accuracy of Artificial Intelligence-Assisted CT imaging in COVID-19 disease: A systematic review and meta-analysis. INFORMATICS IN MEDICINE UNLOCKED 2021; 24:100591. [PMID: 33977119 PMCID: PMC8099790 DOI: 10.1016/j.imu.2021.100591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/17/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
Artificial intelligence (AI) systems have become critical in support of decision-making. This systematic review summarizes all the data currently available on the AI-assisted CT-Scan prediction accuracy for COVID-19. The ISI Web of Science, Cochrane Library, PubMed, Scopus, CINAHL, Science Direct, PROSPERO, and EMBASE were systematically searched. We used the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool to assess all included studies' quality and potential bias. A hierarchical receiver-operating characteristic summary (HSROC) curve and a summary receiver operating characteristic (SROC) curve have been implemented. The area under the curve (AUC) was computed to determine the diagnostic accuracy. Finally, 36 studies (a total of 39,246 image data) were selected for inclusion into the final meta-analysis. The pooled sensitivity for AI was 0.90 (95% CI, 0.90–0.91), specificity was 0.91 (95% CI, 0.90–0.92) and the AUC was 0.96 (95% CI, 0.91–0.98). For deep learning (DL) method, the pooled sensitivity was 0.90 (95% CI, 0.90–0.91), specificity was 0.88 (95% CI, 0.87–0.88) and the AUC was 0.96 (95% CI, 0.93–0.97). In case of machine learning (ML), the pooled sensitivity was 0.90 (95% CI, 0.90–0.91), specificity was 0.95 (95% CI, 0.94–0.95) and the AUC was 0.97 (95% CI, 0.96–0.99). AI in COVID-19 patients is useful in identifying symptoms of lung involvement. More prospective real-time trials are required to confirm AI's role for high and quick COVID-19 diagnosis due to the possible selection bias and retrospective existence of currently available studies.
Collapse
Affiliation(s)
- Meisam Moezzi
- Department of Emergency Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kiarash Shirbandi
- International Affairs Department (IAD), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Kiani Shahvandi
- Allied Health Science, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Babak Arjmand
- Research Assistant Professor of Applied Cellular Sciences (By Research), Cellular and Molecular Institute, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|