1
|
Liu Z, Liu Z, Wan X, Wang Y, Huang X. Prediction of clinical outcome for high-intensity focused ultrasound ablation of adenomyosis based on non-enhanced MRI radiomics. Int J Hyperthermia 2025; 42:2468766. [PMID: 39988330 DOI: 10.1080/02656736.2025.2468766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/27/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
OBJECTIVES The study aimed to develop a non-enhanced MRI-based radiomics model for the preoperative prediction of the efficacy of adenomyosis after high-intensity focused ultrasound (HIFU) treatment. METHODS The data of 130 patients with adenomyosis who underwent HIFU treatment were reviewed. Based on a non-perfused volume ratio (NPVR) of 50%, the patients were assigned to high ablation rate and low ablation rate groups. A radiomics model was constructed from the screened radiomics features and its output probability was calculated as the radiomics score (Radscore). The clinical-imaging model was constructed from the independent predictors of clinical-imaging characteristics. The combined model was constructed by integrating Radscore and clinical-imaging independent predictors. Receiver operating characteristic (ROC) curves, the Delong test, and decision curve analysis (DCA) were used to evaluate the models. RESULTS The combined model had the best overall performance among the three models. The AUC (95% CI), specificity, sensitivity, accuracy, and precision of the combined model were 0.860 (0.786-0.935), 0.780, 0.756, 0.769, 0.738 in the training set, and 0.878 (0.774-0.983), 0.859, 0.667, 0.769, 0.800 in the test set, respectively. The Delong test showed that the performance of both the radiomics and combined models differed significantly from the clinical-imaging model. But the performance of the combined and the radiomics model was statistically equivalent. The DCA indicated that the combined model had better clinical net benefit. CONCLUSION The combined model based on non-enhanced MRI radiomics was effective in predicting the outcome of HIFU ablation of adenomyosis before surgery.
Collapse
Affiliation(s)
- Ziyi Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ziyan Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiyao Wan
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuan Wang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaohua Huang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Grimm LJ, Kruse DE, Tailor TD, Johnson KS, Allen BC, Ryser MD. Current Challenges in Imaging-Based Cancer Screening, From the AJR Special Series on Screening. AJR Am J Roentgenol 2025. [PMID: 40266702 DOI: 10.2214/ajr.25.32808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The early detection of cancer confers many significant benefits for patients, primarily by enabling less invasive and more effective treatments and thus lowering disease mortality. Radiology is integral to early cancer detection, playing either a primary or complementary role in screening programs. Imaging-based screening is often performed in conjunction with other screening tests and may involve multiple modalities depending on patient demographics and cancer type. When developing a screening program for cancer early detection, both its potential benefits and harms need to be assessed. These harms, although specific to the modality and cancer, often include overdiagnosis, overtreatment, and false-positive examinations. As radiology technology improves and new tools become available, the ratios of risk to harm of imaging-based screening will shift, and screening recommendations will need to adapt accordingly. Radiologists must be major partners in the development and execution of screening guidelines to ensure the highest quality of care for their patients. This review discusses the major challenges of cancer screening programs and guidelines, exploring sources of evidence as well as harms of overdiagnosis and overtreatment. The article focuses on the most common cancer types that incorporate imaging-based screening including lung cancer, breast cancer, colon cancer, prostate cancer, and hepatocellcular carcinoma.
Collapse
|
3
|
Li M, Fang Y, Shao J, Jiang Y, Xu G, Cui XW, Wu X. Vision transformer-based multimodal fusion network for classification of tumor malignancy on breast ultrasound: A retrospective multicenter study. Int J Med Inform 2025; 196:105793. [PMID: 39862564 DOI: 10.1016/j.ijmedinf.2025.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND In the context of routine breast cancer diagnosis, the precise discrimination between benign and malignant breast masses holds utmost significance. Notably, few prior investigations have concurrently explored the integration of imaging histology features, deep learning characteristics, and clinical parameters. The primary objective of this retrospective study was to pioneer a multimodal feature fusion model tailored for the prediction of breast tumor malignancy, harnessing the potential of ultrasound images. METHOD We compiled a dataset that included clinical features from 1065 patients and 3315 image datasets. Specifically, we selected data from 603 patients for training our multimodal model. The comprehensive experimental workflow involves identifying the optimal unimodal model, extracting unimodal features, fusing multimodal features, gaining insights from these fused features, and ultimately generating prediction results using a classifier. RESULTS Our multimodal feature fusion model demonstrates outstanding performance, achieving an AUC of 0.994 (95 % CI: 0.988-0.999) and an F1 score of 0.971 on the primary multicenter dataset. In the evaluation on two independent testing cohorts (TCs), it maintains strong performance, with AUCs of 0.942 (95 % CI: 0.854-0.994) for TC1 and 0.945 (95 % CI: 0.857-1.000) for TC2, accompanied by corresponding F1 scores of 0.872 and 0.857, respectively. Notably, the decision curve analysis reveals that our model achieves higher accuracy within the threshold probability range of approximately [0.210, 0.890] (TC1) and [0.000, 0.850] (TC2) compared to alternative methods. This capability enhances its utility in clinical decision-making, providing substantial benefits. CONCLUSION The multimodal model proposed in this paper can comprehensively evaluate patients' multifaceted clinical information, achieve the prediction of benign and malignant breast ultrasound tumors, and obtain high performance indexes.
Collapse
Affiliation(s)
- Mengying Li
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, PR China
| | - Yin Fang
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, PR China
| | - Jiong Shao
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, PR China
| | - Yan Jiang
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, PR China
| | - Guoping Xu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, PR China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Xinglong Wu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, PR China.
| |
Collapse
|
4
|
Zhong J, Liu X, Lu J, Yang J, Zhang G, Mao S, Chen H, Yin Q, Cen Q, Jiang R, Song Y, Lu M, Chu J, Xing Y, Hu Y, Ding D, Ge X, Zhang H, Yao W. Overlooked and underpowered: a meta-research addressing sample size in radiomics prediction models for binary outcomes. Eur Radiol 2025; 35:1146-1156. [PMID: 39789271 PMCID: PMC11835977 DOI: 10.1007/s00330-024-11331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/10/2024] [Accepted: 11/30/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVES To investigate how studies determine the sample size when developing radiomics prediction models for binary outcomes, and whether the sample size meets the estimates obtained by using established criteria. METHODS We identified radiomics studies that were published from 01 January 2023 to 31 December 2023 in seven leading peer-reviewed radiological journals. We reviewed the sample size justification methods, and actual sample size used. We calculated and compared the actual sample size used to the estimates obtained by using three established criteria proposed by Riley et al. We investigated which characteristics factors were associated with the sufficient sample size that meets the estimates obtained by using established criteria proposed by Riley et al. RESULTS: We included 116 studies. Eleven out of one hundred sixteen studies justified the sample size, in which 6/11 performed a priori sample size calculation. The median (first and third quartile, Q1, Q3) of the total sample size is 223 (130, 463), and those of sample size for training are 150 (90, 288). The median (Q1, Q3) difference between total sample size and minimum sample size according to established criteria are -100 (-216, 183), and those differences between total sample size and a more restrictive approach based on established criteria are -268 (-427, -157). The presence of external testing and the specialty of the topic were associated with sufficient sample size. CONCLUSION Radiomics studies are often designed without sample size justification, whose sample size may be too small to avoid overfitting. Sample size justification is encouraged when developing a radiomics model. KEY POINTS Question Sample size justification is critical to help minimize overfitting in developing a radiomics model, but is overlooked and underpowered in radiomics research. Findings Few of the radiomics models justified, calculated, or reported their sample size, and most of them did not meet the recent formal sample size criteria. Clinical relevance Radiomics models are often designed without sample size justification. Consequently, many models are too small to avoid overfitting. It should be encouraged to justify, perform, and report the considerations on sample size when developing radiomics models.
Collapse
Affiliation(s)
- Jingyu Zhong
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China.
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianwei Liu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Guangcheng Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoda Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Yin
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Cen
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run Jiang
- Department of Pharmacovigilance, SciClone Pharmaceuticals (Holdings) Ltd., Shanghai, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd., Shanghai, China
| | - Minda Lu
- MR Application, Siemens Healthineers Ltd., Shanghai, China
| | - Jingshen Chu
- Editorial Office of Journal of Diagnostics Concepts & Practice, Department of Science and Technology Development, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiwu Yao
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China.
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Widaatalla Y, Wolswijk T, Khan MD, Halilaj I, Mosterd K, Woodruff HC, Lambin P. Radiomics in Dermatological Optical Coherence Tomography (OCT): Feature Repeatability, Reproducibility, and Integration into Diagnostic Models in a Prospective Study. Cancers (Basel) 2025; 17:768. [PMID: 40075619 PMCID: PMC11899706 DOI: 10.3390/cancers17050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Radiomics has seen substantial growth in medical imaging; however, its potential in optical coherence tomography (OCT) has not been widely explored. We systematically evaluate the repeatability and reproducibility of handcrafted radiomics features (HRFs) from OCT scans of benign nevi and examine the impact of bin width (BW) selection on HRF stability. The effect of using stable features on a radiomics classification model was also assessed. METHODS In this prospective study, 20 volunteers underwent test-retest OCT imaging of 40 benign nevi, resulting in 80 scans. The repeatability and reproducibility of HRFs extracted from manually delineated regions of interest (ROIs) were assessed using concordance correlation coefficients (CCCs) across BWs ranging from 5 to 50. A unique set of stable HRFs was identified at each BW after removing highly correlated features to eliminate redundancy. These robust features were incorporated into a multiclass radiomics classifier trained to distinguish benign nevi, basal cell carcinoma (BCC), and Bowen's disease. RESULTS Six stable HRFs were identified across all BWs, with a BW of 25 emerging as the optimal choice, balancing repeatability and the ability to capture meaningful textural details. Additionally, intermediate BWs (20-25) yielded 53 reproducible features. A classifier trained with six stable features achieved a 90% accuracy and AUCs of 0.96 and 0.94 for BCC and Bowen's disease, respectively, compared to a 76% accuracy and AUCs of 0.86 and 0.80 for a conventional feature selection approach. CONCLUSIONS This study highlights the critical role of BW selection in enhancing HRF stability and provides a methodological framework for optimizing preprocessing in OCT radiomics. By demonstrating the integration of stable HRFs into diagnostic models, we establish OCT radiomics as a promising tool to aid non-invasive diagnosis in dermatology.
Collapse
Affiliation(s)
- Yousif Widaatalla
- The D-Lab, Department of Precision Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands; (M.D.K.); (I.H.); (H.C.W.); (P.L.)
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
| | - Tom Wolswijk
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
- Department of Dermatology, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Muhammad Danial Khan
- The D-Lab, Department of Precision Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands; (M.D.K.); (I.H.); (H.C.W.); (P.L.)
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
| | - Iva Halilaj
- The D-Lab, Department of Precision Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands; (M.D.K.); (I.H.); (H.C.W.); (P.L.)
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
| | - Klara Mosterd
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
- Department of Dermatology, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands; (M.D.K.); (I.H.); (H.C.W.); (P.L.)
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands; (M.D.K.); (I.H.); (H.C.W.); (P.L.)
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
6
|
Wang H, Qiu J, Lu W, Xie J, Ma J. Radiomics based on multiple machine learning methods for diagnosing early bone metastases not visible on CT images. Skeletal Radiol 2025; 54:335-343. [PMID: 39028463 DOI: 10.1007/s00256-024-04752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES This study utilizes [99mTc]-methylene diphosphate (MDP) single photon emission computed tomography (SPECT) images as a reference standard to evaluate whether the integration of radiomics features from computed tomography (CT) and machine learning algorithms can identify microscopic early bone metastases. Additionally, we also determine the optimal machine learning approach. MATERIALS AND METHODS We retrospectively studied 63 patients with early bone metastasis from July 2020 to March 2023. The ITK-SNAP software was used to delineate early bone metastases and normal bone tissue in SPECT images of each patient, which were then registered onto CT images to outline the volume of interest (VOI). The VOI includes 63 early bone metastasis volumes and 63 normal bone tissue volumes. 126 VOIs were randomly distributed in a 7:3 ratio between the training and testing groups, and 944 radiomics features were extracted from every VOI. We established 20 machine learning models using 5 feature selection algorithms and 4 classification methods. Evaluate the performance of the model using the area under the receiver operating characteristic curve (AUC). RESULTS Most machine learning models demonstrated outstanding discriminative capacity, with AUCs higher than 0.70. Notably, the K-Nearest Neighbors (KNN) classifier exhibited significant performance improvement compared to the other four classifiers. Specifically, the model constructed utilizing eXtreme Gradient Boosting (XGBoost) feature selection method integrated with KNN classifier achieved the maximum AUC, which is 0.989 in the training set and 0.975 in the testing set. CONCLUSIONS Radiomics features integrated with machine learning methods can identify early bone metastases that are not visible on CT images. In our analysis, KNN is considered the optimal classification method.
Collapse
Affiliation(s)
- Huili Wang
- College of Preventive Medicine & Institute of Radiation Medicine, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250012, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, 271016, China
| | - Weizhao Lu
- School of Radiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, 271016, China
| | - Jindong Xie
- College of Preventive Medicine & Institute of Radiation Medicine, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250012, China.
| | - Junchi Ma
- School of Radiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, 271016, China.
| |
Collapse
|
7
|
Wang Y, Gupta A, Tushar FI, Riley B, Wang A, Tailor TD, Tantum S, Liu JG, Bashir MR, Lo JY, Lafata KJ. Concordance-based Predictive Uncertainty (CPU)-Index: Proof-of-concept with application towards improved specificity of lung cancers on low dose screening CT. Artif Intell Med 2025; 160:103055. [PMID: 39721356 DOI: 10.1016/j.artmed.2024.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
In this paper, we introduce a novel concordance-based predictive uncertainty (CPU)-Index, which integrates insights from subgroup analysis and personalized AI time-to-event models. Through its application in refining lung cancer screening (LCS) predictions generated by an individualized AI time-to-event model trained with fused data of low dose CT (LDCT) radiomics with patient demographics, we demonstrate its effectiveness, resulting in improved risk assessment compared to the Lung CT Screening Reporting & Data System (Lung-RADS). Subgroup-based Lung-RADS faces challenges in representing individual variations and relies on a limited set of predefined characteristics, resulting in variable predictions. Conversely, personalized AI time-to-event models are hindered by transparency issues and biases from censored data. By measuring the prediction consistency between subgroup analysis and AI time-to-event models, the CPU-Index framework offers a nuanced evaluation of the bias-variance trade-off and improves the transparency and reliability of predictions. Consistency was estimated by the concordance index of subgroup analysis-based similarity rank and model prediction similarity rank. Subgroup analysis-based similarity loss was defined as the sum-of-the-difference between Lung-RADS and feature-level 0-1 loss. Model prediction similarity loss was defined as squared loss. To test our approach, we identified 3,326 patients who underwent LDCT for LCS from 1/1/2015 to 6/30/2020 with confirmation of lung cancer on pathology within one year. For each LDCT image, the lesion associated with a Lung-RADS score was detected using a pretrained deep learning model from Medical Open Network for AI (MONAI), from which radiomic features were extracted. Radiomics were optimally fused with patient demographics via a positional encoding scheme and used to train a neural multi-task logistic regression time-to-event model that predicts malignancy. Performance was maximized when radiomics features were fused with positionally encoded demographic features. In this configuration, our algorithm raised the AUC from 0.81 ± 0.04 to 0.89 ± 0.02. Compared to standard Lung-RADS, our approach reduced the False-Positive-Rate from 0.41 ± 0.02 to 0.30 ± 0.12 while maintaining the same False-Negative-Rate. Our methodology enhances lung cancer risk assessment by estimating prediction uncertainty and adjusting accordingly. Furthermore, the optimal integration of radiomics and patient demographics improved overall diagnostic performance, indicating their complementary nature.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America.
| | - Aarzu Gupta
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
| | - Fakrul Islam Tushar
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
| | - Breylon Riley
- Medical Physics Graduate Program, Duke University, Durham, NC, United States of America
| | - Avivah Wang
- School of Medicine, Duke University, Durham, NC, United States of America
| | - Tina D Tailor
- Department of Radiology, Duke University, Durham, NC, United States of America
| | - Stacy Tantum
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
| | - Jian-Guo Liu
- Departments of Physics and Mathematics, Duke University, Durham, NC, United States of America
| | - Mustafa R Bashir
- Department of Radiology, Duke University, Durham, NC, United States of America; Department of Medicine, Division of Gastroenterology, Duke University, Durham, NC, United States of America
| | - Joseph Y Lo
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America; Medical Physics Graduate Program, Duke University, Durham, NC, United States of America; Department of Radiology, Duke University, Durham, NC, United States of America; Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Kyle J Lafata
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America; Medical Physics Graduate Program, Duke University, Durham, NC, United States of America; Department of Radiology, Duke University, Durham, NC, United States of America; Department of Biomedical Engineering, Duke University, Durham, NC, United States of America; Department of Radiation Oncology, Duke University, Durham, NC, United States of America; Department of Pathology, Duke University, Durham, NC, United States of America.
| |
Collapse
|
8
|
Wagner-Larsen KS, Lura N, Gulati A, Ryste S, Hodneland E, Fasmer KE, Woie K, Bertelsen BI, Salvesen Ø, Halle MK, Smit N, Krakstad C, Haldorsen IS. MRI delta radiomics during chemoradiotherapy for prognostication in locally advanced cervical cancer. BMC Cancer 2025; 25:122. [PMID: 39844102 PMCID: PMC11753090 DOI: 10.1186/s12885-025-13509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Effective diagnostic tools for prompt identification of high-risk locally advanced cervical cancer (LACC) patients are needed to facilitate early, individualized treatment. The aim of this work was to assess temporal changes in tumor radiomics (delta radiomics) from T2-weighted imaging (T2WI) during concurrent chemoradiotherapy (CCRT) in LACC patients, and their association with progression-free survival (PFS). Furthermore, to develop, validate, and compare delta- and pretreatment radiomic signatures for prognostic modeling. METHODS A total of 110 LACC patients undergoing CCRT with MRI at baseline and mid-treatment were divided into training (cohortT: n = 73) and validation (cohortV: n = 37) cohorts. Radiomic features were extracted from tumors segmented on pre-CCRT and mid-CCRT T2WI and radiomic deltas (delta features) were computed. Two radiomic signatures for predicting PFS were constructed by least absolute shrinkage and selection operator (LASSO) Cox regression: Deltarad (from delta features) and Pre-CCRTrad (from pre-CCRT features). Prognostic performance of the radiomic signatures, 2018 International Federation of Gynecology and Obstetrics (FIGO) stage (I-IV), and baseline MRI-derived maximum tumor diameter (Tumormax: ≤2 cm; >2 and ≤ 4 cm; >4 cm) was evaluated by area under time-dependent receiver operating characteristics (tdROC) curves (AUC) in cohortT and cohortV (AUCT/AUCV). Mann-Whitney U tests assessed differences in radiomic delta features. PFS was evaluated using the Kaplan-Meier method with log-rank tests. RESULTS Deltarad (AUCT/AUCV: 0.74/0.79) marginally outperformed Pre-CCRTrad (0.72/0.75) for predicting 5-year PFS, and both signatures clearly surpassed that of FIGO (0.61/0.61) and Tumormax (0.58/0.65). In total, four features within Deltarad and Pre-CCRTrad significantly differed in delta feature values between progressors and non-progressors, being consistently lower in progressors (p ≤ 0.03 for all). High Deltarad and Pre-CCRTrad radiomic scores were associated with poor PFS (p ≤ 0.04 for Deltarad in cohortT/Pre-CCRTrad in both cohorts; p = 0.11 for Deltarad in cohortV). CONCLUSIONS Delta- and pretreatment radiomic signatures equally allow early prognostication in LACC, outperforming FIGO stage and MRI-assessed maximum tumor diameter.
Collapse
Affiliation(s)
- Kari S Wagner-Larsen
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Jonas Lies vei 65, Bergen, 5021, Norway.
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Njål Lura
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Jonas Lies vei 65, Bergen, 5021, Norway
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ankush Gulati
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Jonas Lies vei 65, Bergen, 5021, Norway
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Stian Ryste
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Jonas Lies vei 65, Bergen, 5021, Norway
| | - Erlend Hodneland
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Jonas Lies vei 65, Bergen, 5021, Norway
| | - Kristine E Fasmer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Jonas Lies vei 65, Bergen, 5021, Norway
| | - Kathrine Woie
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Bjørn I Bertelsen
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Øyvind Salvesen
- Clinical Research Unit, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mari K Halle
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Noeska Smit
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Jonas Lies vei 65, Bergen, 5021, Norway
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Camilla Krakstad
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingfrid S Haldorsen
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Jonas Lies vei 65, Bergen, 5021, Norway.
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
9
|
Zhou J, Luo Y, Darcy JW, Lafata KJ, Ruiz JR, Grego S. Long-term, automated stool monitoring using a novel smart toilet: A feasibility study. Neurogastroenterol Motil 2025; 37:e14954. [PMID: 39486001 DOI: 10.1111/nmo.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/25/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Patients' report of bowel movement consistency is unreliable. We demonstrate the feasibility of long-term automated stool image data collection using a novel Smart Toilet and evaluate a deterministic computer-vision analytic approach to assess stool form according to the Bristol Stool Form Scale (BSFS). METHODS Our smart toilet integrates a conventional toilet bowl with an engineered portal to image feces in a predetermined region of the plumbing post-flush. The smart toilet was installed in a workplace bathroom and used by six healthy volunteers. Images were annotated by three experts. A computer vision method based on deep learning segmentation and mathematically defined hand-crafted features was developed to quantify morphological attributes of stool from images. KEY RESULTS 474 bowel movements images were recorded in total from six subjects over a mean period of 10 months. 3% of images were rated abnormal with stool consistency BSFS 2 and 4% were BSFS 6. Our image analysis algorithm leverages interpretable morphological features and achieves classification of abnormal stool form with 94% accuracy, 81% sensitivity and 95% specificity. CONCLUSIONS Our study supports the feasibility and accuracy of long-term, non-invasive automated stool form monitoring with the novel smart toilet system which can eliminate the patient burden of tracking bowel forms.
Collapse
Affiliation(s)
- Jin Zhou
- Duke University, Durham, North Carolina, USA
| | - Yuying Luo
- Mount Sinai Centre for Gastrointestinal Physiology & Motility, New York, New York, USA
| | | | | | - Jose R Ruiz
- University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Sonia Grego
- Duke University, Durham, North Carolina, USA
- Coprata Inc., Durham, North Carolina, USA
| |
Collapse
|
10
|
Müller D, Voran JC, Macedo M, Hartmann D, Lind C, Frank D, Schreiweis B, Kramer F, Ulrich H. Assessing Patient Health Dynamics by Comparative CT Analysis: An Automatic Approach to Organ and Body Feature Evaluation. Diagnostics (Basel) 2024; 14:2760. [PMID: 39682668 DOI: 10.3390/diagnostics14232760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: The integration of machine learning into the domain of radiomics has revolutionized the approach to personalized medicine, particularly in oncology. Our research presents RadTA (RADiomics Trend Analysis), a novel framework developed to facilitate the automatic analysis of quantitative imaging biomarkers (QIBs) from time-series CT volumes. Methods: RadTA is designed to bridge a technical gap for medical experts and enable sophisticated radiomic analyses without deep learning expertise. The core of RadTA includes an automated command line interface, streamlined image segmentation, comprehensive feature extraction, and robust evaluation mechanisms. RadTA utilizes advanced segmentation models, specifically TotalSegmentator and Body Composition Analysis (BCA), to accurately delineate anatomical structures from CT scans. These models enable the extraction of a wide variety of radiomic features, which are subsequently processed and compared to assess health dynamics across timely corresponding CT series. Results: The effectiveness of RadTA was tested using the HNSCC-3DCT-RT dataset, which includes CT scans from oncological patients undergoing radiation therapy. The results demonstrate significant changes in tissue composition and provide insights into the physical effects of the treatment. Conclusions: RadTA demonstrates a step of clinical adoption in the field of radiomics, offering a user-friendly, robust, and effective tool for the analysis of patient health dynamics. It can potentially also be used for other medical specialties.
Collapse
Affiliation(s)
- Dominik Müller
- IT-Infrastructure for Translational Medical Research, University of Augsburg, 86159 Augsburg, Germany
- Institute for Digital Medicine, University Hospital Augsburg, 86156 Augsburg, Germany
- Institute for Medical Informatics and Statistics, Kiel University and University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Jakob Christoph Voran
- Department of Cardiology, Kiel University and University Hospital Schleswig-Holstein, 24105 Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 24103 Kiel, Germany
| | - Mário Macedo
- Institute for Medical Informatics and Statistics, Kiel University and University Hospital Schleswig-Holstein, 24105 Kiel, Germany
- Medical Data Integration Center, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Dennis Hartmann
- IT-Infrastructure for Translational Medical Research, University of Augsburg, 86159 Augsburg, Germany
| | - Charlotte Lind
- Department of Cardiology, Kiel University and University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Derk Frank
- Department of Cardiology, Kiel University and University Hospital Schleswig-Holstein, 24105 Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 24103 Kiel, Germany
| | - Björn Schreiweis
- Institute for Medical Informatics and Statistics, Kiel University and University Hospital Schleswig-Holstein, 24105 Kiel, Germany
- Medical Data Integration Center, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Frank Kramer
- IT-Infrastructure for Translational Medical Research, University of Augsburg, 86159 Augsburg, Germany
| | - Hannes Ulrich
- Institute for Medical Informatics and Statistics, Kiel University and University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| |
Collapse
|
11
|
Huang J, Li T, Tang L, Hu Y, Hu Y, Gu Y. Development and Validation of an 18F-FDG PET/CT-based Radiomics Nomogram for Predicting the Prognosis of Patients with Esophageal Squamous Cell Carcinoma. Acad Radiol 2024; 31:5066-5077. [PMID: 38845294 DOI: 10.1016/j.acra.2024.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 05/16/2024] [Indexed: 11/30/2024]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to develop and validate a nomogram, integrating clinical factors and radiomics features, capable of predicting overall survival (OS) in patients diagnosed with esophageal squamous cell carcinoma (ESCC). METHODS In this study, we retrospectively analyzed the case data of 130 patients with ESCC who underwent 18F-FDG PET/CT before treatment. Radiomics features associated with OS were screened by univariate Cox regression (p < 0.05). Further selection was performed by applying the least absolute shrinkage and selection operator Cox regression to generate the weighted Radiomics-score (Rad-score). Independent clinical risk factors were obtained by multivariate Cox regression, and a nomogram was constructed by combining Rad-score and independent risk factors. The predictive performance of the model for OS was assessed using the time-dependent receiver operating characteristic curve, concordance index (C-index), calibration curve, and decision curve analysis. RESULTS Five radiomics features associated with prognosis were finally screened, and a Rad-score was established. Multivariate Cox regression analysis revealed that surgery and clinical M stage were identified as independent risk factors for OS in ESCC. The combined clinical-radiomics nomogram exhibited C-index values of 0.768 (95% CI: 0.699-0.837) and 0.809 (95% CI: 0.695-0.923) in the training and validation cohorts, respectively. Ultimately, calibration curves and decision curves for the 1-, 2-, and 3-year OS demonstrated the satisfactory prognostic prediction and clinical utility of the nomogram. CONCLUSION The developed nomogram, leveraging 18F-FDG PET/CT radiomics and clinically independent risk factors, demonstrates a reliable prognostic prediction for patients with ESCC, potentially serving as a valuable tool for guiding and optimizing clinical treatment decisions in the future.
Collapse
Affiliation(s)
- Jiahui Huang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Tiannv Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Lijun Tang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yuxiao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yingying Gu
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.
| |
Collapse
|
12
|
Tang Y, Pang Y, Tang J, Sun X, Wang P, Li J. Predicting grade II-IV bone marrow suppression in patients with cervical cancer based on radiomics and dosiomics. Front Oncol 2024; 14:1493926. [PMID: 39669364 PMCID: PMC11634748 DOI: 10.3389/fonc.2024.1493926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Objective The objective of this study is to develop a machine learning model integrating clinical characteristics with radiomics and dosiomics data, aiming to assess their predictive utility in anticipating grade 2 or higher BMS occurrences in cervical cancer patients undergoing radiotherapy. Methods A retrospective analysis was conducted on the clinical data, planning CT images, and radiotherapy planning documents of 106 cervical cancer patients who underwent radiotherapy at our hospital. The patients were randomly divided into training set and test set in an 8:2 ratio. The radiomic features and dosiomic features were extracted from the pelvic bone marrow (PBM) of planning CT images and radiotherapy planning documents, and the least absolute shrinkage and selection operator (LASSO) algorithm was employed to identify the best predictive characteristics. Subsequently, the dosiomic score (D-score) and the radiomic score (R-score) was calculated. Clinical predictors were identified through both univariate and multivariate logistic regression analysis. Predictive models were constructed by intergrating clinical predictors with DVH parameters, combining DVH parameters and R-score with clinical predictors, and amalgamating clinical predictors with both D-score and R-score. The predictive model's efficacy was assessed by plotting the receiver operating characteristic (ROC) curve and evaluating its performance through the area under the ROC curve (AUC), the calibration curve, and decision curve analysis (DCA). Results Seven radiomic features and eight dosiomic features exhibited a strong correlation with the occurrence of BMS. Through univariate and multivariate logistic regression analyses, age, planning target volume (PTV) size and chemotherapy were identified as clinical predictors. The AUC values for the training and test sets were 0.751 and 0.743, respectively, surpassing those of clinical DVH R-score model (AUC=0.707 and 0.679) and clinical DVH model (AUC=0.650 and 0.638). Furthermore, the analysis of both the calibration and the DCA suggested that the combined model provided superior calibration and demonstrated a higher net clinical benefit. Conclusion The combined model is of high diagnostic value in predicting the occurrence of BMS in patients with cervical cancer during radiotherapy.
Collapse
Affiliation(s)
- Yanchun Tang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaru Pang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyi Tang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peipei Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinkai Li
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Ma F, Shao X, Zhang Y, Li J, Li Q, Sun H, Wang T, Liu H, Zhao F, Chen L, Chen J, Zhou S, Ji Q, Yu P. An arterial spin labeling-based radiomics signature and machine learning for the prediction and detection of various stages of kidney damage due to diabetes. Front Endocrinol (Lausanne) 2024; 15:1333881. [PMID: 39624821 PMCID: PMC11608948 DOI: 10.3389/fendo.2024.1333881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/26/2024] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVE The aim of this study was to assess the predictive capabilities of a radiomics signature obtained from arterial spin labeling (ASL) imaging in forecasting and detecting stages of kidney damage in patients with diabetes mellitus (DM), as well as to analyze the correlation between texture feature parameters and biological clinical indicators. Additionally, this study seeks to identify the imaging risk factors associated with early renal injury in diabetic patients, with the ultimate goal of offering novel insights for predicting and diagnosing early renal injury and its progression in patients with DM. MATERIALS AND METHODS In total, 42 healthy volunteers (Group A); 68 individuals with diabetes (Group B) who exhibited microalbuminuria, defined by a urinary albumin-to-creatinine ratio (ACR)< 30 mg/g and an estimated glomerular filtration rate (eGFR) within the range of 60-120 mL/min/1.73m²; and 53 patients with diabetic nephropathy (Group C) were included in the study. ASL using magnetic resonance imaging (MRI) at 3.0T was conducted. The radiologist manually delineated regions of interest (ROIs) on the ASL maps of both the right and left kidney cortex. Texture features from the ROIs were extracted utilizing MaZda software. Feature selection was performed utilizing a range of methods, such as the Fisher coefficient, mutual information (MI), probability of classification error, and average correlation coefficient (POE + ACC). A radiomics model was developed to detect early diabetic renal injury, extract imaging risk factors associated with early diabetic renal injury, and examine the relationship between significant texture feature parameters and biological clinical indicators. Patients with DM and kidney injury were followed prospectively. The study utilized seven machine learning algorithms to develop a detective radiomics model and a comprehensive predictive model for assessing the progression of kidney damage in patients with DM. The diagnostic efficacy of the models in detecting variations in diabetic kidney damage over time was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. Empower (R) was used to establish a correlation between clinical biological indicators and texture feature metrics. Statistical analysis was conducted using R, Python, MedCalc 15.8, and GraphPad Prism 8. RESULTS A total of 367 texture features were extracted from the ROIs in the kidneys and refined based on selection criteria using MaZda software across groups A, B, and C. The renal blood flow (RBF) values of the renal cortex in groups A, B, and C exhibited a decreasing trend, with values of 256.458 ± 54.256 mL/100g/min, 213.846 ± 52.109 mL/100g/min, and 170.204 ± 34.992 mL/100g/min, respectively. There was a positive correlation between kidney RBF and eGFR (r = 0.439, P<0.001). The negative correlation between RBF and various clinical parameters including urinary albumin-to-creatinine ratio (UACR), body mass index (BMI), diastolic blood pressure (DBP), blood urea nitrogen (BUN), and serum creatinine (SCr) was investigated. Through the use of a least absolute shrinkage and selection operator (LASSO) regression model, the study identified the eight most significant texture features and biological indicators, namely GeoY, GeoRf, GeoRff, GeoRh, GeoW8, GeoW12, S (0, 4) Entropy, and S (5, -5) Entropy. Spearman correlation analysis revealed associations between imaging markers in early diabetic patients with kidney damage and factors such as age, systolic blood pressure (SBP), Alanine Transaminase (ALT), Aspartate Amino Transferase (AST) albumin, uric acid (UA), microalbuminuria (UMA), UACR, 24h urinary protein, fasting blood glucose (FBG), two hours postprandial blood glucose (P2BG), and HbA1c. The study utilized ASL imaging as a detection model to identify renal injury in patients with DM across different stages, achieving a sensitivity of 85.1%, specificity of 65.5%, and an AUC of 0.865. Additionally, a comprehensive prediction model combining imaging labels and biological indicators, with the naive Bayes machine learning algorithm as the best model, demonstrated an AUC of 0.734, accuracy of 0.74, and precision of 0.43. CONCLUSION ASL imaging sequences demonstrated the ability to accurately detect alterations in kidney function and blood flow in patients with DM. Strong associations were observed between renal blood flow values in ASL imaging and established clinical biomarkers. These values show promise in detecting early microstructural changes in the kidneys of diabetic patients. Utilizing image markers in conjunction with clinical indicators was effective in identifying early renal dysfunction and its progression in individuals with DM. Furthermore, the integration of imaging texture feature parameters with clinical biomarkers holds significant potential for predicting early renal damage and its progression in patients with diabetes.
Collapse
Affiliation(s)
- Feier Ma
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Xian Shao
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Yuling Zhang
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Jinlao Li
- Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin, China
| | - Qiuhong Li
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Haizhen Sun
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Tongdan Wang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Hongyan Liu
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Feiyu Zhao
- Respiratory and Critical Care Medicine Department, The Third Medical Center of the People's Liberation Army General Hospital, Beijing, China
| | - Lianqin Chen
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Jiamian Chen
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Saijun Zhou
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Qian Ji
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Pei Yu
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Li T, Gan T, Wang J, Long Y, Zhang K, Liao M. "Application of CT radiomics in brain metastasis of lung cancer: A systematic review and meta-analysis". Clin Imaging 2024; 114:110275. [PMID: 39243496 DOI: 10.1016/j.clinimag.2024.110275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE This study aimed to systematically assess the quality and performance of computed tomography (CT) radiomics studies in predicting brain metastasis (BM) among patients with lung cancer. METHODS The PubMed, Embase and Web of Science were searched for studies predicting BM in patients with lung cancer using CT-based radiomics features. Information regarding patients, imaging, and radiomics analysis was extracted from eligible studies. We assessed the quality of included studies using the Radiomics Quality Scoring (RQS) tool and the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). A meta-analysis of studies regarding the prediction of BM in patients with lung cancer was performed. RESULTS Thirteen studies were identified, with sample sizes ranging from 75 to 602. The mean RQS of the studies was 12 (range 9-16), and the corresponding percentage of the score was 33.55 % (range 25.00-44.44 %). Four studies (30.8 %) were considered as low risk of bias, while the remaining nine studies (69.2 %) were considered to have unclear risks. The meta-analysis included twelve studies. The pooled sensitivity, specificity and Area Under the Curve (AUC) value with 95 % confidence intervals were 0.75 [0.69, 0.80], 0.76 [0.68, 0.82], and 0.81 [0.77-0.84], respectively. CONCLUSION CT radiomics-based models show promising results as a non-invasive method to predict BM in lung cancer patients. However, multicenter and prospective studies are warranted to enhance the stability and acceptance of radiomics.
Collapse
Affiliation(s)
- Ting Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China; The Second School of Clinical Medicine, Wuhan University, Wuhan, China.
| | - Tian Gan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China; The Second School of Clinical Medicine, Wuhan University, Wuhan, China.
| | - Jingting Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China; The Second School of Clinical Medicine, Wuhan University, Wuhan, China.
| | - Yun Long
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China; The Second School of Clinical Medicine, Wuhan University, Wuhan, China.
| | - Kemeng Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China; The Second School of Clinical Medicine, Wuhan University, Wuhan, China.
| | - Meiyan Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China; The Second School of Clinical Medicine, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Zhao ZC, Liu JX, Sun LL. Preoperative perineural invasion in rectal cancer based on deep learning radiomics stacking nomogram: A retrospective study. Artif Intell Med Imaging 2024; 5:93993. [DOI: 10.35711/aimi.v5.i1.93993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND The presence of perineural invasion (PNI) in patients with rectal cancer (RC) is associated with significantly poorer outcomes. However, traditional diagnostic modalities have many limitations.
AIM To develop a deep learning radiomics stacking nomogram model to predict preoperative PNI status in patients with RC.
METHODS We recruited 303 RC patients and separated them into the training (n = 242) and test (n = 61) datasets on an 8: 2 scale. A substantial number of deep learning and hand-crafted radiomics features of primary tumors were extracted from the arterial and venous phases of computed tomography (CT) images. Four machine learning models were used to predict PNI status in RC patients: support vector machine, k-nearest neighbor, logistic regression, and multilayer perceptron. The stacking nomogram was created by combining optimal machine learning models for the arterial and venous phases with predicting clinical variables.
RESULTS With an area under the curve (AUC) of 0.964 [95% confidence interval (CI): 0.944-0.983] in the training dataset and an AUC of 0.955 (95%CI: 0.900-0.999) in the test dataset, the stacking nomogram demonstrated strong performance in predicting PNI status. In the training dataset, the AUC of the stacking nomogram was greater than that of the arterial support vector machine (ASVM), venous SVM, and CT-T stage models (P < 0.05). Although the AUC of the stacking nomogram was greater than that of the ASVM in the test dataset, the difference was not particularly noticeable (P = 0.05137).
CONCLUSION The developed deep learning radiomics stacking nomogram was effective in predicting preoperative PNI status in RC patients.
Collapse
Affiliation(s)
- Zhi-Chun Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Jia-Xuan Liu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Ling-Ling Sun
- Department of Radiology, The fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
16
|
Hou L, Chen K, Zhou C, Tang X, Yu C, Jia H, Xu Q, Zhou S, Yang H. CT-based different regions of interest radiomics analysis for acute radiation pneumonitis in patients with locally advanced NSCLC after chemoradiotherapy. Clin Transl Radiat Oncol 2024; 48:100828. [PMID: 39189001 PMCID: PMC11345682 DOI: 10.1016/j.ctro.2024.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose To establish a radiomics model using radiomics features from different region of interests (ROI) based on dosimetry-related regions in enhanced computed tomography (CT) simulated images to predict radiation pneumonitis (RP) in patients with non-small cell lung cancer (NSCLC). Methods Our retrospective study was conducted based on a cohort of 236 NSCLC patients (59 of them with RP≥2) who were treated in 2 institutions and divided into the primary cohort (n = 182,46 of them with RP≥2) and external validation cohort (n = 54,13 of them with RP≥2). Radiomic features extracted from three ROIs were defined as the whole lung (WL), the dose volume histogram (DVH) of the lung V20 (V20_Lung) and the DVH of the V30 of lung minus the planning target volume (PTV) (V30 Lung-PTV). A total of 107 radiomics features were extracted from each ROIs. The U test, correlation coefficient and least absolute shrinkage and selection operator (LASSO) were performed for features selection. Six models based on different classification algorithms were developed to select the best radiomics model (R model).In addition, we built a dosimetry model then combined it with the best R model to create a mixed model (R+D model) The receiver operating characteristic (ROC) curve was delineated to assess the predictive efficacy of the models. Decision curve analysis could benefit from the model proposals through the assessment of clinical utility. Results Among the three ROIs, the best R model constructed from the LightGBM algorithm demonstrated the strongest discriminative ability in the ROI of V30 Lung-PTV. The corresponding area under the curve (AUC) value was 0.930 (95 % confidence interval (CI): 0.829-0.941). The D model, R model and R+D model achieved AUC values of 0.798 (95 %CI: 0.732-0.865), 0.930 (95 %CI: 0.829-0.941) and 0.940 (95 %CI: 0.906-0.974) in primary cohort, and in external validation cohort, the AUC values were 0.793 (95 %CI:0.637-0.949), 0.887 (95 %CI:0.810-0.993), 0.951 (95CI%:0.891-1.000). Decision curve demonstrate that R+D model could benefit for patients through the assessment of clinical utility. Conclusion The radiomics model was able to predict the acute RP more effectively in comparison with the traditional dosimetry model. Especially the radiomics model based on the V30 Lung-PTV region was able to achieve a higher accuracy when compared to the other regions.
Collapse
Affiliation(s)
- Liqiao Hou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy , Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, NO.150 Ximen Street, Linhai, Taizhou City, 317000, Zhejiang Province, China
| | - Kuifei Chen
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy , Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, NO.150 Ximen Street, Linhai, Taizhou City, 317000, Zhejiang Province, China
| | - Chao Zhou
- Department of Radiation Oncology, Enze Hospital Affiliated Hospital of Hangzhou Medical College, Zhejiang Province 317000, China
| | - Xingni Tang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy , Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, NO.150 Ximen Street, Linhai, Taizhou City, 317000, Zhejiang Province, China
| | - Changhui Yu
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy , Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, NO.150 Ximen Street, Linhai, Taizhou City, 317000, Zhejiang Province, China
| | - Haijian Jia
- Department of Radiation Oncology, Enze Hospital Affiliated Hospital of Hangzhou Medical College, Zhejiang Province 317000, China
| | - Qianyi Xu
- Department of Radiation Oncology, Thomas Jefferson Health System, 8081 Innovation Park Dr., Fairfax, VA, 22003, USA
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy , Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, NO.150 Ximen Street, Linhai, Taizhou City, 317000, Zhejiang Province, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy , Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, NO.150 Ximen Street, Linhai, Taizhou City, 317000, Zhejiang Province, China
| |
Collapse
|
17
|
Zhang R, Zhu H, Chen M, Sang W, Lu K, Li Z, Wang C, Zhang L, Yin FF, Yang Z. A dual-radiomics model for overall survival prediction in early-stage NSCLC patient using pre-treatment CT images. Front Oncol 2024; 14:1419621. [PMID: 39206157 PMCID: PMC11349529 DOI: 10.3389/fonc.2024.1419621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Radiation therapy (RT) is one of the primary treatment options for early-stage non-small cell lung cancer (ES-NSCLC). Therefore, accurately predicting the overall survival (OS) rate following radiotherapy is crucial for implementing personalized treatment strategies. This work aims to develop a dual-radiomics (DR) model to (1) predict 3-year OS in ES-NSCLC patients receiving RT using pre-treatment CT images, and (2) provide explanations between feature importanceand model prediction performance. Methods The publicly available TCIA Lung1 dataset with 132 ES-NSCLC patients received RT were studied: 89/43 patients in the under/over 3-year OS group. For each patient, two types of radiomic features were examined: 56 handcrafted radiomic features (HRFs) extracted within gross tumor volume, and 512 image deep features (IDFs) extracted using a pre-trained U-Net encoder. They were combined as inputs to an explainable boosting machine (EBM) model for OS prediction. The EBM's mean absolute scores for HRFs and IDFs were used as feature importance explanations. To evaluate identified feature importance, the DR model was compared with EBM using either (1) key or (2) non-key feature type only. Comparison studies with other models, including supporting vector machine (SVM) and random forest (RF), were also included. The performance was evaluated by the area under the receiver operating characteristic curve (AUCROC), accuracy, sensitivity, and specificity with a 100-fold Monte Carlo cross-validation. Results The DR model showed highestperformance in predicting 3-year OS (AUCROC=0.81 ± 0.04), and EBM scores suggested that IDFs showed significantly greater importance (normalized mean score=0.0019) than HRFs (score=0.0008). The comparison studies showed that EBM with key feature type (IDFs-only demonstrated comparable AUCROC results (0.81 ± 0.04), while EBM with non-key feature type (HRFs-only) showed limited AUCROC (0.64 ± 0.10). The results suggested that feature importance score identified by EBM is highly correlated with OS prediction performance. Both SVM and RF models were unable to explain key feature type while showing limited overall AUCROC=0.66 ± 0.07 and 0.77 ± 0.06, respectively. Accuracy, sensitivity, and specificity showed a similar trend. Discussion In conclusion, a DR model was successfully developed to predict ES-NSCLC OS based on pre-treatment CT images. The results suggested that the feature importance from DR model is highly correlated to the model prediction power.
Collapse
Affiliation(s)
- Rihui Zhang
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Haiming Zhu
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Minbin Chen
- Department of Radiotherapy & Oncology, The First People’s Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Weiwei Sang
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ke Lu
- Deparment of Radiation Oncology, Duke University, Durham, NC, United States
| | - Zhen Li
- Radiation Oncology Department, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Chunhao Wang
- Deparment of Radiation Oncology, Duke University, Durham, NC, United States
| | - Lei Zhang
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Zhenyu Yang
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
18
|
Lauer D, Magnin CY, Kolly LR, Wang H, Brunner M, Chabria M, Cereghetti GM, Gabryś HS, Tanadini-Lang S, Uldry AC, Heller M, Verleden SE, Klein K, Sarbu AC, Funke-Chambour M, Ebner L, Distler O, Maurer B, Gote-Schniering J. Radioproteomics stratifies molecular response to antifibrotic treatment in pulmonary fibrosis. JCI Insight 2024; 9:e181757. [PMID: 39012714 PMCID: PMC11383602 DOI: 10.1172/jci.insight.181757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
Antifibrotic therapy with nintedanib is the clinical mainstay in the treatment of progressive fibrosing interstitial lung disease (ILD). High-dimensional medical image analysis, known as radiomics, provides quantitative insights into organ-scale pathophysiology, generating digital disease fingerprints. Here, we performed an integrative analysis of radiomic and proteomic profiles (radioproteomics) to assess whether changes in radiomic signatures can stratify the degree of antifibrotic response to nintedanib in (experimental) fibrosing ILD. Unsupervised clustering of delta radiomic profiles revealed 2 distinct imaging phenotypes in mice treated with nintedanib, contrary to conventional densitometry readouts, which showed a more uniform response. Integrative analysis of delta radiomics and proteomics demonstrated that these phenotypes reflected different treatment response states, as further evidenced on transcriptional and cellular levels. Importantly, radioproteomics signatures paralleled disease- and drug-related biological pathway activity with high specificity, including extracellular matrix (ECM) remodeling, cell cycle activity, wound healing, and metabolic activity. Evaluation of the preclinical molecular response-defining features, particularly those linked to ECM remodeling, in a cohort of nintedanib-treated fibrosing patients with ILD, accurately stratified patients based on their extent of lung function decline. In conclusion, delta radiomics has great potential to serve as a noninvasive and readily accessible surrogate of molecular response phenotypes in fibrosing ILD. This could pave the way for personalized treatment strategies and improved patient outcomes.
Collapse
Affiliation(s)
- David Lauer
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cheryl Y Magnin
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Luca R Kolly
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Huijuan Wang
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Matthias Brunner
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mamta Chabria
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Grazia M Cereghetti
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hubert S Gabryś
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility (PMSCF), DBMR, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility (PMSCF), DBMR, University of Bern, Bern, Switzerland
| | - Stijn E Verleden
- Department of ASTARC, University of Antwerp, Antwerp, Wilrijk, Belgium
| | - Kerstin Klein
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Adela-Cristina Sarbu
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
| | - Manuela Funke-Chambour
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lukas Ebner
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Radiology, Cantonal Hospital Lucerne, Luzern, Switzerland
- Institute for Radiology, Hirslanden Bern Klinik Beau-Site, Bern, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Britta Maurer
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Janine Gote-Schniering
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
García-Figueiras R, Oleaga L, Broncano J, Tardáguila G, Fernández-Pérez G, Vañó E, Santos-Armentia E, Méndez R, Luna A, Baleato-González S. What to Expect (and What Not) from Dual-Energy CT Imaging Now and in the Future? J Imaging 2024; 10:154. [PMID: 39057725 PMCID: PMC11278514 DOI: 10.3390/jimaging10070154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Dual-energy CT (DECT) imaging has broadened the potential of CT imaging by offering multiple postprocessing datasets with a single acquisition at more than one energy level. DECT shows profound capabilities to improve diagnosis based on its superior material differentiation and its quantitative value. However, the potential of dual-energy imaging remains relatively untapped, possibly due to its intricate workflow and the intrinsic technical limitations of DECT. Knowing the clinical advantages of dual-energy imaging and recognizing its limitations and pitfalls is necessary for an appropriate clinical use. The aims of this paper are to review the physical and technical bases of DECT acquisition and analysis, to discuss the advantages and limitations of DECT in different clinical scenarios, to review the technical constraints in material labeling and quantification, and to evaluate the cutting-edge applications of DECT imaging, including artificial intelligence, qualitative and quantitative imaging biomarkers, and DECT-derived radiomics and radiogenomics.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- Department of Radiology, Hospital Clínico Universitario de Santiago, Choupana, 15706 Santiago de Compostela, Spain
| | - Laura Oleaga
- Department of Radiology, Hospital Clinic, C. de Villarroel, 170, 08036 Barcelona, Spain
| | | | - Gonzalo Tardáguila
- Department of Radiology, Hospital Ribera Povisa, Rúa de Salamanca, 5, Vigo, 36211 Pontevedra, Spain
| | | | - Eliseo Vañó
- Department of Radiology, Hospital Universitario Nuestra Señora, del Rosario, C. del Príncipe de Vergara, 53, 28006 Madrid, Spain
| | - Eloísa Santos-Armentia
- Department of Radiology, Hospital Ribera Povisa, Rúa de Salamanca, 5, Vigo, 36211 Pontevedra, Spain
| | - Ramiro Méndez
- Department of Radiology, Hospital Universitario Nuestra Señora, del Rosario, C. del Príncipe de Vergara, 53, 28006 Madrid, Spain
- Department of Radiology, Hospital Universitario Clínico San Carlos, Calle del Prof Martín Lagos, 28040 Madrid, Spain
| | | | - Sandra Baleato-González
- Department of Radiology, Hospital Clínico Universitario de Santiago, Choupana, 15706 Santiago de Compostela, Spain
| |
Collapse
|
20
|
Kocak B, Borgheresi A, Ponsiglione A, Andreychenko AE, Cavallo AU, Stanzione A, Doniselli FM, Vernuccio F, Triantafyllou M, Cannella R, Trotta R, Ghezzo S, Akinci D'Antonoli T, Cuocolo R. Explanation and Elaboration with Examples for CLEAR (CLEAR-E3): an EuSoMII Radiomics Auditing Group Initiative. Eur Radiol Exp 2024; 8:72. [PMID: 38740707 PMCID: PMC11091004 DOI: 10.1186/s41747-024-00471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Overall quality of radiomics research has been reported as low in literature, which constitutes a major challenge to improve. Consistent, transparent, and accurate reporting is critical, which can be accomplished with systematic use of reporting guidelines. The CheckList for EvaluAtion of Radiomics research (CLEAR) was previously developed to assist authors in reporting their radiomic research and to assist reviewers in their evaluation. To take full advantage of CLEAR, further explanation and elaboration of each item, as well as literature examples, may be useful. The main goal of this work, Explanation and Elaboration with Examples for CLEAR (CLEAR-E3), is to improve CLEAR's usability and dissemination. In this international collaborative effort, members of the European Society of Medical Imaging Informatics-Radiomics Auditing Group searched radiomics literature to identify representative reporting examples for each CLEAR item. At least two examples, demonstrating optimal reporting, were presented for each item. All examples were selected from open-access articles, allowing users to easily consult the corresponding full-text articles. In addition to these, each CLEAR item's explanation was further expanded and elaborated. For easier access, the resulting document is available at https://radiomic.github.io/CLEAR-E3/ . As a complementary effort to CLEAR, we anticipate that this initiative will assist authors in reporting their radiomics research with greater ease and transparency, as well as editors and reviewers in reviewing manuscripts.Relevance statement Along with the original CLEAR checklist, CLEAR-E3 is expected to provide a more in-depth understanding of the CLEAR items, as well as concrete examples for reporting and evaluating radiomic research.Key points• As a complementary effort to CLEAR, this international collaborative effort aims to assist authors in reporting their radiomics research, as well as editors and reviewers in reviewing radiomics manuscripts.• Based on positive examples from the literature selected by the EuSoMII Radiomics Auditing Group, each CLEAR item explanation was further elaborated in CLEAR-E3.• The resulting explanation and elaboration document with examples can be accessed at https://radiomic.github.io/CLEAR-E3/ .
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey.
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona, Italy
- Department of Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Via Conca 71, 60126, Ancona, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Anna E Andreychenko
- Laboratory for Digital Public Health Technologies, ITMO University, St. Petersburg, Russian Federation
| | - Armando Ugo Cavallo
- Division of Radiology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Fabio M Doniselli
- Neuroradiology Unit, Fondazione Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milano, Italy
| | - Federica Vernuccio
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D), University of Palermo, 90127, Palermo, Italy
| | - Matthaios Triantafyllou
- Department of Medical Imaging, University Hospital of Heraklion, 71110, Crete, Voutes, Greece
| | - Roberto Cannella
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Romina Trotta
- Department of Radiology - Fatima Hospital, Seville, Spain
| | | | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
21
|
Li J, Zhang J, Wang F, Ma J, Cui S, Ye Z. CT-Based Radiomics for the Preoperative Prediction of Occult Peritoneal Metastasis in Epithelial Ovarian Cancers. Acad Radiol 2024; 31:1918-1930. [PMID: 38072725 DOI: 10.1016/j.acra.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 05/12/2024]
Abstract
RATIONALE AND OBJECTIVES The objective of this study was to develop a comprehensive combined model for predicting occult peritoneal metastasis (OPM) in epithelial ovarian cancers (EOCs) using radiomics features derived from computed tomography (CT) and clinical-radiological predictors. MATERIALS AND METHODS A total of 224 patients with EOCs were randomly divided into training dataset (N = 156) and test dataset (N = 86). Five clinical factors and seven radiological features were collected. The radiomics features were extracted from CT images of each patient. Multivariate logistic regression was employed to construct clinical and radiological models. The correlation analysis and least absolute shrinkage and selection operator algorithm were used to select radiomics features and build radiomics model. The important clinical, radiological factors, and radiomics features were integrated into a combined model by multivariate logistic regression. Receiver operating characteristics curve with area under the curve (AUC) were used to evaluate and compare predictive performance. RESULTS Carbohydrate antigen 125 (CA-125) and human epididymal protein 4 (HE-4) were independent clinical predictors. Laterality, thickened septa and margin were independent radiological predictors. In the training dataset, the AUCs for the clinical, radiological and radiomics models in evaluating OPM were 0.759, 0.819, and 0.830, respectively. In the test dataset, the AUCs for these models were 0.846, 0.835, and 0.779, respectively. The combined model outperformed other models in both the training and the test datasets with AUCs of 0.901 and 0.912, respectively. Decision curve analysis indicated that the combined model yielded a higher net benefit compared to the other models. CONCLUSION The combined model, integrating radiomics features with clinical and radiological predictors exhibited improved accuracy in predicting OPM in EOCs.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Radiology, First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China (J.L., S.C.); Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China (J.L., J.Z., F.W., J.M., Z.Y.)
| | - Jianing Zhang
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China (J.L., J.Z., F.W., J.M., Z.Y.)
| | - Fang Wang
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China (J.L., J.Z., F.W., J.M., Z.Y.)
| | - Juanwei Ma
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China (J.L., J.Z., F.W., J.M., Z.Y.)
| | - Shujun Cui
- Department of Radiology, First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China (J.L., S.C.)
| | - Zhaoxiang Ye
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China (J.L., J.Z., F.W., J.M., Z.Y.).
| |
Collapse
|
22
|
Xiao L, Zhao H, Liu S, Dong W, Gao Y, Wang L, Huang B, Li Z. Staging liver fibrosis: comparison of radiomics model and fusion model based on multiparametric MRI in patients with chronic liver disease. Abdom Radiol (NY) 2024; 49:1165-1174. [PMID: 38219254 DOI: 10.1007/s00261-023-04142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVES To develop and compare radiomics model and fusion model based on multiple MR parameters for staging liver fibrosis in patients with chronic liver disease. MATERIALS AND METHODS Patients with chronic liver disease who underwent multiparametric abdominal MRI were included in this retrospective study. Multiparametric MR images were imported into 3D-Slicer software for drawing bounding boxes on MR images. By using a 3D-Slicer extension of SlicerRadiomics, radiomics features were extracted from these MR images. The z-score normalization method was used for post-processing radiomics features. The least absolute shrinkage and selection operator method (LASSO) was performed for selecting significant radiomics features. The logistic regression analysis was used for building the radiomics model. A fusion model was built by integrating serum fibrosis biomarkers of aspartate transaminase-to-platelet ratio index (APRI) and the fibrosis-4 index (FIB-4) with radiomics signatures. RESULTS In the training cohort, AUCs of radiomics and fusion model were 0.707-0.842 and 0.718-0.854 for differentiating different groups. In the testing cohort, AUCs were 0.514-0.724 and 0.609-0.728. For the training cohort, there was no significant difference of AUCs between radiomics and fusion model (p > 0.05). For the testing cohort, AUCs of fusion model were higher than those of radiomics model in differentiating F1-3 vs. F4 and F1-2 vs. F4 (p = 0.011 & 0.042). CONCLUSIONS Radiomics model and fusion model based on multiparametric MRI exhibited the feasibility for staging liver fibrosis in patients with CLD, and APRI and FIB-4 could improve the diagnostic performance of radiomics model in differentiating F1-3 vs. F4 and F1-2 vs. F4.
Collapse
Affiliation(s)
- Longyang Xiao
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Haichen Zhao
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Shunli Liu
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Wenlu Dong
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Yuanxiang Gao
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Lili Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baoxiang Huang
- College of Computer Science and Technology of Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
| | - Zhiming Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China.
| |
Collapse
|
23
|
Riley BA, Stevens JB, Li X, Yang Z, Wang C, Mowery YM, Brizel DM, Yin FF, Lafata KJ. Prognostic value of different discretization parameters in 18fluorodeoxyglucose positron emission tomography radiomics of oropharyngeal squamous cell carcinoma. J Med Imaging (Bellingham) 2024; 11:024007. [PMID: 38549835 PMCID: PMC10966359 DOI: 10.1117/1.jmi.11.2.024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose We aim to interrogate the role of positron emission tomography (PET) image discretization parameters on the prognostic value of radiomic features in patients with oropharyngeal cancer. Approach A prospective clinical trial (NCT01908504) enrolled patients with oropharyngeal squamous cell carcinoma (N = 69 ; mixed HPV status) undergoing definitive radiotherapy and evaluated intra-treatment 18fluorodeoxyglucose PET as a potential imaging biomarker of early metabolic response. The primary tumor volume was manually segmented by a radiation oncologist on PET/CT images acquired two weeks into treatment (20 Gy). From this, 54 radiomic texture features were extracted. Two image discretization techniques-fixed bin number (FBN) and fixed bin size (FBS)-were considered to evaluate systematic changes in the bin number ({32, 64, 128, 256} gray levels) and bin size ({0.10, 0.15, 0.22, 0.25} bin-widths). For each discretization-specific radiomic feature space, an LASSO-regularized logistic regression model was independently trained to predict residual and/or recurrent disease. The model training was based on Monte Carlo cross-validation with a 20% testing hold-out, 50 permutations, and minor-class up-sampling to account for imbalanced outcomes data. Performance differences among the discretization-specific models were quantified via receiver operating characteristic curve analysis. A final parameter-optimized logistic regression model was developed by incorporating different settings parameterizations into the same model. Results FBN outperformed FBS in predicting residual and/or recurrent disease. The four FBN models achieved AUC values of 0.63, 0.61, 0.65, and 0.62 for 32, 64, 128, and 256 gray levels, respectively. By contrast, the average AUC of the four FBS models was 0.53. The parameter-optimized model, comprising features joint entropy (FBN = 64) and information measure correlation 1 (FBN = 128), achieved an AUC of 0.70. Kaplan-Meier analyses identified these features to be associated with disease-free survival (p = 0.0158 and p = 0.0180 , respectively; log-rank test). Conclusions Our findings suggest that the prognostic value of individual radiomic features may depend on feature-specific discretization parameter settings.
Collapse
Affiliation(s)
- Breylon A. Riley
- Duke University, Medical Physics Graduate Program, Durham, North Carolina, United States
- Duke University, Department of Radiation Oncology, Durham, North Carolina, United States
| | - Jack B. Stevens
- Duke University, Medical Physics Graduate Program, Durham, North Carolina, United States
- Duke University, Department of Radiation Oncology, Durham, North Carolina, United States
| | - Xiang Li
- Duke University Pratt School of Engineering, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
| | - Zhenyu Yang
- Duke University, Medical Physics Graduate Program, Durham, North Carolina, United States
- Duke University, Department of Radiation Oncology, Durham, North Carolina, United States
| | - Chunhao Wang
- Duke University, Medical Physics Graduate Program, Durham, North Carolina, United States
- Duke University, Department of Radiation Oncology, Durham, North Carolina, United States
| | - Yvonne M. Mowery
- Duke University, Department of Radiation Oncology, Durham, North Carolina, United States
- University of Pittsburgh, UPMC Hillman Cancer Center, Department of Radiation Oncology, Pittsburgh, North Carolina, United States
| | - David M. Brizel
- Duke University, Department of Radiation Oncology, Durham, North Carolina, United States
- Duke University School of Medicine, Department of Head and Neck Surgery and Communication Sciences, Durham, North Carolina, United States
| | - Fang-Fang Yin
- Duke University, Medical Physics Graduate Program, Durham, North Carolina, United States
- Duke University, Department of Radiation Oncology, Durham, North Carolina, United States
| | - Kyle J. Lafata
- Duke University, Medical Physics Graduate Program, Durham, North Carolina, United States
- Duke University, Department of Radiation Oncology, Durham, North Carolina, United States
- Duke University Pratt School of Engineering, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Radiology, Durham, North Carolina, United States
| |
Collapse
|
24
|
Fang F, Sun Y, Huang H, Huang Y, Luo X, Yao W, Wei L, Xie G, Wu Y, Lu Z, Zhao J, Li C. Ultrasound-based deep learning radiomics nomogram for risk stratification of testicular masses: a two-center study. J Cancer Res Clin Oncol 2024; 150:18. [PMID: 38240867 PMCID: PMC10798931 DOI: 10.1007/s00432-023-05549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 01/22/2024]
Abstract
OBJECTIVE To develop an ultrasound-driven clinical deep learning radiomics (CDLR) model for stratifying the risk of testicular masses, aiming to guide individualized treatment and minimize unnecessary procedures. METHODS We retrospectively analyzed 275 patients with confirmed testicular lesions (January 2018 to April 2023) from two hospitals, split into training (158 cases), validation (68 cases), and external test cohorts (49 cases). Radiomics and deep learning (DL) features were extracted from preoperative ultrasound images. Following feature selection, we utilized logistic regression (LR) to establish a deep learning radiomics (DLR) model and subsequently derived its signature. Clinical data underwent univariate and multivariate LR analyses, forming the "clinic signature." By integrating the DLR and clinic signatures using multivariable LR, we formulated the CDLR nomogram for testicular mass risk stratification. The model's efficacy was gauged using the area under the receiver operating characteristic curve (AUC), while its clinical utility was appraised with decision curve analysis(DCA). Additionally, we compared these models with two radiologists' assessments (5-8 years of practice). RESULTS The CDLR nomogram showcased exceptional precision in distinguishing testicular tumors from non-tumorous lesions, registering AUCs of 0.909 (internal validation) and 0.835 (external validation). It also excelled in discerning malignant from benign testicular masses, posting AUCs of 0.851 (internal validation) and 0.834 (external validation). Notably, CDLR surpassed the clinical model, standalone DLR, and the evaluations of the two radiologists. CONCLUSION The CDLR nomogram offers a reliable tool for differentiating risks associated with testicular masses. It augments radiological diagnoses, facilitates personalized treatment approaches, and curtails unwarranted medical procedures.
Collapse
Affiliation(s)
- Fuxiang Fang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Yan Sun
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Hualin Huang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yueting Huang
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, 530021, China
| | - Xing Luo
- Department of Urology, Baise People's Hospital, Baise, 533099, China
| | - Wei Yao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Liyan Wei
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Guiwu Xie
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Yongxian Wu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Zheng Lu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Jiawen Zhao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China.
| | - Chengyang Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
25
|
Kang J, Lafata K, Kim E, Yao C, Lin F, Rattay T, Nori H, Katsoulakis E, Lee CI. Artificial intelligence across oncology specialties: current applications and emerging tools. BMJ ONCOLOGY 2024; 3:e000134. [PMID: 39886165 PMCID: PMC11203066 DOI: 10.1136/bmjonc-2023-000134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2025]
Abstract
Oncology is becoming increasingly personalised through advancements in precision in diagnostics and therapeutics, with more and more data available on both ends to create individualised plans. The depth and breadth of data are outpacing our natural ability to interpret it. Artificial intelligence (AI) provides a solution to ingest and digest this data deluge to improve detection, prediction and skill development. In this review, we provide multidisciplinary perspectives on oncology applications touched by AI-imaging, pathology, patient triage, radiotherapy, genomics-driven therapy and surgery-and integration with existing tools-natural language processing, digital twins and clinical informatics.
Collapse
Affiliation(s)
- John Kang
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Kyle Lafata
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Ellen Kim
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Christopher Yao
- Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Frank Lin
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Tim Rattay
- Department of Genetics and Genome Biology, University of Leicester Cancer Research Centre, Leicester, UK
| | - Harsha Nori
- Microsoft Research, Redmond, Washington, USA
| | - Evangelia Katsoulakis
- Department of Radiation Oncology, University of South Florida, Tampa, Florida, USA
- Veterans Affairs Informatics and Computing Infrastructure, Salt Lake City, Utah, USA
| | | |
Collapse
|
26
|
Lafata KJ, Read C, Tong BC, Akinyemiju T, Wang C, Cerullo M, Tailor TD. Lung Cancer Screening in Clinical Practice: A 5-Year Review of Frequency and Predictors of Lung Cancer in the Screened Population. J Am Coll Radiol 2023:S1546-1440(23)00861-X. [PMID: 37952807 DOI: 10.1016/j.jacr.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE The aims of this study were to evaluate (1) frequency, type, and lung cancer stage in a clinical lung cancer screening (LCS) population and (2) the association between patient characteristics and Lung CT Screening Reporting & Data System (Lung-RADS®) with lung cancer diagnosis. METHODS This retrospective study enrolled individuals undergoing LCS between January 1, 2015, and June 30, 2020. Individuals' sociodemographic characteristics, Lung-RADS scores, pathology-proven lung cancers, and tumor characteristics were determined via electronic health record and the health system's tumor registry. Associations between the outcome of lung cancer diagnosis within 1 year after LCS and covariates of sociodemographic characteristics and Lung-RADS score were determined using logistic regression. RESULTS Of 3,326 individuals undergoing 5,150 LCS examinations, 102 (3.1%) were diagnosed with lung cancer within 1 year of LCS; most of these cancers were screen detected (97 of 102 [95.1%]). Over the study period, there were 118 total LCS-detected cancers in 113 individuals (3.4%). Most LCS-detected cancers were adenocarcinomas (62 of 118 [52%]), 55.9% (65 of 118) were stage I, and 16.1% (19 of 118) were stage IV. The sensitivity, specificity, positive predictive value, and negative predictive value of Lung-RADS in diagnosing lung cancer within 1 year of LCS were 93.1%, 83.8%, 10.6%, and 99.8%, respectively. On multivariable analysis controlling for sociodemographic characteristics, only Lung-RADS score was associated with lung cancer (odds ratio for a one-unit increase in Lung-RADS score, 4.68; 95% confidence interval, 3.87-5.78). CONCLUSIONS The frequency of LCS-detected lung cancer and stage IV cancers was higher than reported in the National Lung Screening Trial. Although Lung-RADS was a significant predictor of lung cancer, the positive predictive value of Lung-RADS is relatively low, implying opportunity for improved nodule classification.
Collapse
Affiliation(s)
- Kyle J Lafata
- Department of Radiology, Duke University Medical Center, Durham, North Carolina; Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina; Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina; Department of Medical Physics Graduate Program, Duke University, Durham, North Carolina
| | - Charlotte Read
- Department of Medical Physics Graduate Program, Duke University, Durham, North Carolina
| | - Betty C Tong
- Department of Surgery, Duke University Medical Center, Durham, North Carolina; Duke Cancer Institute, Durham, North Carolina; Clinical Director, Duke Lung Cancer Screening Program
| | - Tomi Akinyemiju
- Vice Chair, Diversity and Inclusion, Department of Population Health Sciences, Duke University Medical Center, Durham, North Carolina; Associate Director, Community Outreach, Engagement, and Equity, Duke Cancer Institute, Durham, North Carolina
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Marcelo Cerullo
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Tina D Tailor
- Department of Radiology, Duke University Medical Center, Durham, North Carolina; Research Director, Duke Lung Cancer Screening Program, and Cardiothoracic Radiology Fellowship Director.
| |
Collapse
|
27
|
Granata V, Fusco R, De Muzio F, Brunese MC, Setola SV, Ottaiano A, Cardone C, Avallone A, Patrone R, Pradella S, Miele V, Tatangelo F, Cutolo C, Maggialetti N, Caruso D, Izzo F, Petrillo A. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. LA RADIOLOGIA MEDICA 2023; 128:1310-1332. [PMID: 37697033 DOI: 10.1007/s11547-023-01710-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE The aim of this study was the evaluation radiomics analysis efficacy performed using computed tomography (CT) and magnetic resonance imaging in the prediction of colorectal liver metastases patterns linked to patient prognosis: tumor growth front; grade; tumor budding; mucinous type. Moreover, the prediction of liver recurrence was also evaluated. METHODS The retrospective study included an internal and validation dataset; the first was composed by 119 liver metastases from 49 patients while the second consisted to 28 patients with single lesion. Radiomic features were extracted using PyRadiomics. Univariate and multivariate approaches including machine learning algorithms were employed. RESULTS The best predictor to identify tumor growth was the Wavelet_HLH_glcm_MaximumProbability with an accuracy of 84% and to detect recurrence the best predictor was wavelet_HLH_ngtdm_Complexity with an accuracy of 90%, both extracted by T1-weigthed arterial phase sequence. The best predictor to detect tumor budding was the wavelet_LLH_glcm_Imc1 with an accuracy of 88% and to identify mucinous type was wavelet_LLH_glcm_JointEntropy with an accuracy of 92%, both calculated on T2-weigthed sequence. An increase statistically significant of accuracy (90%) was obtained using a linear weighted combination of 15 predictors extracted by T2-weigthed images to detect tumor front growth. An increase statistically significant of accuracy at 93% was obtained using a linear weighted combination of 11 predictors by the T1-weigthed arterial phase sequence to classify tumor budding. An increase statistically significant of accuracy at 97% was obtained using a linear weighted combination of 16 predictors extracted on CT to detect recurrence. An increase statistically significant of accuracy was obtained in the tumor budding identification considering a K-nearest neighbors and the 11 significant features extracted T1-weigthed arterial phase sequence. CONCLUSIONS The results confirmed the Radiomics capacity to recognize clinical and histopathological prognostic features that should influence the choice of treatments in colorectal liver metastases patients to obtain a more personalized therapy.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy.
| | | | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Alessandro Ottaiano
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Claudia Cardone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonio Avallone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Renato Patrone
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Fabiana Tatangelo
- Division of Pathological Anatomy and Cytopathology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084, Salerno, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Radiology Unit-Sant'Andrea University Hospital, Sapienza-University of Rome, 00189, Rome, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
28
|
Tailor TD, Bell S, Carlos RC. The Impact of Downstream Procedures on Lung Cancer Screening Adherence. J Am Coll Radiol 2023; 20:969-978. [PMID: 37586471 DOI: 10.1016/j.jacr.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE (1) Evaluate downstream procedures after lung cancer screening (LCS), including imaging and invasive procedures, in screened individuals without screen-detected lung cancer. (2) Determine the association between repeat LCS and downstream procedures and patient characteristics. METHODS Individuals receiving LCS between January 1, 2015, and November 30, 2020, from Optum's deidentified Clinformatics Data Mart Database were included. Individuals with lung cancer after LCS were excluded. We determined frequency and costs of downstream procedures after LCS, including diagnostic imaging (chest CT, PET, or CT using fluorine-18-2-fluoro-2-deoxy-D-glucose imaging) and invasive procedures (bronchoscopy, needle biopsy, thoracic surgery). A generalized estimating equation was used to model repeat LCS as a function of downstream procedures and patient characteristics. The primary outcome was repeat screening within 1 year of index LCS, and a secondary analysis evaluated the outcome of repeat screening with 2 years of index LCS. RESULTS In all, 23,640 individuals receiving 30,521 LCS examinations were included in the primary analysis; 17.7% of LCS examinations (5,414 of 30,521) prompted downstream testing, with chest CT within 4 months being most common (9.1%, 2,769 of 30,521). At multivariable analysis adjusted for patient characteristics, the occurrence of a downstream diagnostic imaging test or invasive procedure was associated with a decreased likelihood of repeat annual LCS (adjusted odds ratio, 95% confidence interval: 0.38, 0.34-0.44; adjusted odds ratio, 95% confidence interval: 0.75, 0.63-0.90, respectively). DISCUSSION Downstream imaging and invasive procedures after LCS are potential barriers to LCS adherence. Efforts to reduce false-positives at LCS and reduce patient costs from downstream procedures are likely necessary to ensure that downstream workup after LCS does not discourage screening adherence.
Collapse
Affiliation(s)
- Tina D Tailor
- Cardiothoracic Radiology Fellowship Director; Research Director, Duke Lung Cancer Screening Program; and Associate Professor, Department of Radiology, Duke University Medical Center, Durham, North Carolina.
| | - Sarah Bell
- Department of Obstetrics and Gynecology, University of Michigan Health, Ann Arbor, Michigan
| | - Ruth C Carlos
- Department of Radiology, University of Michigan Health, Ann Arbor, Michigan; Editor-in-Chief for JACR
| |
Collapse
|
29
|
Kocak B, Yuzkan S, Mutlu S, Bulut E, Kavukoglu I. Publications poorly report the essential RadiOmics ParametERs (PROPER): A meta-research on quality of reporting. Eur J Radiol 2023; 167:111088. [PMID: 37713968 DOI: 10.1016/j.ejrad.2023.111088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
PURPOSE To investigate the quality of reporting in radiomics research, with a focus on the most basic technical parameters. METHODS A PubMed literature search was conducted to identify original studies on radiomics (last search: January 2, 2023). Following a sample size calculation with an a priori power analysis, a random sample of the radiomic literature was collected. In addition to baseline characteristics, the key aspects of radiomic software, resampling, and discretization were evaluated. Agreement between raters was analyzed. Disagreements were resolved through consensus. RESULTS A sample of 87 publications was evaluated. Most publications (89%; 77/87) were retrospective. They were conducted predominantly with private data (87%; 76/87) at a single institution (77%; 67/87) without external validation (90%; 78/87). 69% (60/87) of the papers reported the radiomic software used (p < 0.001), with nearly half (43%; 26/60) omitting the version. 37% (32/87) reported the resampling size (p = 0.018), while 22% (7/32) did not report using iso-voxel resampling. 34% (30/87) reported the discretization parameters (p < 0.01), but more than three-quarters (77%; 23/30) did not experiment with different discretization parameters. A wide range of discretization parameter values were reported. Most papers (79%; 69/87) failed to report all three essential items simultaneously (p < 0.001). CONCLUSION Even the essential radiomic parameters that are usually displayed on the user interface of radiomic software tools were poorly reported in radiomics-related publications. This issue of transparency may require additional action from researchers, editors, and reviewers in the form of adopting more stringent reporting standards (e.g., checklists, guidelines).
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
| | - Sabahattin Yuzkan
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Samet Mutlu
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Elif Bulut
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Irem Kavukoglu
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
30
|
Wagner‐Larsen KS, Hodneland E, Fasmer KE, Lura N, Woie K, Bertelsen BI, Salvesen Ø, Halle MK, Smit N, Krakstad C, Haldorsen IS. MRI-based radiomic signatures for pretreatment prognostication in cervical cancer. Cancer Med 2023; 12:20251-20265. [PMID: 37840437 PMCID: PMC10652318 DOI: 10.1002/cam4.6526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Accurate pretherapeutic prognostication is important for tailoring treatment in cervical cancer (CC). PURPOSE To investigate whether pretreatment MRI-based radiomic signatures predict disease-specific survival (DSS) in CC. STUDY TYPE Retrospective. POPULATION CC patients (n = 133) allocated into training(T) (nT = 89)/validation(V) (nV = 44) cohorts. FIELD STRENGTH/SEQUENCE T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) at 1.5T or 3.0T. ASSESSMENT Radiomic features from segmented tumors were extracted from T2WI and DWI (high b-value DWI and apparent diffusion coefficient (ADC) maps). STATISTICAL TESTS Radiomic signatures for prediction of DSS from T2WI (T2rad ) and T2WI with DWI (T2 + DWIrad ) were constructed by least absolute shrinkage and selection operator (LASSO) Cox regression. Area under time-dependent receiver operating characteristics curves (AUC) were used to evaluate and compare the prognostic performance of the radiomic signatures, MRI-derived maximum tumor size ≤/> 4 cm (MAXsize ), and 2018 International Federation of Gynecology and Obstetrics (FIGO) stage (I-II/III-IV). Survival was analyzed using Cox model estimating hazard ratios (HR) and Kaplan-Meier method with log-rank tests. RESULTS The radiomic signatures T2rad and T2 + DWIrad yielded AUCT /AUCV of 0.80/0.62 and 0.81/0.75, respectively, for predicting 5-year DSS. Both signatures yielded better or equal prognostic performance to that of MAXsize (AUCT /AUCV : 0.69/0.65) and FIGO (AUCT /AUCV : 0.77/0.64) and were significant predictors of DSS after adjusting for FIGO (HRT /HRV for T2rad : 4.0/2.5 and T2 + DWIrad : 4.8/2.1). Adding T2rad and T2 + DWIrad to FIGO significantly improved DSS prediction compared to FIGO alone in cohort(T) (AUCT 0.86 and 0.88 vs. 0.77), and FIGO with T2 + DWIrad tended to the same in cohort(V) (AUCV 0.75 vs. 0.64, p = 0.07). High radiomic score for T2 + DWIrad was significantly associated with reduced DSS in both cohorts. DATA CONCLUSION Radiomic signatures from T2WI and T2WI with DWI may provide added value for pretreatment risk assessment and for guiding tailored treatment strategies in CC.
Collapse
Affiliation(s)
- Kari S. Wagner‐Larsen
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of RadiologyHaukeland University HospitalBergenNorway
- Section for Radiology, Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Erlend Hodneland
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of RadiologyHaukeland University HospitalBergenNorway
- Department of MathematicsUniversity of BergenBergenNorway
| | - Kristine E. Fasmer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of RadiologyHaukeland University HospitalBergenNorway
- Section for Radiology, Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Njål Lura
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of RadiologyHaukeland University HospitalBergenNorway
- Section for Radiology, Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Kathrine Woie
- Department of Obstetrics and GynecologyHaukeland University HospitalBergenNorway
| | | | - Øyvind Salvesen
- Clinical Research Unit, Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Mari K. Halle
- Department of Obstetrics and GynecologyHaukeland University HospitalBergenNorway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Noeska Smit
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of RadiologyHaukeland University HospitalBergenNorway
- Department of InformaticsUniversity of BergenBergenNorway
| | - Camilla Krakstad
- Department of Obstetrics and GynecologyHaukeland University HospitalBergenNorway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Ingfrid S. Haldorsen
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of RadiologyHaukeland University HospitalBergenNorway
- Section for Radiology, Department of Clinical MedicineUniversity of BergenBergenNorway
| |
Collapse
|
31
|
Yang Z, Wang C, Wang Y, Lafata KJ, Zhang H, Ackerson BG, Kelsey C, Tong B, Yin FF. Development of a multi-feature-combined model: proof-of-concept with application to local failure prediction of post-SBRT or surgery early-stage NSCLC patients. Front Oncol 2023; 13:1185771. [PMID: 37781201 PMCID: PMC10534017 DOI: 10.3389/fonc.2023.1185771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Objective To develop a Multi-Feature-Combined (MFC) model for proof-of-concept in predicting local failure (LR) in NSCLC patients after surgery or SBRT using pre-treatment CT images. This MFC model combines handcrafted radiomic features, deep radiomic features, and patient demographic information in an integrated machine learning workflow. Methods The MFC model comprised three key steps. (1) Extraction of 92 handcrafted radiomic features from the GTV segmented on pre-treatment CT images. (2) Extraction of 512 deep radiomic features from pre-trained U-Net encoder. (3) The extracted handcrafted radiomic features, deep radiomic features, along with 4 patient demographic information (i.e., gender, age, tumor volume, and Charlson comorbidity index), were concatenated as a multi-dimensional input to the classifiers for LR prediction. Two NSCLC patient cohorts from our institution were investigated: (1) the surgery cohort includes 83 patients with segmentectomy or wedge resection (7 LR), and (2) the SBRT cohort includes 84 patients with lung SBRT (9 LR). The MFC model was developed and evaluated independently for both cohorts, and was subsequently compared against the prediction models based on only handcrafted radiomic features (R models), patient demographic information (PI models), and deep learning modeling (DL models). ROC with AUC was adopted to evaluate model performance with leave-one-out cross-validation (LOOCV) and 100-fold Monte Carlo random validation (MCRV). The t-test was performed to identify the statistically significant differences. Results In LOOCV, the AUC range (surgery/SBRT) of the MFC model was 0.858-0.895/0.868-0.913, which was higher than the three other models: 0.356-0.480/0.322-0.650 for PI models, 0.559-0.618/0.639-0.682 for R models, and 0.809/0.843 for DL models. In 100-fold MCRV, the MFC model again showed the highest AUC results (surgery/SBRT): 0.742-0.825/0.888-0.920, which were significantly higher than PI models: 0.464-0.564/0.538-0.628, R models: 0.557-0.652/0.551-0.732, and DL models: 0.702/0.791. Conclusion We successfully developed an MFC model that combines feature information from multiple sources for proof-of-concept prediction of LR in patients with surgical and SBRT early-stage NSCLC. Initial results suggested that incorporating pre-treatment patient information from multiple sources improves the ability to predict the risk of local failure.
Collapse
Affiliation(s)
- Zhenyu Yang
- Department of Radiation Oncology, Duke University, Durham, NC, United States
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
- Medical Physics Graduate Program, Duke University, Durham, NC, United States
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, NC, United States
| | - Yuqi Wang
- Medical Physics Graduate Program, Duke University, Durham, NC, United States
| | - Kyle J. Lafata
- Department of Radiation Oncology, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Radiology, Duke University, Durham, NC, United States
| | - Haozhao Zhang
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Bradley G. Ackerson
- Department of Radiation Oncology, Duke University, Durham, NC, United States
| | - Christopher Kelsey
- Department of Radiation Oncology, Duke University, Durham, NC, United States
| | - Betty Tong
- Department of Surgery, Duke University, Durham, NC, United States
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University, Durham, NC, United States
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
32
|
De Muzio F, Pellegrino F, Fusco R, Tafuto S, Scaglione M, Ottaiano A, Petrillo A, Izzo F, Granata V. Prognostic Assessment of Gastropancreatic Neuroendocrine Neoplasm: Prospects and Limits of Radiomics. Diagnostics (Basel) 2023; 13:2877. [PMID: 37761243 PMCID: PMC10529975 DOI: 10.3390/diagnostics13182877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are a group of lesions originating from cells of the diffuse neuroendocrine system. NENs may involve different sites, including the gastrointestinal tract (GEP-NENs). The incidence and prevalence of GEP-NENs has been constantly rising thanks to the increased diagnostic power of imaging and immuno-histochemistry. Despite the plethora of biochemical markers and imaging techniques, the prognosis and therapeutic choice in GEP-NENs still represents a challenge, mainly due to the great heterogeneity in terms of tumor lesions and clinical behavior. The concept that biomedical images contain information about tissue heterogeneity and pathological processes invisible to the human eye is now well established. From this substrate comes the idea of radiomics. Computational analysis has achieved promising results in several oncological settings, and the use of radiomics in different types of GEP-NENs is growing in the field of research, yet with conflicting results. The aim of this narrative review is to provide a comprehensive update on the role of radiomics on GEP-NEN management, focusing on the main clinical aspects analyzed by most existing reports: predicting tumor grade, distinguishing NET from other tumors, and prognosis assessment.
Collapse
Affiliation(s)
- Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | | | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy;
| | - Salvatore Tafuto
- Unit of Sarcomi e Tumori Rari, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy;
| | - Mariano Scaglione
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandro Ottaiano
- Unit for Innovative Therapies of Abdominal Metastastes, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy;
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy;
| | - Francesco Izzo
- Division of Hepatobiliary Surgery, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy;
| |
Collapse
|
33
|
Rigiroli F, Hoye J, Lerebours R, Lyu P, Lafata KJ, Zhang AR, Erkanli A, Mettu NB, Morgan DE, Samei E, Marin D. Exploratory analysis of mesenteric-portal axis CT radiomic features for survival prediction of patients with pancreatic ductal adenocarcinoma. Eur Radiol 2023; 33:5779-5791. [PMID: 36894753 DOI: 10.1007/s00330-023-09532-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/23/2022] [Accepted: 01/29/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVE To develop and evaluate task-based radiomic features extracted from the mesenteric-portal axis for prediction of survival and response to neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Consecutive patients with PDAC who underwent surgery after neoadjuvant therapy from two academic hospitals between December 2012 and June 2018 were retrospectively included. Two radiologists performed a volumetric segmentation of PDAC and mesenteric-portal axis (MPA) using a segmentation software on CT scans before (CTtp0) and after (CTtp1) neoadjuvant therapy. Segmentation masks were resampled into uniform 0.625-mm voxels to develop task-based morphologic features (n = 57). These features aimed to assess MPA shape, MPA narrowing, changes in shape and diameter between CTtp0 and CTtp1, and length of MPA segment affected by the tumor. A Kaplan-Meier curve was generated to estimate the survival function. To identify reliable radiomic features associated with survival, a Cox proportional hazards model was used. Features with an ICC ≥ 0.80 were used as candidate variables, with clinical features included a priori. RESULTS In total, 107 patients (60 men) were included. The median survival time was 895 days (95% CI: 717, 1061). Three task-based shape radiomic features (Eccentricity mean tp0, Area minimum value tp1, and Ratio 2 minor tp1) were selected. The model showed an integrated AUC of 0.72 for prediction of survival. The hazard ratio for the Area minimum value tp1 feature was 1.78 (p = 0.02) and 0.48 for the Ratio 2 minor tp1 feature (p = 0.002). CONCLUSION Preliminary results suggest that task-based shape radiomic features can predict survival in PDAC patients. KEY POINTS • In a retrospective study of 107 patients who underwent neoadjuvant therapy followed by surgery for PDAC, task-based shape radiomic features were extracted and analyzed from the mesenteric-portal axis. • A Cox proportional hazards model that included three selected radiomic features plus clinical information showed an integrated AUC of 0.72 for prediction of survival, and a better fit compared to the model with only clinical information.
Collapse
Affiliation(s)
- Francesca Rigiroli
- Department of Radiology, Duke University Health System, 2301 Erwin Road, Box 3808, Durham, NC, 27710, USA.
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Road, Boston, MA, 02215, USA.
| | - Jocelyn Hoye
- Carl E. Ravin Advanced Imaging Laboratories, Durham, NC, USA
| | - Reginald Lerebours
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Peijie Lyu
- Department of Radiology, Duke University Health System, 2301 Erwin Road, Box 3808, Durham, NC, 27710, USA
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Kyle J Lafata
- Carl E. Ravin Advanced Imaging Laboratories, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Anru R Zhang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Alaattin Erkanli
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | | | - Desiree E Morgan
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ehsan Samei
- Carl E. Ravin Advanced Imaging Laboratories, Durham, NC, USA
| | - Daniele Marin
- Department of Radiology, Duke University Health System, 2301 Erwin Road, Box 3808, Durham, NC, 27710, USA
| |
Collapse
|
34
|
Yang Z, Hu Z, Ji H, Lafata K, Vaios E, Floyd S, Yin FF, Wang C. A neural ordinary differential equation model for visualizing deep neural network behaviors in multi-parametric MRI-based glioma segmentation. Med Phys 2023; 50:4825-4838. [PMID: 36840621 PMCID: PMC10440249 DOI: 10.1002/mp.16286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/26/2023] Open
Abstract
PURPOSE To develop a neural ordinary differential equation (ODE) model for visualizing deep neural network behavior during multi-parametric MRI-based glioma segmentation as a method to enhance deep learning explainability. METHODS By hypothesizing that deep feature extraction can be modeled as a spatiotemporally continuous process, we implemented a novel deep learning model, Neural ODE, in which deep feature extraction was governed by an ODE parameterized by a neural network. The dynamics of (1) MR images after interactions with the deep neural network and (2) segmentation formation can thus be visualized after solving the ODE. An accumulative contribution curve (ACC) was designed to quantitatively evaluate each MR image's utilization by the deep neural network toward the final segmentation results. The proposed Neural ODE model was demonstrated using 369 glioma patients with a 4-modality multi-parametric MRI protocol: T1, contrast-enhanced T1 (T1-Ce), T2, and FLAIR. Three Neural ODE models were trained to segment enhancing tumor (ET), tumor core (TC), and whole tumor (WT), respectively. The key MRI modalities with significant utilization by deep neural networks were identified based on ACC analysis. Segmentation results by deep neural networks using only the key MRI modalities were compared to those using all four MRI modalities in terms of Dice coefficient, accuracy, sensitivity, and specificity. RESULTS All Neural ODE models successfully illustrated image dynamics as expected. ACC analysis identified T1-Ce as the only key modality in ET and TC segmentations, while both FLAIR and T2 were key modalities in WT segmentation. Compared to the U-Net results using all four MRI modalities, the Dice coefficient of ET (0.784→0.775), TC (0.760→0.758), and WT (0.841→0.837) using the key modalities only had minimal differences without significance. Accuracy, sensitivity, and specificity results demonstrated the same patterns. CONCLUSION The Neural ODE model offers a new tool for optimizing the deep learning model inputs with enhanced explainability. The presented methodology can be generalized to other medical image-related deep-learning applications.
Collapse
Affiliation(s)
- Zhenyu Yang
- Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Zongsheng Hu
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Hangjie Ji
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
| | - Kyle Lafata
- Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Eugene Vaios
- Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Scott Floyd
- Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Fang-Fang Yin
- Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Chunhao Wang
- Deparment of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
35
|
Huang C, Chopra S, Bolan CW, Chandarana H, Harfouch N, Hecht EM, Lo GC, Megibow AJ. Pancreatic Cystic Lesions: Next Generation of Radiologic Assessment. Gastrointest Endosc Clin N Am 2023; 33:533-546. [PMID: 37245934 DOI: 10.1016/j.giec.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pancreatic cystic lesions are frequently identified on cross-sectional imaging. As many of these are presumed branch-duct intraductal papillary mucinous neoplasms, these lesions generate much anxiety for the patients and clinicians, often necessitating long-term follow-up imaging and even unnecessary surgical resections. However, the incidence of pancreatic cancer is overall low for patients with incidental pancreatic cystic lesions. Radiomics and deep learning are advanced tools of imaging analysis that have attracted much attention in addressing this unmet need, however, current publications on this topic show limited success and large-scale research is needed.
Collapse
Affiliation(s)
- Chenchan Huang
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA.
| | - Sumit Chopra
- Department of Radiology, NYU Grossman School of Medicine, 650 First Avenue, 4th Floor, New York, NY 10016, USA
| | - Candice W Bolan
- Department of Radiology, Mayo Clinic in Florida, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Hersh Chandarana
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA
| | - Nassier Harfouch
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA
| | - Elizabeth M Hecht
- Department of Radiology, New York Presbyterian - Weill Cornell Medicine, 520 East 70th Street, Starr 8a, New York, NY 10021, USA
| | - Grace C Lo
- Department of Radiology, New York Presbyterian - Weill Cornell Medicine, 520 East 70th Street, Starr 7a, New York, NY 10021, USA
| | - Alec J Megibow
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA
| |
Collapse
|
36
|
Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Patrone R, Ottaiano A, Nasti G, Silvestro L, Cassata A, Grassi F, Avallone A, Izzo F, Petrillo A. Colorectal liver metastases patients prognostic assessment: prospects and limits of radiomics and radiogenomics. Infect Agent Cancer 2023; 18:18. [PMID: 36927442 PMCID: PMC10018963 DOI: 10.1186/s13027-023-00495-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
In this narrative review, we reported un up-to-date on the role of radiomics to assess prognostic features, which can impact on the liver metastases patient treatment choice. In the liver metastases patients, the possibility to assess mutational status (RAS or MSI), the tumor growth pattern and the histological subtype (NOS or mucinous) allows a better treatment selection to avoid unnecessary therapies. However, today, the detection of these features require an invasive approach. Recently, radiomics analysis application has improved rapidly, with a consequent growing interest in the oncological field. Radiomics analysis allows the textural characteristics assessment, which are correlated to biological data. This approach is captivating since it should allow to extract biological data from the radiological images, without invasive approach, so that to reduce costs and time, avoiding any risk for the patients. Several studies showed the ability of Radiomics to identify mutational status, tumor growth pattern and histological type in colorectal liver metastases. Although, radiomics analysis in a non-invasive and repeatable way, however features as the poor standardization and generalization of clinical studies results limit the translation of this analysis into clinical practice. Clear limits are data-quality control, reproducibility, repeatability, generalizability of results, and issues related to model overfitting.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, Napoli, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, Milan, 20122, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", Bari, 70124, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Alessandro Ottaiano
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Guglielmo Nasti
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Lucrezia Silvestro
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Antonio Cassata
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesca Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, 80138, Italy
| | - Antonio Avallone
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| |
Collapse
|
37
|
Elmahdy M, Sebro R. Radiomics analysis in medical imaging research. J Med Radiat Sci 2023; 70:3-7. [PMID: 36762402 PMCID: PMC9977659 DOI: 10.1002/jmrs.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
This article discusses the current research in the field of radiomics in medical imaging with emphasis on its role in fighting coronavirus disease 2019 (COVID-19). This article covers the building of radiomic models in a simple straightforward manner, while discussing radiomic models potential to help us face this pandemic.
Collapse
Affiliation(s)
- Mahmoud Elmahdy
- Department of RadiologyMayo ClinicJacksonvilleFloridaUSA,Center for Augmented IntelligenceMayo ClinicJacksonvilleFloridaUSA
| | - Ronnie Sebro
- Department of RadiologyMayo ClinicJacksonvilleFloridaUSA,Center for Augmented IntelligenceMayo ClinicJacksonvilleFloridaUSA,Department of Orthopedic SurgeryMayo ClinicJacksonvilleFloridaUSA,Department of BiostatisticsCentre for Quantitative Health SciencesJacksonvilleFloridaUSA
| |
Collapse
|
38
|
Spadarella G, Stanzione A, Akinci D'Antonoli T, Andreychenko A, Fanni SC, Ugga L, Kotter E, Cuocolo R. Systematic review of the radiomics quality score applications: an EuSoMII Radiomics Auditing Group Initiative. Eur Radiol 2023; 33:1884-1894. [PMID: 36282312 PMCID: PMC9935718 DOI: 10.1007/s00330-022-09187-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The main aim of the present systematic review was a comprehensive overview of the Radiomics Quality Score (RQS)-based systematic reviews to highlight common issues and challenges of radiomics research application and evaluate the relationship between RQS and review features. METHODS The literature search was performed on multiple medical literature archives according to PRISMA guidelines for systematic reviews that reported radiomic quality assessment through the RQS. Reported scores were converted to a 0-100% scale. The Mann-Whitney and Kruskal-Wallis tests were used to compare RQS scores and review features. RESULTS The literature research yielded 345 articles, from which 44 systematic reviews were finally included in the analysis. Overall, the median of RQS was 21.00% (IQR = 11.50). No significant differences of RQS were observed in subgroup analyses according to targets (oncological/not oncological target, neuroradiology/body imaging focus and one imaging technique/more than one imaging technique, characterization/prognosis/detection/other). CONCLUSIONS Our review did not reveal a significant difference of quality of radiomic articles reported in systematic reviews, divided in different subgroups. Furthermore, low overall methodological quality of radiomics research was found independent of specific application domains. While the RQS can serve as a reference tool to improve future study designs, future research should also be aimed at improving its reliability and developing new tools to meet an ever-evolving research space. KEY POINTS • Radiomics is a promising high-throughput method that may generate novel imaging biomarkers to improve clinical decision-making process, but it is an inherently complex analysis and often lacks reproducibility and generalizability. • The Radiomics Quality Score serves a necessary role as the de facto reference tool for assessing radiomics studies. • External auditing of radiomics studies, in addition to the standard peer-review process, is valuable to highlight common limitations and provide insights to improve future study designs and practical applicability of the radiomics models.
Collapse
Affiliation(s)
- Gaia Spadarella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Anna Andreychenko
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Healthcare Department, Moscow, Russia
| | | | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Elmar Kotter
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
39
|
Granata V, Fusco R, De Muzio F, Cutolo C, Grassi F, Brunese MC, Simonetti I, Catalano O, Gabelloni M, Pradella S, Danti G, Flammia F, Borgheresi A, Agostini A, Bruno F, Palumbo P, Ottaiano A, Izzo F, Giovagnoni A, Barile A, Gandolfo N, Miele V. Risk Assessment and Cholangiocarcinoma: Diagnostic Management and Artificial Intelligence. BIOLOGY 2023; 12:213. [PMID: 36829492 PMCID: PMC9952965 DOI: 10.3390/biology12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver tumor, with a median survival of only 13 months. Surgical resection remains the only curative therapy; however, at first detection, only one-third of patients are at an early enough stage for this approach to be effective, thus rendering early diagnosis as an efficient approach to improving survival. Therefore, the identification of higher-risk patients, whose risk is correlated with genetic and pre-cancerous conditions, and the employment of non-invasive-screening modalities would be appropriate. For several at-risk patients, such as those suffering from primary sclerosing cholangitis or fibropolycystic liver disease, the use of periodic (6-12 months) imaging of the liver by ultrasound (US), magnetic Resonance Imaging (MRI)/cholangiopancreatography (MRCP), or computed tomography (CT) in association with serum CA19-9 measurement has been proposed. For liver cirrhosis patients, it has been proposed that at-risk iCCA patients are monitored in a similar fashion to at-risk HCC patients. The possibility of using Artificial Intelligence models to evaluate higher-risk patients could favor the diagnosis of these entities, although more data are needed to support the practical utility of these applications in the field of screening. For these reasons, it would be appropriate to develop screening programs in the research protocols setting. In fact, the success of these programs reauires patient compliance and multidisciplinary cooperation.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Federica De Muzio
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Orlando Catalano
- Radiology Unit, Istituto Diagnostico Varelli, Via Cornelia dei Gracchi 65, 80126 Naples, Italy
| | - Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56216 Pisa, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Federica Flammia
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Federico Bruno
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Pierpaolo Palumbo
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori IRCCS-Fondazione G. Pascale, 80130 Naples, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Antonio Barile
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149 Genoa, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
40
|
Ma Y, Lin Y, Lu J, He Y, Shi Q, Liu H, Li J, Zhang B, Zhang J, Zhang Y, Yue P, Meng W, Li X. A meta-analysis of based radiomics for predicting lymph node metastasis in patients with biliary tract cancers. Front Surg 2023; 9:1045295. [PMID: 36684162 PMCID: PMC9852536 DOI: 10.3389/fsurg.2022.1045295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 01/09/2023] Open
Abstract
Background To assess the predictive value of radiomics for preoperative lymph node metastasis (LMN) in patients with biliary tract cancers (BTCs). Methods PubMed, Embase, Web of Science, Cochrane Library databases, and four Chinese databases [VIP, CNKI, Wanfang, and China Biomedical Literature Database (CBM)] were searched to identify relevant studies published up to February 10, 2022. Two authors independently screened all publications for eligibility. We included studies that used histopathology as a gold standard and radiomics to evaluate the diagnostic efficacy of LNM in BTCs patients. The quality of the literature was evaluated using the Radiomics Quality Score (RQS) and the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). The diagnostic odds ratio (DOR), sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and area under the receiver operating characteristic curve (AUC) were calculated to assess the predictive validity of radiomics for lymph node status in patients with BTCs. Spearman correlation coefficients were calculated, and Meta-regression and subgroup analyses were performed to assess the causes of heterogeneity. Results Seven studies were included, with 977 patients. The pooled sensitivity, specificity and AUC were 83% [95% confidence interval (CI): 77%, 88%], 78% (95% CI: 71, 84) and 0.88 (95% CI: 0.85, 0.90), respectively. The substantive heterogeneity was observed among the included studies (I 2 = 80%, 95%CI: 58,100). There was no threshold effect seen. Meta-regression showed that tumor site contributed to the heterogeneity of specificity analysis (P < 0.05). Imaging methods, number of patients, combined clinical factors, tumor site, model, population, and published year all played a role in the heterogeneity of the sensitivity analysis (P < 0.05). Subgroup analysis revealed that magnetic resonance imaging (MRI) based radiomics had a higher pooled sensitivity than contrast-computed tomography (CT), whereas the result for pooled specificity was the opposite. Conclusion Our meta-analysis showed that radiomics provided a high level of prognostic value for preoperative LMN in BTCs patients.
Collapse
Affiliation(s)
- Yuhu Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jiyuan Lu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yulong He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qianling Shi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Haoran Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jianlong Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Baoping Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China,Correspondence: Wenbo Meng Ping Yue dryueping@sina. Com
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China,Correspondence: Wenbo Meng Ping Yue dryueping@sina. Com
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
41
|
Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Silvestro L, De Bellis M, Di Girolamo E, Grazzini G, Chiti G, Brunese MC, Belli A, Patrone R, Palaia R, Avallone A, Petrillo A, Izzo F. Risk Assessment and Pancreatic Cancer: Diagnostic Management and Artificial Intelligence. Cancers (Basel) 2023; 15:351. [PMID: 36672301 PMCID: PMC9857317 DOI: 10.3390/cancers15020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers, and it is responsible for a number of deaths almost equal to its incidence. The high mortality rate is correlated with several explanations; the main one is the late disease stage at which the majority of patients are diagnosed. Since surgical resection has been recognised as the only curative treatment, a PC diagnosis at the initial stage is believed the main tool to improve survival. Therefore, patient stratification according to familial and genetic risk and the creation of screening protocol by using minimally invasive diagnostic tools would be appropriate. Pancreatic cystic neoplasms (PCNs) are subsets of lesions which deserve special management to avoid overtreatment. The current PC screening programs are based on the annual employment of magnetic resonance imaging with cholangiopancreatography sequences (MR/MRCP) and/or endoscopic ultrasonography (EUS). For patients unfit for MRI, computed tomography (CT) could be proposed, although CT results in lower detection rates, compared to MRI, for small lesions. The actual major limit is the incapacity to detect and characterize the pancreatic intraepithelial neoplasia (PanIN) by EUS and MR/MRCP. The possibility of utilizing artificial intelligence models to evaluate higher-risk patients could favour the diagnosis of these entities, although more data are needed to support the real utility of these applications in the field of screening. For these motives, it would be appropriate to realize screening programs in research settings.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 41012 Napoli, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Lucrezia Silvestro
- Division of Clinical Experimental Oncology Abdomen, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Mario De Bellis
- Division of Gastroenterology and Digestive Endoscopy, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Elena Di Girolamo
- Division of Gastroenterology and Digestive Endoscopy, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Giulia Grazzini
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Giuditta Chiti
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Andrea Belli
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Raffaele Palaia
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Antonio Avallone
- Division of Clinical Experimental Oncology Abdomen, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
42
|
CT-derived body composition measurements as predictors for neoadjuvant treatment tolerance and survival in gastroesophageal adenocarcinoma. ABDOMINAL RADIOLOGY (NEW YORK) 2023; 48:211-219. [PMID: 36209446 DOI: 10.1007/s00261-022-03695-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE Treatment for gastroesophageal adenocarcinomas can result in significant morbidity and mortality. The purpose of this study is to supplement methods for choosing treatment strategy by assessing the relationship between CT-derived body composition, patient, and tumor features, and clinical outcomes in this population. METHODS Patients with neoadjuvant treatment, biopsy-proven gastroesophageal adenocarcinoma, and initial staging CTs were retrospectively identified from institutional clinic encounters between 2000 and 2019. Details about patient, disease, treatment, and outcomes (including therapy tolerance and survival) were extracted from electronic medical records. A deep learning semantic segmentation algorithm was utilized to measure cross-sectional areas of skeletal muscle (SM), visceral fat (VF), and subcutaneous fat (SF) at the L3 vertebra level on staging CTs. Univariate and multivariate analyses were performed to assess the relationships between predictors and outcomes. RESULTS 142 patients were evaluated. Median survival was 52 months. Univariate and multivariate analysis showed significant associations between treatment tolerance and SM and VF area, SM to fat and VF to SF ratios, and skeletal muscle index (SMI) (p = 0.004-0.04). Increased survival was associated with increased body mass index (BMI) (p = 0.01) and increased SMI (p = 0.004). A multivariate Cox model consisting of BMI, SMI, age, gender, and stage demonstrated that patients in the high-risk group had significantly lower survival (HR = 1.77, 95% CI = 1.13-2.78, p = 0.008). CONCLUSION CT-based measures of body composition in patients with gastroesophageal adenocarcinoma may be independent predictors of treatment complications and survival and can supplement methods for assessing functional status during treatment planning.
Collapse
|
43
|
Qin S, Jiang Y, Wang F, Tang L, Huang X. Development and validation of a combined model based on dual-sequence MRI radiomics for predicting the efficacy of high-intensity focused ultrasound ablation for hysteromyoma. Int J Hyperthermia 2022; 40:2149862. [PMID: 36535929 DOI: 10.1080/02656736.2022.2149862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To determine the value of dual-sequence magnetic resonance imaging (MRI)-based radiomics in predicting the efficacy of high-intensity focused ultrasound (HIFU) ablation for hysteromyoma. METHODS A total of 142 patients with 172 hysteromyomas (95 hysteromyomas from the sufficient ablation group, and 77 hysteromyomas from the insufficient ablation group) were enrolled in the study. The clinical-radiological model was constructed with independent clinical-radiological risk factors, the radiomics model was constructed based on the optimal radiomics features of hysteromyoma from dual sequences, and the two groups of features were incorporated to construct the combined model. A fivefold cross validation procedure was adopted to validate these models. A nomogram was constructed, applying the combined model in the training cohort. The models were assessed with receiver operating characteristic (ROC) curves and integrated discrimination improvement (IDI). An independent test cohort comprising 40 patients was used to evaluate the performance of the optimal model. RESULTS Among the three models, the average areas under the ROC curves (AUC) of the radiomics model and combined model were 0.803 (95% confidence interval (CI): 0.726-0.881) and 0.841 (95% CI: 0.772-0.909), which were better than the clinical-radiological model in the training cohort. The IDI showed that the combined model had the best prediction accuracy. The combined model also showed good discrimination in both the validation cohort (AUC = 0.834) and the independent test cohort (AUC = 0.801). CONCLUSION The combined model based on the dual-sequence MRI radiomics is the most promising tool from our study to assist clinicians in predicting HIFU ablation efficacy.
Collapse
Affiliation(s)
- Shize Qin
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu Jiang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fang Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Lingling Tang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaohua Huang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
44
|
Stamoulou E, Spanakis C, Manikis GC, Karanasiou G, Grigoriadis G, Foukakis T, Tsiknakis M, Fotiadis DI, Marias K. Harmonization Strategies in Multicenter MRI-Based Radiomics. J Imaging 2022; 8:303. [PMID: 36354876 PMCID: PMC9695920 DOI: 10.3390/jimaging8110303] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2023] Open
Abstract
Radiomics analysis is a powerful tool aiming to provide diagnostic and prognostic patient information directly from images that are decoded into handcrafted features, comprising descriptors of shape, size and textural patterns. Although radiomics is gaining momentum since it holds great promise for accelerating digital diagnostics, it is susceptible to bias and variation due to numerous inter-patient factors (e.g., patient age and gender) as well as inter-scanner ones (different protocol acquisition depending on the scanner center). A variety of image and feature based harmonization methods has been developed to compensate for these effects; however, to the best of our knowledge, none of these techniques has been established as the most effective in the analysis pipeline so far. To this end, this review provides an overview of the challenges in optimizing radiomics analysis, and a concise summary of the most relevant harmonization techniques, aiming to provide a thorough guide to the radiomics harmonization process.
Collapse
Affiliation(s)
- Elisavet Stamoulou
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
| | - Constantinos Spanakis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
| | - Georgios C. Manikis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Georgia Karanasiou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
| | - Grigoris Grigoriadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Manolis Tsiknakis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece
| | - Dimitrios I. Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology—FORTH, University Campus of Ioannina, 451 15 Ioannina, Greece
| | - Kostas Marias
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece
| |
Collapse
|
45
|
Yang Z, Lafata KJ, Chen X, Bowsher J, Chang Y, Wang C, Yin FF. Quantification of lung function on CT images based on pulmonary radiomic filtering. Med Phys 2022; 49:7278-7286. [PMID: 35770964 DOI: 10.1002/mp.15837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To develop a radiomics filtering technique for characterizing spatial-encoded regional pulmonary ventilation information on lung computed tomography (CT). METHODS The lung volume was segmented on 46 CT images, and a 3D sliding window kernel was implemented across the lung volume to capture the spatial-encoded image information. Fifty-three radiomic features were extracted within the kernel, resulting in a fourth-order tensor object. As such, each voxel coordinate of the original lung was represented as a 53-dimensional feature vector, such that radiomic features could be viewed as feature maps within the lungs. To test the technique as a potential pulmonary ventilation biomarker, the radiomic feature maps were compared to paired functional images (Galligas PET or DTPA-SPECT) based on the Spearman correlation (ρ) analysis. RESULTS The radiomic feature maps GLRLM-based Run-Length Non-Uniformity and GLCOM-based Sum Average are found to be highly correlated with the functional imaging. The achieved ρ (median [range]) for the two features are 0.46 [0.05, 0.67] and 0.45 [0.21, 0.65] across 46 patients and 2 functional imaging modalities, respectively. CONCLUSIONS The results provide evidence that local regions of sparsely encoded heterogeneous lung parenchyma on CT are associated with diminished radiotracer uptake and measured lung ventilation defects on PET/SPECT imaging. These findings demonstrate the potential of radiomics to serve as a complementary tool to the current lung quantification techniques and provide hypothesis-generating data for future studies.
Collapse
Affiliation(s)
- Zhenyu Yang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Kyle J Lafata
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Xinru Chen
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - James Bowsher
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Yushi Chang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
46
|
Wang F, Cheng M, Du B, Li LM, Huang WP, Gao JB. Use of radiomics containing an effective peritumoral area to predict early recurrence of solitary hepatocellular carcinoma ≤5 cm in diameter. Front Oncol 2022; 12:1032115. [PMID: 36387096 PMCID: PMC9650218 DOI: 10.3389/fonc.2022.1032115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 01/27/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the sixth leading type of cancer worldwide. We aimed to develop a preoperative predictive model of the risk of early tumor recurrence after HCC treatment based on radiomic features of the peritumoral region and evaluate the performance of this model against postoperative pathology. Method Our model was developed using a retrospective analysis of imaging and clinicopathological data of 175 patients with an isolated HCC ≤5 cm in diameter; 117 patients were used for model training and 58 for model validation. The peritumoral area was delineated layer-by-layer for the arterial and portal vein phase on preoperative dynamic enhanced computed tomography images. The volume area of interest was expanded by 5 and 10 mm and the radiomic features of these areas extracted. Lasso was used to select the most stable features. Results The radiomic features of the 5-mm area were sufficient for prediction of early tumor recurrence, with an area under the curve (AUC) value of 0.706 for the validation set and 0.837 for the training set using combined images. The AUC of the model using clinicopathological information alone was 0.753 compared with 0.786 for the preoperative radiomics model (P >0.05). Conclusions Radiomic features of a 5-mm peritumoral region may provide a non-invasive biomarker for the preoperative prediction of the risk of early tumor recurrence for patients with a solitary HCC ≤5 cm in diameter. A fusion model that combines the radiomic features of the peritumoral region and postoperative pathology could contribute to individualized treatment of HCC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Cheng
- Information Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binbin Du
- Vasculocardiology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-ming Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-peng Huang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-bo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jian-bo Gao,
| |
Collapse
|
47
|
Cui Y, Yin FF. Impact of image quality on radiomics applications. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7fd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Radiomics features extracted from medical images have been widely reported to be useful in the patient specific outcome modeling for variety of assessment and prediction purposes. Successful application of radiomics features as imaging biomarkers, however, is dependent on the robustness of the approach to the variation in each step of the modeling workflow. Variation in the input image quality is one of the main sources that impacts the reproducibility of radiomics analysis when a model is applied to broader range of medical imaging data. The quality of medical image is generally affected by both the scanner related factors such as image acquisition/reconstruction settings and the patient related factors such as patient motion. This article aimed to review the published literatures in this field that reported the impact of various imaging factors on the radiomics features through the change in image quality. The literatures were categorized by different imaging modalities and also tabulated based on the imaging parameters and the class of radiomics features included in the study. Strategies for image quality standardization were discussed based on the relevant literatures and recommendations for reducing the impact of image quality variation on the radiomics in multi-institutional clinical trial were summarized at the end of this article.
Collapse
|
48
|
Li LP, Leidner AS, Wilt E, Mikheev A, Rusinek H, Sprague SM, Kohn OF, Srivastava A, Prasad PV. Radiomics-Based Image Phenotyping of Kidney Apparent Diffusion Coefficient Maps: Preliminary Feasibility & Efficacy. J Clin Med 2022; 11:jcm11071972. [PMID: 35407587 PMCID: PMC8999417 DOI: 10.3390/jcm11071972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
Given the central role of interstitial fibrosis in disease progression in chronic kidney disease (CKD), a role for diffusion-weighted MRI has been pursued. We evaluated the feasibility and preliminary efficacy of using radiomic features to phenotype apparent diffusion coefficient (ADC) maps and hence to the clinical classification(s) of the participants. The study involved 40 individuals (10 healthy and 30 with CKD (eGFR < 60 mL/min/1.73 m2)). Machine learning methods, such as hierarchical clustering and logistic regression, were used. Clustering resulted in the identification of two clusters, one including all individuals with CKD (n = 17), while the second one included all the healthy volunteers (n = 10) and the remaining individuals with CKD (n = 13), resulting in 100% specificity. Logistic regression identified five radiomic features to classify participants as with CKD vs. healthy volunteers, with a sensitivity and specificity of 93% and 70%, respectively, and an AUC of 0.95. Similarly, four radiomic features were able to classify participants as rapid vs. non-rapid CKD progressors among the 30 individuals with CKD, with a sensitivity and specificity of 71% and 43%, respectively, and an AUC of 0.75. These promising preliminary data should support future studies with larger numbers of participants with varied disease severity and etiologies to improve performance.
Collapse
Affiliation(s)
- Lu-Ping Li
- Department of Radiology, North Shore University HealthSystem, Evanston, IL 60201, USA; (E.W.); (P.V.P.)
- Correspondence:
| | - Alexander S. Leidner
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.S.L.); (A.S.)
| | - Emily Wilt
- Department of Radiology, North Shore University HealthSystem, Evanston, IL 60201, USA; (E.W.); (P.V.P.)
| | - Artem Mikheev
- Center for Biomedical Imaging, New York University Langone Health, New York, NY 10016, USA; (A.M.); (H.R.)
| | - Henry Rusinek
- Center for Biomedical Imaging, New York University Langone Health, New York, NY 10016, USA; (A.M.); (H.R.)
| | - Stuart M. Sprague
- Division of Nephrology, Department of Medicine, North Shore University HealthSystem, Evanston, IL 60201, USA;
| | - Orly F. Kohn
- Division of Nephrology, Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.S.L.); (A.S.)
| | - Pottumarthi V. Prasad
- Department of Radiology, North Shore University HealthSystem, Evanston, IL 60201, USA; (E.W.); (P.V.P.)
| |
Collapse
|
49
|
Allphin AJ, Mowery YM, Lafata KJ, Clark DP, Bassil AM, Castillo R, Odhiambo D, Holbrook MD, Ghaghada KB, Badea CT. Photon Counting CT and Radiomic Analysis Enables Differentiation of Tumors Based on Lymphocyte Burden. Tomography 2022; 8:740-753. [PMID: 35314638 PMCID: PMC8938796 DOI: 10.3390/tomography8020061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 01/13/2023] Open
Abstract
The purpose of this study was to investigate if radiomic analysis based on spectral micro-CT with nanoparticle contrast-enhancement can differentiate tumors based on lymphocyte burden. High mutational load transplant soft tissue sarcomas were initiated in Rag2+/− and Rag2−/− mice to model varying lymphocyte burden. Mice received radiation therapy (20 Gy) to the tumor-bearing hind limb and were injected with a liposomal iodinated contrast agent. Five days later, animals underwent conventional micro-CT imaging using an energy integrating detector (EID) and spectral micro-CT imaging using a photon-counting detector (PCD). Tumor volumes and iodine uptakes were measured. The radiomic features (RF) were grouped into feature-spaces corresponding to EID, PCD, and spectral decomposition images. The RFs were ranked to reduce redundancy and increase relevance based on TL burden. A stratified repeated cross validation strategy was used to assess separation using a logistic regression classifier. Tumor iodine concentration was the only significantly different conventional tumor metric between Rag2+/− (TLs present) and Rag2−/− (TL-deficient) tumors. The RFs further enabled differentiation between Rag2+/− and Rag2−/− tumors. The PCD-derived RFs provided the highest accuracy (0.68) followed by decomposition-derived RFs (0.60) and the EID-derived RFs (0.58). Such non-invasive approaches could aid in tumor stratification for cancer therapy studies.
Collapse
Affiliation(s)
- Alex J. Allphin
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 277101, USA; (D.P.C.); (M.D.H.)
- Correspondence: (A.J.A.); (C.T.B.)
| | - Yvonne M. Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; (Y.M.M.); (K.J.L.); (A.M.B.); (R.C.); (D.O.)
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Kyle J. Lafata
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; (Y.M.M.); (K.J.L.); (A.M.B.); (R.C.); (D.O.)
- Department of Radiology, Duke University, Durham, NC 27710, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27710, USA
| | - Darin P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 277101, USA; (D.P.C.); (M.D.H.)
| | - Alex M. Bassil
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; (Y.M.M.); (K.J.L.); (A.M.B.); (R.C.); (D.O.)
| | - Rico Castillo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; (Y.M.M.); (K.J.L.); (A.M.B.); (R.C.); (D.O.)
| | - Diana Odhiambo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; (Y.M.M.); (K.J.L.); (A.M.B.); (R.C.); (D.O.)
| | - Matthew D. Holbrook
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 277101, USA; (D.P.C.); (M.D.H.)
| | - Ketan B. Ghaghada
- E.B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, TX 77030, USA;
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 277101, USA; (D.P.C.); (M.D.H.)
- Correspondence: (A.J.A.); (C.T.B.)
| |
Collapse
|
50
|
Kong J, Zheng J, Wu J, Wu S, Cai J, Diao X, Xie W, Chen X, Yu H, Huang L, Fang H, Fan X, Qin H, Li Y, Wu Z, Huang J, Lin T. Development of a radiomics model to diagnose pheochromocytoma preoperatively: a multicenter study with prospective validation. J Transl Med 2022; 20:31. [PMID: 35033104 PMCID: PMC8760711 DOI: 10.1186/s12967-022-03233-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Preoperative diagnosis of pheochromocytoma (PHEO) accurately impacts preoperative preparation and surgical outcome in PHEO patients. Highly reliable model to diagnose PHEO is lacking. We aimed to develop a magnetic resonance imaging (MRI)-based radiomic-clinical model to distinguish PHEO from adrenal lesions. METHODS In total, 305 patients with 309 adrenal lesions were included and divided into different sets. The least absolute shrinkage and selection operator (LASSO) regression model was used for data dimension reduction, feature selection, and radiomics signature building. In addition, a nomogram incorporating the obtained radiomics signature and selected clinical predictors was developed by using multivariable logistic regression analysis. The performance of the radiomic-clinical model was assessed with respect to its discrimination, calibration, and clinical usefulness. RESULTS Seven radiomics features were selected among the 1301 features obtained as they could differentiate PHEOs from other adrenal lesions in the training (area under the curve [AUC], 0.887), internal validation (AUC, 0.880), and external validation cohorts (AUC, 0.807). Predictors contained in the individualized prediction nomogram included the radiomics signature and symptom number (symptoms include headache, palpitation, and diaphoresis). The training set yielded an AUC of 0.893 for the nomogram, which was confirmed in the internal and external validation sets with AUCs of 0.906 and 0.844, respectively. Decision curve analyses indicated the nomogram was clinically useful. In addition, 25 patients with 25 lesions were recruited for prospective validation, which yielded an AUC of 0.917 for the nomogram. CONCLUSION We propose a radiomic-based nomogram incorporating clinically useful signatures as an easy-to-use, predictive and individualized tool for PHEO diagnosis.
Collapse
Affiliation(s)
- Jianqiu Kong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Junjiong Zheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jieying Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Shaoxu Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xiayao Diao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Weibin Xie
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xiong Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hao Yu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Lifang Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hongpeng Fang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xinxiang Fan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Haide Qin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yong Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhuo Wu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|